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Introduction

Once upon a time, there was Logic, and there was Category Theory. Traditional logic once
consisted of:

• Propositional calculus, first-order logic, formal systems of deduction, Tarski-style
semantics, Gödel’s completeness and incompleteness theorems.

• On that basis were erected model theory, set theory, computability theory, and proof
theory.

• Logic was considered the study of the foundations of mathematics, but it was largely
unrealted to other branches of mathematics.

And category theory originally consisted of:

• Homological algebra, homotopy theory, the study of various kinds of limits,

• Universal constructions like free algebras and tensor products,

• Duality theories such as that of Gelfand and Stone,

• Grothendieck’s algebraic geometry and sheaf theory,

• The theory of monads and universal algebra, like Birkhoff’s theorems.

Then along came F.W. Lawvere and noticed how the basic framework of Stone duality
could be applied to algebraic theories, inventing functorial semantics. From this, the basic
ideas of categorical logic followed:

• An equational theory is represented as a category T with finite products that’s “freely
generated as such by the signature”; a model of the theory, or T-algebra, is then a
finite product preserving functor A : T → Set. The completeness of equational
reasoning (one of Birkhoff’s theorems) is then the fact that we have a contravariant
embedding,

Top ↪→ Mod(T) = FP(T, Set) ,

so that the “syntax” is a (dual) subcategory of the “semantics”.
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• Following Rasiowa-Sikorski, propositional logic can be treated as Boolean algebra:
formal deduction is a way to specify a free algebra, truth-table semantics is a descrip-
tion of the Boolean homomorphisms into {0, 1}, and Stone’s representation theorem
is the completenes theorem for propositional logic.

• First-order logic can be understoood as a Boolean algebra indexed over an algebraic
theory, with the quantifiers as adjoints to the reindexing functors (Lawvere’s hyper-
doctrines). More generally, one can define the notion of a “Boolean category” as a
solution to the analogy: “propositional logic is to Boolean algebra as first-order logic
is to X”, generalizing from posets to (proper) categories. Gödel completeness can be
formulated as a (sheaf) representation theorem for Boolean (or Heyting) categories.

• The same ideas also apply to various fragments of first-order logic to relate diffferent
kinds of logical theories (syntax) and their categories of models (semantics) via the
general framework of functorial semantics.

• Finally, topos theory subsumes and generalizes logical duality, unifying the “al-
gebraic” (syntactic) and “geometric” (semantic) aspects in the single category of
Grothendieck toposes and geometric morphisms. A topos can also be seen a forcing
model of set theory, Kripke model of intuitionistic or modal logic, a model of infini-
tary first-order logic, a model of higher-order (predicate) logic, or even a realizability
model of computability.

There is also another, “constructive” tradition in logic, more closely related to proof
theory and influenced by theoretical computer science.

• The Curry-Howard correspondence is a somewhat mysterious connection between
propositional logic and type theory, according to which the “meaning” of a propo-
sitional formula is not just a truth-value, but rather the collection of its proofs.
Propositions-as-Types, Proofs-as-Terms (or -Programs) is a proof-theoretic (or com-
putational) alterative to Tarskian, truth-value semantics. It also extends to first-order
logic and dependent type theory.

• Associated to this perspective, one also has categorical semantics of type theories
like the λ-calculus in (locally) cartesian closed categories, like the category of Scott
domains, rather than in Boolean and Heyting algebras (for propositional logic) and
(pre)toposes (for first-order and higher-order predicate logic).

• The algebra used for the truth-value semantics of propositional or predicate logic
(e.g. the Boolean algebra {0, 1}) is then seen to be the poset reflection of a proper
category (e.g. Set) modeling the type theory that is the “proof-relevant” version of
the logic. The general scheme can be represented as follows, with the righthand side
the proof-relevant version of the left:
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CONTENTS 7

Logic Algebra Type Theory Category
Propositional Boolean algebra Simple CCC

Predicate Boolean category Dependent LCCC

• The relationship between validity and provability classically described by that be-
tween logic and type theory, is described categorically by the relations of general-
ization and “poset reflection” between (structured) posets and categories. In this
way, the Curry-Howard correspondence relates to the idea of “categorification”: a
structured category whose poset reflection is a given structured poset. For example,
the categorification of a ∧-semilattice is a category with finite products, and the
categorification of the Boolean algebra {0, 1} is the category Set.

Such was the state of Categorical Logic when these notes were begun, around the turn
of the century. In the meantime, some new ideas have shifted the focus: the Curry-Howard
paradigm relating truth-value semantics (model theory) and type-theoretic syntax (proof
theory)—viewed as an instance of categorification—has turned out to capture only the first
two levels of an infinite hierarchy of levels of structure, related by inclusion, truncation,
(co-)reflection, and other operations. The importance of “proof-relevance” that underlies
the Propositions-as-Types idea is essentially just a special case of the coherence issue that
arises everywhere in higher category theory. And the once-bold replacement of both truth-
values and sets by types in constructive logic and the foundations of computation parallels
the replacement of discrete structures (sheaves) by “higher” ones (stacks) in algebra and
geometry, except that we have now learned that the gap between the levels is not just a
single step, but rather an infinite hierarchy of levels of structure, each just as significant
as the first step. These insights are reflected in current categorical logic in the recent
extension from algebraic logic (level 0) and topos theory (level 1) to higher topos theory
and homotopy type theory (level ∞). The latter are the focus of much current research,
but the unification of the various earlier topics that has been achieved already shows how
much we have learned about what happens in passing from 0 to 1, by passing from the
finite to the infinite.

For instance, the dualities of Stone, Lawvere, and Makkai that spurred the early devel-
opment of categorical logic now fall into place from the standpoint shown in table 1, that
focuses on typing, variance, and h-level, rather than the traditional distinction between
syntax and semantics.
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0-types 1-types n-types

Simple types Positive PL Alg. Theories HITs

Dependent types Coherent FOL Gen. Alg. Theories Universes

Table 1: Covariant fragments
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Appendix A

Category Theory

A.1 Categories

Definition A.1.1. A category C consists of classes

C0 of objects A, B, C, . . .
C1 of morphisms f , g, h, . . .

such that:

• Each morphism f has uniquely determined domain dom f and codomain cod f , which
are objects. This is written:

f : dom f → cod f

• For any morphisms f : A → B and g : B → C there exists a uniquely determined
composition g ◦ f : A→ C. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

where domains are codomains are as follows:

A
f // B

g // C
h // D

• For every object A there exists the identity morphism 1A : A → A which is a unit
for composition,

1A ◦ f = f , g ◦ 1A = g ,

where f : B → A and g : A→ C.

Morphisms are also called arrows or maps. Note that morphisms do not actually have
to be functions, and objects need not be sets or spaces of any sort. We often write C
instead of C0.

[DRAFT: January 16, 2024]



10 Category Theory

Definition A.1.2. A category C is small when the objects C0 and the morphisms C1
are sets (as opposed to proper classes). A category is locally small when for all objects
A,B ∈ C0 the class of morphisms with domain A and codomain B, written Hom(A,B) or
C0(A,B), is a set.

We normally restrict attention to locally small categories, so unless we specify otherwise
all categories are taken to be locally small. Next we consider several examples of categories.

A.1.1 Examples

The empty category 0 The empty category has no objects and no arrows.

The unit category 1 The unit category, also called the terminal category, has one object
? and one arrow 1?:

? 1?ee

Other finite categories There are other finite categories, for example the category with
two objects and one (non-identity) arrow, and the category with two parallel arrows:

? // • ? 88
&& •

Groups as categories Every group (G, ·), is a category with a single object ? and each
element of G as a morphism:

?

b

�� a
pp

c

NN a, b, c, . . . ∈ G

The composition of arrows is given by the group operation:

a ◦ b = a · b

The identity arrow is the group unit e. This is indeed a category because the group
operation is associative and the group unit is the unit for the composition. In order to get
a category, we do not actually need to know that every element in G has an inverse. It
suffices to take a monoid, also known as semigroup, which is an algebraic structure with
an associative operation and a unit.

We can turn things around and define a monoid to be a category with a single object.
A group is then a category with a single object in which every arrow is an isomorphism
(in the sense of definition A.1.5 below).
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A.1 Categories 11

Posets as categories Recall that a partially ordered set, or poset (P,≤), is a set with a
reflexive, transitive, and antisymmetric relation:

x ≤ x (reflexive)

x ≤ y & y ≤ z ⇒ x ≤ z (transitive)

x ≤ y & y ≤ x ⇒ x = y (antisymmetric)

Each poset is a category whose objects are the elements of P , and there is a single arrow
p → q between p, q ∈ P if, and only if, p ≤ q. Composition of p → q and q → r is the
unique arrow p → r, which exists by transitivity of ≤. The identity arrow on p is the
unique arrow p→ p, which exists by reflexivity of ≤.

Antisymmetry tells us that any two isomorphic objects in P are equal.1 We do not
need antisymmetry in order to obtain a category, i.e., a preorder would suffice.

Again, we may define a preorder to be a category in which there is at most one arrow
between any two objects. A poset is a skeletal preorder, i.e. one in which the only isomor-
phisms are the identity arrows. We allow for the possibility that a preorder or a poset is
a proper class rather than a set.

A particularly important example of a poset category is the poset of open sets OX of
a topological space X, ordered by inclusion.

Sets as categories Any set S is a category whose objects are the elements of S and
whose only arrows are identity arrows. Such a category, in which the only arrows are the
identity arrows, is called a discrete category.

A.1.2 Categories of structures

In general, structures like groups, topological spaces, posets, etc., determine categories in
which the maps are structure-preserving functions, composition is composition of functions,
and identity morphisms are identity functions:

• Group is the category whose objects are groups and whose morphisms are group
homomorphisms.

• Top is the category whose objects are topological spaces and whose morphisms are
continuous maps.

• Set is the category whose objects are sets and whose morphisms are functions.2

• Graph is the category of (directed) graphs an graph homomorphisms.

• Poset is the category of posets and monotone maps.

1A category in which isomorphic object are equal is a skeletal category.
2A function between sets A and B is a relation f ⊆ A × B such that for every x ∈ A there exists a

unique y ∈ B for which 〈x, y〉 ∈ f . A morphism in Set is a triple 〈A, f,B〉 such that f ⊆ A × B is a
function.
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12 Category Theory

Such categories of structures are generally large, but locally small. Note that it is not
necessary to check the associative and unit laws for such categories of functions (why?),
unlike the following example.

Exercise A.1.3. The category of relations Rel has as objects all sets A,B,C, . . . and as
arrows A → B the relations R ⊆ A × B. The composite of R ⊆ A × B and S ⊆ B × C,
and the identity arrow on A, are defined by:

S ◦R =
{
〈x, z〉 ∈ A× C

∣∣ ∃ y ∈ B . xRy & ySz
}
,

1A =
{
〈x, x〉

∣∣ x ∈ A} .
Show that this is indeed a category!

A.1.3 Basic notions

We recall some further basic notions from category theory.

Definition A.1.4. A subcategory C ′ of a category C is given by a subclass of objects
C ′0 ⊆ C0 and a subclass of morphisms C ′1 ⊆ C1 such that f ∈ C ′1 implies dom f, cod f ∈ C ′0,
1A ∈ C ′1 for every A ∈ C ′0, and g ◦ f ∈ C ′1 whenever f, g ∈ C ′1 are composable.

A subcategory C ′ of C is full if for all A,B ∈ C ′0, we have C ′(A,B) = C(A,B), i.e. every
f : A→ B in C1 is also in C ′1.

Definition A.1.5. An inverse of a morphism f : A → B is a morphism f−1 : B → A
such that

f ◦ f−1 = 1B and f−1 ◦ f = 1A .

A morphism that has an inverse is an isomorphism, or iso. If there exists a pair of mutually
inverse morphisms f : A → B and f−1 : B → A we say that the objects A and B are
isomorphic, written A ∼= B.

The notation f−1 is justified because an inverse, if it exists, is unique. A left inverse is
a morphism g : B → A such that g ◦ f = 1A, and a right inverse is a morphism g : B → A
such that f ◦ g = 1B. A left inverse is also called a retraction, whereas a right inverse is
called a section.

Definition A.1.6. A monomorphism, or mono, is a morphism f : A → B that can be
cancelled on the left: for all g : C → A, h : C → A,

f ◦ g = f ◦ h⇒ g = h .

An epimorphism, or epi, is a morphism f : A→ B that can be cancelled on the right: for
all g : B → C, h : B → A,

g ◦ f = h ◦ f ⇒ g = h .

[DRAFT: January 16, 2024]
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In Set monomorphisms are the injective functions and epimorphisms are the surjective
functions. Isomorphisms in Set are the bijective functions. Thus, in Set a morphism is iso
if, and only if, it is both mono and epi. However, this example is misleading! In general,
a morphism can be mono and epi without being an iso. For example, the non-identity
morphism in the category consisting of two objects and one morphism between them is
both epi and mono, but it has no inverse. A more interesting example of morphisms that
are both epi and mono but are not iso occurs in the category Top of topological spaces and
continuous maps, where not every continuous bijection is a homeomorphism.

A diagram of objects and morphisms is a directed graph whose vertices are objects of
a category and edges are morphisms between them, for example:

A
f //

g

��

B h // C

j
��

D
k

//

m

??

E

Such a diagram is said to commute when the composition of morphisms along any two
paths with the same beginning and end gives equal morphisms. Commutativity of the
above diagram is equivalent to the following two equations:

f = m ◦ g , k = j ◦ h ◦m .

From these we can derive k ◦ g = j ◦ h ◦ f by a diagram chase.

A.2 Functors

Definition A.2.1. A functor F : C → D from a category C to a category D consists of
functions

F0 : C0 → D0 and F1 : C1 → D1

such that, for all f : A→ B and g : B → C in C:

F1f : F0A→ F0B ,

F1(g ◦ f) = (F1g) ◦ (F1f) ,

F1(1A) = 1F0A .

We usually write F for both F0 and F1.

A functor is thus a homomorphism of the category structure; note that it maps com-
mutative diagrams to commutative diagrams because it preserves composition.

We may form the “category of categories” Cat whose objects are small categories and
whose morphisms are functors. Composition of functors is composition of the corresponding
functions, and the identity functor is one that is identity on objects and on morphisms.
The category Cat is large but locally small.
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Definition A.2.2. A functor F : C → D is faithful when it is “locally injective on mor-
phisms”, in the sense that for all f, g : A→ B, if Ff = Fg then f = g.

A functor F : C → D is full when it is “locally surjective on morphisms”: for every
g : FA→ FB there exists f : A→ B such that g = Ff .

We consider several examples of functors.

A.2.1 Functors between sets, monoids and posets

When sets, monoids, groups, and posets are regarded as categories, the functors turn out
to be the usual morphisms, for example:

• A functor between sets S and T is a function from S to T .

• A functor between groups G and H is a group homomorphism from G to H.

• A functor between posets P and Q is a monotone function from P to Q.

Exercise A.2.3. Verify that the above claims are correct.

A.2.2 Forgetful functors

For categories of structures Group, Top, Graph, Poset, . . . , there is a forgetful functor U
which maps an object to the underlying set and a morphism to the underlying function.
For example, the forgetful functor U : Group → Set maps a group (G, ·) to the set G and
a group homomorphism f : (G, ·)→ (H, ?) to the function f : G→ H.

There are also forgetful functors that forget only part of the structure, for example
the forgetful functor U : Ring→ Group which maps a ring (R,+,×) to the additive group
(R,+) and a ring homomorphism f : (R,+R, ·S)→ (S,+S, ·S) to the group homomorphism
f : (R,+R)→ (S,+S). Note that there is another forgetful functor U ′ : Ring→ Mon from
rings to monoids.

Exercise A.2.4. Show that taking the graph Γ(f) =
{
〈x, f(x)〉

∣∣ x ∈ A} of a function
f : A → B determines a functor Γ : Set → Rel, from sets and functions to sets and
relations, which is the identity on objects. Is this a forgetful functor?

A.3 Constructions of Categories and Functors

A.3.1 Product of categories

Given categories C and D, we form the product category C × D whose objects are pairs
of objects 〈C,D〉 with C ∈ C and D ∈ D, and whose morphisms are pairs of morphisms
〈f, g〉 : 〈C,D〉 → 〈C ′, D′〉 with f : C → C ′ in C and g : D → D′ in D. Composition is
given by 〈f, g〉 ◦ 〈f ′, g′〉 = 〈f ◦ f ′, g ◦ g′〉.
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There are evident projection functors

C × D
π0

}}

π1

""
C D

which act as indicated in the following diagrams:

〈C,D〉8
π0

||

� π1

##
C D

〈f, g〉;
π0

}}

� π1

!!
f g

Exercise A.3.1. Show that, for any categories A, B, C, there are distinguished isos:

1× C ∼= C
B× C ∼= C× B

A× (B× C) ∼= (A× B)× C

Does this make Cat a (commutative) monoid?

A.3.2 Slice categories

Given a category C and an object A ∈ C, the slice category C/A has as objects, morphisms
into A,

B

f
��
A

(A.1)

and as morphisms, commutative diagrams over A:

B

f ��

g // B′

f ′~~
A

(A.2)

That is, a morphism from f : B → A to f ′ : B′ → A is a morphism g : B → B′ such that
f = f ′ ◦ g. Composition of morphisms in C/A is composition of morphisms in C.

There is a forgetful functor UA : C/A→ C which maps an object (A.1) to its domain B,
and a morphism (A.2) to the morphism g : B → B′.

Furthermore, for each morphism h : A→ A′ in C there is a functor “composition by h”,

C/h : C/A→ C/A′
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16 Category Theory

which maps an object (A.1) to the object h ◦ f : B → A′ and a morphisms (A.2) to the
morphism

B

h ◦ f   

g // B′

h ◦ f ′~~
A′

The construction of slice categories is itself a functor

C/− : C → Cat

provided that C is small. This functor maps each A ∈ C to the category C/A and each
morphism h : A→ A′ to the composition functor C/h : C/A→ C/A′.

Since Cat is itself a category, we may form the slice category Cat/C for any small
category C. The slice functor C/− then factors through the forgetful functor UC : Cat/C →
Cat via a functor C : C → Cat/C,

C C //

C/−
!!

Cat/C

UC

��
Cat

where for A ∈ C, the object part CA is

C/A

UA

��
C

and for h : A→ A′ in C, the morphism part Ch is

C/A

UA   

C/h
// C/A′

UA′}}
C

A.3.3 Arrow categories

Similar to the slice categories, an arrow category has arrows as objects, but without a fixed
codomain. Given a category C, the arrow category C→ has as objects the morphisms of C,

A

f
��
B

(A.3)
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A.3 Constructions of Categories and Functors 17

and as morphisms f → f ′ the commutative squares,

A

f
��

g // A′

f ′
��

B
g′
// B′.

(A.4)

That is, a morphism from f : A → B to f ′ : A′ → B′ is a pair of morphisms g : A → A′

and g′ : B → B′ such that g′ ◦ f = f ′ ◦ g. Composition of morphisms in C→ is just
componentwise composition of morphisms in C.

There are two evident forgetful functors U1, U2 : C→ → C, given by the domain and
codomain operations. (Can you find a common section for these?)

A.3.4 Opposite categories

For a category C the opposite category Cop has the same objects as C, but all the morphisms
are turned around, that is, a morphism f : A → B in Cop is a morphism f : B → A in C.
The identity arrows in Cop are the same as in C, but the order of composition is reversed.
The opposite of the opposite of a category is clearly the original category.

A functor F : Cop → D is sometimes called a contravariant functor (from C to D), and
a functor F : C → D is a covariant functor.

For example, the opposite category of a preorder (P,≤) is the preorder P turned upside
down, (P,≥).

Exercise A.3.2. Given a functor F : C → D, can you define a functor F op : Cop → Dop in
such a way that −op itself becomes a functor? On what category is it a functor?

A.3.5 Representable functors

Let C be a locally small category. Then for each pair of objects A,B ∈ C the collection of
all morphisms A→ B forms a set, written HomC(A,B), Hom(A,B) or C(A,B). For every
A ∈ C there is a functor

C(A,−) : C → Set

defined by

C(A,B) =
{
f ∈ C1

∣∣ f : A→ B
}

C(A, g) : f 7→ g ◦ f

where B ∈ C and g : B → C. In words, C(A, g) is composition by g. This is indeed a
functor because, for any morphisms

A
f // B

g // C h // D (A.5)
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we have
C(A, h ◦ g)f = (h ◦ g) ◦ f = h ◦ (g ◦ f) = C(A, h)(C(A, g)f) ,

and C(A, 1B)f = 1A ◦ f = f = 1C(A,B)f .
We may also ask whether C(−, B) is a functor. If we define its action on morphisms to

be precomposition,
C(f,B) : g 7→ g ◦ f ,

it becomes a contravariant functor,

C(−, B) : Cop → Set .

The contravariance is a consequence of precomposition; for morphisms (A.5) we have

C(g ◦ f,D)h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f,D)(C(g,D)h) .

A functor of the form C(A,−) is a (covariant) representable functor, and a functor of the
form C(−, B) is a (contravariant) representable functor.

It follows that the hom-set is a functor

C(−,−) : Cop × C → Set

which maps a pair of objects A,B ∈ C to the set C(A,B) of morphisms from A to B, and
it maps a pair of morphisms f : A′ → A, g : B → B′ in C to the function

C(f, g) : C(A,B)→ C(A′, B′)

defined by
C(f, g) : h 7→ g ◦ h ◦ f .

(Why does it follow that this is a functor?)

A.3.6 Group actions

A group (G, ·) is a category with one object ? and elements of G as the morphisms. Thus,
a functor F : G→ Set is given by a set F? = S and for each a ∈ G a function Fa : S → S
such that, for all x ∈ S, a, b ∈ G,

(Fe)x = x , (F (a · b))x = (Fa)((Fb)x) .

Here e is the unit element of G. If we write a ·x instead of (Fa)x, the above two equations
become the familiar laws for a left group action on the set S:

e · x = x , (a · b) · x = a · (b · x) .

Exercise A.3.3. A right group action by a group (G, ·) on a set S is an operation · :
S ×G→ S that satisfies, for all x ∈ S, a, b ∈ G,

x · e = x , x · (a · b) = (x · a) · b .

Exhibit right group actions as functors.
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A.4 Natural Transformations and Functor Categories

Definition A.4.1. Let F : C → D and G : C → D be functors. A natural transformation
η : F =⇒ G from F to G is a map η : C0 → D1 which assigns to every object A ∈ C a
morphism ηA : FA→ GA, called the component of η at A, such that for every f : A→ B
in C we have ηB ◦ Ff = Gf ◦ ηA, i.e., the following diagram in D commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB ηB

// GB

A simple example is given by the “twist” isomorphism t : A × B → B × A (in Set).
Given any maps f : A→ A′ and g : B → B′, there is a commutative square:

A×B
tA,B //

f × g
��

B × A

g × f
��

A′ ×B′
tA′,B′

// B′ × A′

Thus naturality means that the two functors F (X, Y ) = X × Y and G(X, Y ) = Y × X
are related to each other (by t : F → G), and not simply their individual values A × B
and B × A. As a further example of a natural transformation, consider groups G and H
as categories and two homomorphisms f, g : G→ H as functors between them. A natural
transformation η : f =⇒ g is given by a single element η? = b ∈ H such that, for every
a ∈ G, the following diagram commutes:

?
b //

fa
��

?

ga
��

?
b
// ?

This means that b · fa = (ga) · b, that is ga = b · (fa) · b−1. In other words, a natural
transformation f =⇒ g is a conjugation operation b−1 · − · b which transforms f into g.

For every functor F : C → D there exists the identity transformation 1F : F =⇒ F
defined by (1F )A = 1A. If η : F =⇒ G and θ : G =⇒ H are natural transformations, then
their composition θ ◦ η : F =⇒ H, defined by (θ ◦ η)A = θA ◦ ηA is also a natural transfor-
mation. Composition of natural transformations is associative because it is composition in
the codomain category D. This leads to the definition of functor categories.
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Definition A.4.2. Let C and D be categories. The functor category DC is the category
whose objects are functors from C to D and whose morphisms are natural transformations
between them.

A functor category may be quite large, too large in fact. In order to avoid problems
with size we normally require C to be a locally small category. The “hom-class” of all
natural transformations F =⇒ G is usually written as

Nat(F,G)

instead of the more awkward HomDC(F,G).
Suppose we have functors F , G, and H with a natural transformation θ : G =⇒ H, as

in the following diagram:

C F // D
G

''

H
77�� θ E

Then we can form a natural transformation θ ◦ F : G ◦ F =⇒ H ◦ F whose component at
A ∈ C is (θ ◦ F )A = θFA.

Similarly, if we have functors and a natural transformation

C
G

((

H
66�� θ D F // E

we can form a natural transformation (F ◦θ) : F ◦G =⇒ F ◦H whose component at A ∈ C
is (F ◦ θ)A = FθA. These operations are known as whiskering.

A natural isomorphism is an isomorphism in a functor category. Thus, if F : C → D
and G : C → D are two functors, a natural isomorphism between them is a natural
transformation η : F =⇒ G whose components are isomorphisms. In this case, the inverse
natural transformation η−1 : G =⇒ F is given by (η−1)A = (ηA)−1. We write F ∼= G
when F and G are naturally isomorphic.

The definition of natural transformations is motivated in part by the fact that, for any
small categories A, B, C, we have

Cat(A× B,C) ∼= Cat(A,CB) . (A.6)

The isomorphism takes a functor F : A × B → C to the functor F̃ : A → CB defined on
objects A ∈ A, B ∈ B by

(F̃A)B = F 〈A,B〉

and on a morphism f : A→ A′ by

(F̃ f)B = F 〈f, 1B〉 .

The functor F̃ is called the transpose of F .
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The inverse isomorphism takes a functor G : A → CB to the functor G̃ : A × B → C,
defined on objects by

G̃〈A,B〉 = (GA)B

and on a morphism 〈f, g〉 : A×B → A′ ×B′ by

G̃〈f, g〉 = (Gf)B′ ◦ (GA)g = (GA′)g ◦ (Gf)B ,

where the last equation holds by naturality of Gf :

(GA)B
(Gf)B //

(GA)g

��

(GA′)B

(GA′)g

��
(GA)B′

(Gf)B′

// (GA′)B′

A.4.1 Directed graphs as a functor category

Recall that a directed graph G is given by a set of vertices GV and a set of edges GE. Each
edge e ∈ GE has a uniquely determined source srcG e ∈ GV and target trgG e ∈ GV . We
write e : a → b when a is the source and b is the target of e. A graph homomorphism
φ : G → H is a pair of functions φ0 : GV → HV and φ1 : GE → HE, where we usually
write φ for both φ0 and φ1, such that whenever e : a → b then φ1e : φ0a → φ0b. The
category of directed graphs and graph homomorphisms is denoted by Graph.

Now let ·⇒ · be the category with two objects and two parallel morphisms, depicted
by the following “sketch”:

E

t

77

s
''
V

An object of the functor category Set·⇒· is a functor G : (·⇒ ·) → Set, which consists
of two sets GE and GV and two functions Gs : GE → GV and Gt : GE → GV . But
this is precisely a directed graph whose vertices are GV , the edges are GE, the source of
e ∈ GE is (Gs)e and the target is (Gt)e. Conversely, any directed graph G is a functor
G : (·⇒ ·)→ Set, defined by

GE = GE , GV = GV , Gs = srcG , Gt = trgG .

Now category theory begins to show its worth, for the morphisms in Set·⇒· are precisely
the graph homomorphisms. Indeed, a natural transformation φ : G =⇒ H between graphs
is a pair of functions,

φE : GE → HE and φV : GV → HV
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whose naturality is expressed by the commutativity of the following two diagrams:

GE

φE //

srcG

��

HE

srcH

��
GV

φV

// HV

GE

φE //

trgG

��

HE

trgH

��
GV

φV

// HV

This is precisely the requirement that e : a → b implies φEe : φV a → φV b. Thus, in sum,
we have,

Graph = Set·⇒·.

Exercise A.4.3. Exhibit the arrow category C→ and the category of group actions Set(G)
as functor categories.

A.4.2 The Yoneda embedding

The example Graph = Set·⇒· leads one to wonder which categories C can be represented as
functor categories SetD for a suitably chosen D or, when that is not possible, at least as
full subcategories of SetD.

For a locally small category C, there is the hom-functor

C(−,−) : Cop × C → Set .

By transposing as in (A.6) we obtain the functor

y : C → SetC
op

which maps an object A ∈ C to the representable functor

yA = C(−, A) : B 7→ C(B,A)

and a morphism f : A → A′ in C to the natural transformation yf : yA =⇒ yA′ whose
component at B is

(yf)B = C(B, f) : g 7→ f ◦ g .

This functor y is called the Yoneda embedding.

Exercise A.4.4. Show that this is a functor.

Theorem A.4.5 (Yoneda embedding). For any locally small category C the Yoneda em-
bedding

y : C → SetC
op

is full and faithful and injective on objects. Therefore, C is a full subcategory of SetC
op

.
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The proof of the theorem uses the famous Yoneda Lemma.

Lemma A.4.6 (Yoneda). Every functor F : Cop → Set is naturally isomorphic to the
functor Nat(y−, F ). That is, for every A ∈ C,

Nat(yA,F ) ∼= FA ,

and this isomorphism is natural in A.

Indeed, the displayed isomorphism is also natural in F .

Proof. The desired natural isomorphism θA maps a natural transformation η ∈ Nat(yA,F )
to ηA1A. The inverse θA

−1 maps an element x ∈ FA to the natural transformation (θA
−1x)

whose component at B maps f ∈ C(B,A) to (Ff)x. To summarize, for η : C(−, A) =⇒ F ,
x ∈ FA and f ∈ C(B,A), we have

θA : Nat(yA,F )→ FA , θA
−1 : FA→ Nat(yA,F ) ,

θAη = ηA1A , (θA
−1x)Bf = (Ff)x .

To see that θA and θA
−1 really are inverses of each other, observe that

θA(θA
−1x) = (θA

−1x)A1A = (F1A)x = 1FAx = x ,

and also

(θA
−1(θAη))Bf = (Ff)(θAη) = (Ff)(ηA1A) = ηB(1A ◦ f) = ηBf ,

where the third equality holds by the following naturality square for η:

C(A,A)
ηA //

C(f, A)

��

FA

Ff

��
C(B,A) ηB

// FB

It remains to check that θ is natural, which amounts to establishing the commutativity of
the following diagram, with g : A→ A′:

Nat(yA,F )
θA // FA

Nat(yA′, F )
θA′

//

Nat(yg, F )

OO

FA′

Fg

OO
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The diagram is commutative because, for any η : yA′ =⇒ F ,

(Fg)(θA′η) = (Fg)(ηA′1A′) = ηA(1A′ ◦ g) =

ηA(g ◦ 1A) = (Nat(yg, F )η)A1A = θA(Nat(yg, F )η) ,

where the second equality is justified by naturality of η.

Proof of Theorem A.4.5. That the Yoneda embedding is full and faithful means that for
all A,B ∈ C the map

y : C(A,B)→ Nat(yA, yB)

which maps f : A→ B to yf : yA =⇒ yB is an isomorphism. But this is just the Yoneda
Lemma applied to the case F = yB. Indeed, with notation as in the proof of the Yoneda
Lemma and g : C → A, we see that the isomorphism

θ−1A : C(A,B) = (yB)A→ Nat(yA, yB)

is in fact y:
(θA
−1f)Cg = ((yA)g)f = f ◦ g = (yf)Cg .

Furthermore, if yA = yB then 1A ∈ C(A,A) = (yA)A = (yB)A = C(B,A) which can only
happen if A = B. Therefore, y is injective on objects.

The following corollary is often useful.

Corollary A.4.7. For A,B ∈ C, A ∼= B if, and only if, yA ∼= yB in SetC
op

.

Proof. Every functor preserves isomorphisms, and a full and faithful one also reflects them.
(A functor F : C → D is said to reflect isomorphisms when Ff : FA → FB being an
isomorphisms implies that f : A→ B is an isomorphism.)

Exercise A.4.8. Prove that a full and faithful functor reflects isomorphisms.

Functor categories SetC
op

are important enough to deserve a name. They are called
presheaf categories, and a functor F : Cop → Set is called a presheaf on C. We also use the
notation Ĉ = SetC

op

.

A.4.3 Equivalence of categories

An isomorphism of categories C and D in Cat consists of functors

C
F

** D
G

jj

such that G◦F = 1C and F ◦G = 1D. This is often too restrictive a notion. A more general
notion which replaces the above identities with natural isomorphisms is more useful.
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Definition A.4.9. An equivalence of categories is a pair of functors

C
F

** D
G

jj

such that there are natural isomorphisms

G ◦ F ∼= 1C and F ◦G ∼= 1D .

We say that C and D are equivalent categories and write C ' D.
A functor F : C → D is called an equivalence functor if there exists G : D → C such

that F and G form an equivalence.

The point of equivalence of categories is that it preserves almost all categorical prop-
erties, but ignores those concepts that are not of interest from a categorical point of view,
such as identity of objects.

The following proposition requires the Axiom of Choice as stated. However, in many
specific cases a canonical choice can be made without appeal to that axiom.

Proposition A.4.10. A functor F : C → D is an equivalence functor if, and only if, F is
full and faithful, and essentially surjective on objects, meaning that for every B ∈ D there
exists A ∈ C such that FA ∼= B.

Proof. It is easily seen that the conditions are necessary, so we only show they are sufficient.
Suppose F : C → D is full and faithful, and essentially surjective on objects. For each
B ∈ D, choose an object GB ∈ C and an isomorphism ηB : F (GB)→ B. If f : B → C is
a morphism in D, let Gf : GB → GC be the unique morphism in C for which

F (Gf) = ηC
−1 ◦ f ◦ ηB . (A.7)

Such a unique morphism exists because F is full and faithful. This defines a functor G :
D → C, as can be easily checked. In addition, (A.7) ensures that η is a natural isomorphism
F ◦G =⇒ 1D.

It remains to show that G ◦ F ∼= 1C. For A ∈ C, let θA : G(FA) → A be the unique
morphism such that FθA = ηFA. Naturality of θA follows from functoriality of F and
naturality of η. Because F reflects isomorphisms, θA is an isomorphism for every A.

Example A.4.11. As an example of equivalence of categories we consider the category of
sets and partial functions and the category of pointed sets.

A partial function f : A ⇀ B is a function defined on a subset supp f ⊆ A, called the
support3 of f , and taking values in B. Composition of partial functions f : A ⇀ B and
g : B ⇀ C is the partial function g ◦ f : A ⇀ C defined by

supp (g ◦ f) =
{
x ∈ A

∣∣ x ∈ supp f ∧ fx ∈ supp g
}

(g ◦ f)x = g(fx) for x ∈ supp (g ◦ f)

3The support of a partial function f : A ⇀ B is usually called its domain, but this terminology conflicts
with A being the domain of f as a morphism.
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Composition of partial functions is associative. This way we obtain a category Par of sets
and partial functions.

A pointed set (A, a) is a set A together with an element a ∈ A. A pointed function
f : (A, a) → (B, b) between pointed sets is a function f : A → B such that fa = b. The
category Set• consists of pointed sets and pointed functions.

The categories Par and Set• are equivalent. The equivalence functor F : Set• → Par
maps a pointed set (A, a) to the set F (A, a) = A\{a}, and a pointed function f : (A, a)→
(B, b) to the partial function Ff : F (A, a) ⇀ F (B, b) defined by

supp (Ff) =
{
x ∈ A

∣∣ fx 6= b
}
, (Ff)x = fx .

The inverse equivalence functor G : Par → Set• maps a set A ∈ Par to the pointed set
GA = (A + {⊥A} ,⊥A), where ⊥A is an element that does not belong to A. A partial
function f : A ⇀ B is mapped to the pointed function Gf : GA→ GB defined by

(Gf)x =

{
fx if x ∈ supp f

⊥B otherwise .

A good way to think about the “bottom” point ⊥A is as a special “undefined value”. Let
us look at the composition of F and G on objects:

G(F (A, a)) = G(A \ {a}) = ((A \ {a}) +⊥A,⊥A) ∼= (A, a) .

F (GA) = F (A+ {⊥A} ,⊥A) = (A+ {⊥A}) \ {⊥A} = A .

The isomorphism G(F (A, a)) ∼= (A, a) is easily seen to be natural.

Example A.4.12. Another example of an equivalence of categories arises when we take
the poset reflection of a preorder. Let (P,≤) be a preorder, If we think of P as a category,
then a, b ∈ P are isomorphic, when a ≤ b and b ≤ a. Isomorphism ∼= is an equivalence
relation, therefore we may form the quotient set P/∼=. The set P/∼= is a poset for the order
relation v defined by

[a] v [b] ⇐⇒ a ≤ b .

Here [a] denotes the equivalence class of a. We call (P/∼=,v) the poset reflection of P .
The quotient map q : P → P/∼= is a functor when P and P/∼= are viewed as categories.
By Proposition A.4.10, q is an equivalence functor. Trivially, it is faithful and surjective
on objects. It is also full because qa v qb in P/∼= implies a ≤ b in P .

A.5 Adjoint Functors

The notion of adjunction is perhaps the most important concept revealed by category
theory. It is a fundamental logical and mathematical concept that occurs everywhere and
often marks an important and interesting connection between two constructions of interest.
In logic, adjoint functors are pervasive, although this is only recognizable through the lens
of category theory.
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A.5.1 Adjoint maps between preorders

Let us begin with a simple situation. We have already seen that a preorder (P,≤) is
a category in which there is at most one morphism between any two objects. A functor
between preorders is a monotone map. Suppose we have preorders P and Q with monotone
maps back and forth,

P
f

++
Q .

g
jj

We say that f and g are adjoint, and write f a g, when for all x ∈ P , y ∈ Q,

fx ≤ y ⇐⇒ x ≤ gy . (A.8)

Note that adjointness is not a symmetric relation. The map f is the left adjoint and g is
the right adjoint (note their positions with respect to ≤).

Equivalence (A.8) is more conveniently displayed as

fx ≤ y

x ≤ gy

The double line indicates the fact that this is a two-way rule: the top line implies the
bottom line, and vice versa.

Let us consider two examples.

Conjunction is adjoint to implication Consider a propositional calculus with logical
operations of conjunction ∧ and implication ⇒ (perhaps among others). The formulas of
this calculus are built from variables x0, x1, x2, . . . , the truth values ⊥ and >, and the
logical connectives ∧,⇒, .... The logical rules are given in natural deduction style:

>
⊥
A

A B

A ∧B
A ∧B
A

A ∧B
B

A⇒ B A

B

[u : A]

...

B

A⇒ B
u

For example, we read the inference rules for ⇒ as, respectively, “from A ⇒ B and A we
infer B” and “if from assumption A we infer B, then (without any assumptions) we infer
A⇒ B”. Discharged assumptions are indicated by enclosing them in brackets, along with
a label [u : A] for the assumption, which is recorded along with the rule that discharges it,
as above.
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Logical entailment ` between formulas of the propositional calculus is the relation A `
B which holds if, and only if, from assuming A we can infer B (by using only the inference
rules of the calculus). It is trivially the case that A ` A, and also

if A ` B and B ` C then A ` C .

In other words, ` is a reflexive and transitive relation on the set P of all propositional
formulas, so that (P,`) is a preorder.

Let A be a propositional formula. Define f : P→ P and g : P→ P to be the maps

fB = (A ∧B) , gB = (A⇒ B) .

To see that the maps f and g are functors we need to show they respect entailment. Indeed,
if B ` B′ then A ∧B ` A ∧B′ and A⇒ B ` A⇒ B′ by the following two derivations.

A ∧B
A

A ∧B
B
...

B′

A ∧B′

A⇒ B [u : A]

B
...

B′

A⇒ B′
u

We claim that f a g. For this we need to prove that A∧B ` C if, and only if, B ` A⇒ C.
The following two derivations establish the required equivalence.

[u : A] B

A ∧B
...

C

A⇒ C
u

A ∧B
B
...

A⇒ C
A ∧B
A

C

Therefore, conjunction is left adjoint to implication.

Topological interior as an adjoint Recall that a topological space (X,OX) is a set X
together with a family OX ⊆ PX of subsets of X which contains ∅ and X, and is closed
under finite intersections and arbitrary unions. The elements of OX are called the open
sets.

The topological interior of a subset S ⊆ X is the largest open set contained in S,
namely,

intS =
⋃{

U ∈ OX
∣∣ U ⊆ S

}
.

Both OX and PX are posets ordered by subset inclusion. The inclusion i : OX → PX is
thus a monotone map, and so indeed is the interior int : PX → OX, as follows immediately
from its construction. So we have:

OX
i ,, PX
int

ll
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Moreover, for U ∈ OX and S ∈ PX we plainly also have

iU ⊆ S

U ⊆ intS

since intS is the largest open set contained in S. Thus topological interior is right adjoint
to the inclusion of OX into PX.

A.5.2 Adjoint functors

Let us now generalize the notion of adjoint monotone maps from posets to the situation

C
F

** D
G

jj

with arbitrary categories and functors. For monotone maps f a g, the adjunction condition
is a bijection

fx→ y

x→ gy

between morphisms of the form fx → y and morphisms of the form x → gy. This is
the notion that generalizes the special case; for any A ∈ C, B ∈ D we require a bijection
between the sets D(FA,B) and C(A,GB):

FA→ B

A→ GB

Definition A.5.1. An adjunction F a G between the functors

C
F

** D
G

jj

is a natural isomorphism θ between functors

D(F−,−) : Cop ×D → Set and C(−, G−) : Cop ×D → Set .

This means that for every A ∈ C and B ∈ D there is a bijection

θA,B : D(FA,B) ∼= C(A,GB) ,

and naturality of θ means that for f : A′ → A in C and g : B → B′ in D the following
diagram commutes:

D(FA,B)
θA,B //

D(Ff, g)

��

D(A,GB)

C(f,Gg)

��
D(FA′, B′)

θA′,B′

// C(A′, GB′)
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Equivalently, for every h : FA→ B in D,

Gg ◦ (θA,Bh) ◦ f = θA′,B′(g ◦ h ◦ Ff) .

We say that F is the left adjoint and G is the right adjoint.

We have already seen examples of adjoint functors. For any category B we have functors
(−)× B and (−)B from Cat to Cat. Recall the isomorphism (A.6),

Cat(A× B,C) ∼= Cat(A,CB) .

This isomorphism is in fact natural in A and C, so that

(−)× B a (−)B .

Similarly, for any set B ∈ Set there are functors

(−)×B : Set→ Set , (−)B : Set→ Set ,

where A×B is the cartesian product of A and B, and CB is the set of all functions from B
to C. For morphisms, f × B = f × 1B and fB = f ◦ (−). We then indeed have a natural
isomorphism, for all A,C ∈ Set,

Set(A×B,C) ∼= Set(A,CB) ,

which maps a function f : A×B → C to the function (f̃x)y = f〈x, y〉. Therefore,

(−)×B a (−)B .

Exercise A.5.2. Verify that the definition (A.8) of adjoint monotone maps between pre-
orders is a special case of Definition A.5.1. What happened to the naturality condition?

For another example, consider the forgetful functor

U : Cat→ Graph ,

which maps a category to the underlying directed graph. It has a left adjoint P a U .
The functor P is the free construction of a category from a graph; it maps a graph G to
the category of paths P (G). The objects of P (G) are the vertices of G. The morphisms
of P (G) are the finite paths

v0
e1 // v1

e2 // · · · en // vn

of edges in G, composition is concatenation of paths, and the identity morphism on a
vertex v is the empty path starting and ending at v.

By using the Yoneda Lemma we can easily prove that adjoints are unique up to natural
isomorphism.
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Proposition A.5.3. Let F : C → D and G : D → C be adjoint functors, with F a G. If
also G′ : D → C with F a G′, then G ∼= G′.

Proof. Since the Yoneda embedding is full and faithful, we have GB ∼= G′B if, and only
if, C(−, GB) ∼= C(−, G′B). But this indeed holds, because, for any A ∈ C, we have

C(A,GB) ∼= D(FA,B) ∼= C(A,G′B) ,

naturally in A.

Left adjoints are of course also unique up to isomorphism, by duality.

A.5.3 The unit of an adjunction

Let F : C → D and G : D → C be adjoint functors, F a G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object A ∈ C
there is a distinguished morphism ηA = θA,FA1FA : A→ G(FA),

1FA : FA→ FA

ηA : A→ G(FA)

Since θ is natural in A, we have a natural transformation η : 1C =⇒ G ◦ F , which is
called the unit of the adjunction F a G. In fact, we can recover θ from η as follows. For
f : FA→ B, we have

θA,Bf = θA,B(f ◦ 1FA) = Gf ◦ θA,FA(1FA) = Gf ◦ ηA ,

where we used naturality of θ in the second step. Schematically, given any f : FA → B,
the following diagram commutes:

A
ηA //

θA,Bf
""

G(FA)

Gf

��
GB

Since θA,B is a bijection, it follows that every morphism g : A → GB has the form
g = Gf ◦ ηA for a unique f : FA → B. We say that ηA : A → G(FA) is a universal
morphism to G, or that η has the following universal mapping property : for every A ∈ C,
B ∈ D, and g : A→ GB, there exists a unique f : FA→ B such that g = Gf ◦ ηA:

A
ηA //

g
""

G(FA)

Gf

��

FA

f

��
GB B
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This means that an adjunction can be given in terms of its unit. The isomorphism θ :
D(F−,−)→ C(−, G−) is then recovered by

θA,Bf = Gf ◦ ηA .

Proposition A.5.4. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

η : 1C =⇒ G ◦ F ,

called the unit of the adjunction, such that, for all A ∈ C and B ∈ D the map θA,B :
D(FA,B)→ C(A,GB), defined by

θA,Bf = Gf ◦ ηA ,

is an isomorphism.

Let us demonstrate how the universal mapping property of the unit of an adjunction
appears as a well known construction in algebra. Consider the forgetful functor from
monoids to sets,

U : Mon→ Set .

Does it have a left adjoint F : Set → Mon? In order to obtain one, we need a “most
economical” way of making a monoid FX from a given set X. Such a construction readily
suggests itself, namely the free monoid on X, consisting of finite sequences of elements
of X,

FX =
{
x1 . . . xn

∣∣ n ≥ 0 & x1, . . . , xn ∈ X
}
.

The monoid operation is concatenation of sequences

x1 . . . xm · y1 . . . yn = x1 . . . xmy1 . . . yn ,

and the empty sequence is the unit of the monoid. In order for F to be a functor, it should
also map morphisms to morphisms. If f : X → Y is a function, define Ff : FX → FY by

Ff : x1 . . . xn 7→ (fx1) . . . (fxn) .

There is an inclusion ηX : X → U(FX) which maps every element x ∈ X to the singleton
sequence x. This gives a natural transformation η : 1Set =⇒ U ◦ F .

The monoid FX is “free” in the sense that it “satisfies only the equations required
by the monoid laws”; we make this precise as follows. For every monoid M and function
f : X → UM there exists a unique monoid homomorphism f : FX → M such that the
following diagram commutes:

X
ηX //

f
""

U(FX)

Uf

��
UM
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This is precisely the condition required by Proposition A.5.4 for η to be the unit of the
adjunction F a U . In this case, the universal mapping property of η is just the usual
characterization of the free monoid FX generated by the set X: a homomorphism from FX
is uniquely determined by its values on the generators.

A.5.4 The counit of an adjunction

Let F : C → D and G : D → C be adjoint functors with F a G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object B ∈ D
we have a distinguished morphism εB = θ−1GB,B1GB : F (GB)→ B by:

1GB : GB → GB

εB : F (GB)→ B

The natural transformation ε : F ◦G =⇒ 1D is called the counit of the adjunction F a G.
It is the dual notion to the unit of an adjunction. We state briefly the basic properties
of the counit, which are easily obtained by “turning around” all the morphisms in the
previous section and exchanging the roles of the left and right adjoints.

The bijection θ−1A,B can be recovered from the counit. For g : A→ GB in C, we have

θ−1A,Bg = θ−1A,B(1GB ◦ g) = θ−1A,B1GB ◦ Fg = εB ◦ Fg .

The universal mapping property of the counit is this: for every A ∈ C, B ∈ D, and
f : FA→ B, there exists a unique g : A→ GB such that f = εB ◦ Fg:

B F (GB)
εBoo GB

FA

Fg

OO

f

bb

A

g

OO

The following is the dual of Proposition A.5.4.

Proposition A.5.5. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

ε : F ◦G =⇒ 1D ,

called the counit of the adjunction, such that, for all A ∈ C and B ∈ D the map θ−1A,B :
C(A,GB)→ D(FA,B), defined by

θ−1A,Bg = εB ◦ Fg ,

is an isomorphism.
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Let us consider again the forgetful functor U : Mon → Set and its left adjoint F :
Set → Mon, the free monoid construction. For a monoid (M, ?) ∈ Mon, the counit of the
adjunction F a U is a monoid homomorphism εM : F (UM)→M , defined by

εM(x1x2 . . . xn) = x1 ? x2 ? · · · ? xn .

It has the following universal mapping property: for X ∈ Set, (M, ?) ∈ Mon, and a
homomorphism f : FX → M there exists a unique function f : X → UM such that
f = εM ◦ Ff , namely

fx = fx ,

where in the above definition x ∈ X is viewed as an element of the set X on the left-hand
side, and as an element of the free monoid FX on the right-hand side. To summarize,
the universal mapping property of the counit ε is the familiar piece of wisdom that a
homomorphism f : FX → M from a free monoid is already determined by its values on
the generators.

A.6 Limits and Colimits

The following limits and colimits are all special cases of adjoint functors, as we shall see.

A.6.1 Binary products

In a category C, the (binary) product of objects A and B is an object A × B together
with projections π0 : A × B → A and π1 : A × B → B such that, for every object C ∈ C
and every pair of morphisms f : C → A, g : C → B there exists a unique morphism
h : C → A×B for which the following diagram commutes:

C

f

||

h

��

g

""
A A×Bπ0
oo

π1
// B

We normally refer to the product (A×B, π0, π1) just by its objectA×B, but you should keep
in mind that a product is given by an object and two projections. The arrow h : C → A×B
is denoted by 〈f, g〉. The property

for all C, for all f : C → A, for all g : C → B,

there is a unique h : C → A×B,

with π0 ◦ h = f & π1 ◦ h = g

is the universal mapping property of the product A×B. It characterizes the product of A
and B uniquely up to isomorphism in the sense that if (P, p0 : P → A, p1 : P → B) is
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another product of A and B, then there is a unique isomorphism r : P
∼→ A×B such that

p0 = π0 ◦ r and p1 = π1 ◦ r.
If in a category C every two objects have a product, we can turn binary products into an

operation4 by choosing a product A×B for each pair of objects A,B ∈ C. In general this
requires the Axiom of Choice, but in many specific cases a particular choice of products can
be made without appeal to that axiom. When we view binary products as an operation,
we say that “C has chosen products”. The same holds for other instances of limits and
colimits.

For example, in Set the usual cartesian product of sets is a product. In categories of
structures, products are the usual construction: the product of topological spaces in Top
is their topological product, the product of directed graphs in Graph is their cartesian
product, the product of categories in Cat is their product category, and so on.

A.6.2 Terminal objects

A terminal object in a category C is an object 1 ∈ C such that for every A ∈ C there exists
a unique morphism !A : A→ 1.

For example, in Set an object is terminal if, and only if, it is a singleton. The terminal
object in Cat is the unit category 1 consisting of one object and one morphism.

Exercise A.6.1. Prove that if 1 and 1′ are terminal objects in a category then they are
isomorphic.

Exercise A.6.2. Let Field be the category whose objects are fields and morphisms are
field homomorphisms.5 Does Field have a terminal object? What about the category Ring
of rings?

A.6.3 Equalizers

Given objects and morphisms

E e // A
f //

g
// B

we say that e equalizes f and g when f ◦ e = g ◦ e.6 An equalizer of f and g is a universal
equalizing morphism; thus e : E → A is an equalizer of f and g when it equalizes them
and, for all k : K → A, if f ◦ k = g ◦ k then there exists a unique morphism m : K → E

4More precisely, binary product is a functor from C × C to C, cf. Section A.6.11.
5A field (F,+, ·,−1, 0, 1) is a ring with a unit in which all non-zero elements have inverses. We also

require that 0 6= 1. A homomorphism of fields preserves addition and multiplication, and consequently
also 0, 1 and inverses.

6Note that this does not mean the diagram involving f , g and e is commutative!
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such that k = e ◦m:

E
e // A

f //

g
// B

K

m

OO

k

??

In Set the equalizer of parallel functions f : A→ B and g : A→ B is the set

E =
{
x ∈ A

∣∣ fx = gx
}

with e : E → A being the subset inclusion E ⊆ A, ex = x. In general, equalizers can be
thought of as those subobjects (subsets, subgroups, subspaces, . . . ) that can be defined by
an equation.

Exercise A.6.3. Show that an equalizer is a monomorphism, i.e., if e : E → A is an
equalizer of f and g, then, for all r, s : C → E, e ◦ r = e ◦ s implies r = s.

Definition A.6.4. A morphism is a regular mono if it is an equalizer.

The difference between monos and regular monos is best illustrated in the category Top:
a continuous map f : X → Y is mono when it is injective, whereas it is a regular mono
when it is a topological embedding.7

A.6.4 Pullbacks

A pullback of f : A → C and g : B → C is an object P with morphisms p0 : P → A and
p1 : P → B such that f ◦ p0 = g ◦ p1, and whenever Q, q0 : Q → A, and q1 : Q → B are
such that f ◦ q0 = g ◦ q1, there then exists a unique h : Q → P such that q0 = p0 ◦ h and
q1 = p1 ◦ h:

Q
q1

!!

h

��

q0

��

P
p1 //

p0

��

B

g

��
A

f
// C

We indicate that P is a pullback by drawing a square corner next to it, as in the above
diagram. The pullback is sometimes written A ×C B, since it is indeed a product in the
slice category over C.

7A continuous map f : X → Y is a topological embedding when, for every U ∈ OX, the image f [U ] is
an open subset of the image im(f); this means that there exists V ∈ OY such that f [U ] = V ∩ im(f).
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In Set, the pullback of f : A→ C and g : B → C is the set

P =
{
〈x, y〉 ∈ A×B

∣∣ fx = gy
}

and the functions p0 : P → A, p1 : P → B are the projections, p0〈x, y〉 = x, p1〈x, y〉 = y.

When we form the pullback of f : A → C and g : B → C we may also say that we
pull g back along f and draw the diagram

f ∗B //

f ∗g

��

B

g

��
A

f
// C

We think of f ∗g : f ∗B → A as the inverse image of B along f . This terminology is
explained by looking at the pullback of a subset inclusion u : U ↪→ C along a function
f : A→ C in the category Set:

f ∗U //

��

U� _

u

��
A

f
// C

In this case the pullback is
{
〈x, y〉 ∈ A× U

∣∣ fx = y
} ∼= {

x ∈ A
∣∣ fx ∈ U} = f ∗U , the

inverse image of U along f .

Exercise A.6.5. Prove that in a category C, a morphism f : A→ B is mono if, and only
if, the following diagram is a pullback:

A
1A //

1A
��

A

f

��
A

f
// B

A.6.5 Limits

Let us now define the general notion of a limit.

A diagram of shape I in a category C is a functor D : I → C, where the category I is
called the index category. We use letters i, j, k, . . . for objects of an index category I, call
them indices, and write Di, Dj, Dk, . . . instead of Di, Dj, Dk, . . .
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For example, if I is the category with three objects and three morphisms

1

13

��

12

��
2

23
// 3

where 13 = 23 ◦ 12 then a diagram of shape I is a commutative diagram

D1

d13

��

d12

~~
D2

d23
// D3

(A.9)

For each object A ∈ C, the constant A-valued diagram of shape I is given by the constant
functor ∆A : I → C, which maps every object to A and every morphism to 1A.

Let D : I → C be a diagram of shape I. A cone on D from an object A ∈ C is a
natural transformation α : ∆A =⇒ D. This means that for every index i ∈ I there is a
morphism αi : A→ Di such that whenever u : i→ j in I then αj = Du ◦ αi.

For a given diagram D : I → C, we can collect all cones on D into a category Cone(D)
whose objects are cones on D. A morphism between cones f : (A,α) → (B, β) is a
morphism f : A → B in C such that αi = βi ◦ f for all i ∈ I. Morphisms in Cone(D) are
composed as morphisms in C. A morphism f : (A,α)→ (B, β) is also called a factorization
of the cone (A,α) through the cone (B, β).

A limit of a diagram D : I → C is a terminal object in Cone(D). Explicitly, a limit
of D is given by a cone (L, λ) such that for every other cone (A,α) there exists a unique
morphism f : A→ L such that αi = λi ◦ f for all i ∈ I. We denote (the object part of) a
limit of D by one of the following:

limD limi∈I Di lim←−
i∈I

Di .

Limits are also called projective limits. We say that a category has limits of shape I when
every diagram of shape I in C has a limit.

Products, terminal objects, equalizers, and pullbacks are all special cases of limits:

• a product A×B is the limit of the functor D : 2→ C where 2 is the discrete category
on two objects 0 and 1, and D0 = A, D1 = B.

• a terminal object 1 is the limit of the (unique) functor D : 0 → C from the empty
category.

• an equalizer of f, g : A → B is the limit of the functor D : (·⇒ ·) → C which maps
one morphism to f and the other one to g.
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• the pullback of f : A → C and g : B → C is the limit of the functor D : I → C
where I is the category

•
2
��

•
1
// •

with D1 = f and D2 = g.

It is clear how to define the product of an arbitrary family of objects{
Ai ∈ C

∣∣ i ∈ I} .

Such a family is a diagram of shape I, where I is viewed as a discrete category. A product∏
i∈I Ai is then given by an object P ∈ C and morphisms πi : P → Ai such that, when-

ever we have a family of morphisms
{
fi : B → Ai

∣∣ i ∈ I} there exists a unique morphism
〈fi〉i∈I : B → P such that fi = πi ◦ f for all i ∈ I.

A finite product is a product of a finite family. As a special case we see that a terminal
object is the product of an empty family. It is not hard to show that a category has finite
products precisely when it has a terminal object and binary products.

A diagram D : I → C is small when I is a small category. A small limit is a limit of a
small diagram. A finite limit is a limit of a diagram whose index category is finite.

Exercise A.6.6. Prove that a limit, when it exists, is unique up to isomorphism.

The following proposition and its proof tell us how to compute arbitrary limits from
simpler ones. We omit detailed proofs as they can be found in any standard textbook on
category theory.

Proposition A.6.7. The following are equivalent for a category C:

1. C has a terminal object and all pullbacks.

2. C has equalizers and all finite products.

3. C has all finite limits.

Proof. We only show how to get binary products from pullbacks and a terminal object.
For objects A and B, let P be the pullback of !A and !B:

P
π1 //

π0

��

B

!B
��

A
!A

// 1

Then (P, π0, π1) is a product of A and B because, for all f : X → A and g : X → B, it is
trivially the case that !A ◦ f = !B ◦ g.
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Proposition A.6.8. The following are equivalent for a category C:

1. C has equalizers and all small products.

2. C has all small limits.

Proof. We indicate how to construct an arbitrary limit from a product and an equalizer.
Let D : I → C be a small diagram of an arbitrary shape I. First form an I0-indexed
product P and an I1-indexed product Q

P =
∏
i∈I0

Di , Q =
∏
u∈I1

Dcodu .

By the universal property of products, there are unique morphisms f : P → Q and
g : P → Q such that, for all morphisms u ∈ I1,

πQ
u ◦ f = Du ◦ πP

domu , πQ
u ◦ g = πP

codu .

Let E be the equalizer of f and g,

E e // P
f //

g
// Q

For every i ∈ I there is a morphism εi : E → Di, namely εi = πP
i ◦ e. We claim that (E, ε)

is a limit of D. First, (E, ε) is a cone on D because, for all u : i→ j in I,

Du ◦ εi = Du ◦ πP
i ◦ e = πQ

u ◦ f ◦ e = πQ
u ◦ g ◦ e = πP

j ◦ e = εj .

If (A,α) is any cone on D there exists a unique t : A → P such that αi = πP
i ◦ t for all

i ∈ I. For every u : i→ j in I we have

πQ
u ◦ g ◦ t = πP

j ◦ t = tj = Du ◦ ti = Du ◦ πP
i ◦ t = πQ

u ◦ f ◦ t ,

therefore g ◦ t = f ◦ t. This implies that there is a unique factorization k : A → E such
that t = e ◦ k. Now for every i ∈ I

εi ◦ k = πP
i ◦ e ◦ k = πP

i ◦ t = αi

so that k : A→ E is the required factorization of the cone (A,α) through the cone (E, ε).
To see that k is unique, suppose m : A→ E is another factorization such that αi = εi ◦m
for all i ∈ I. Since e is mono it suffices to show that e ◦m = e ◦ k, which is equivalent to
proving πP

i ◦ e ◦m = πP
i ◦ e ◦ k for all i ∈ I. This last equality holds because

πP
i ◦ e ◦ k = πP

i ◦ t = αi = εi ◦m = πP
i ◦ e ◦m .

A category is (small) complete when it has all small limits, and it is finitely complete
(or left exact, briefly lex ) when it has finite limits.
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Limits of presheaves Let C be a locally small category. Then the presheaf category
Ĉ = SetC

op

has all small limits and they are computed pointwise, e.g., (P×Q)A = PA×QA
for P,Q ∈ Ĉ, A ∈ C. To see that this is really so, let I be a small index category and
D : I → Ĉ a diagram of presheaves. Then for every A ∈ C the diagram D can be
instantiated at A to give a diagram DA : I → Set, (DA)i = DiA. Because Set is small
complete, we can define a presheaf L by computing the limit of DA:

LA = limDA = lim←−
i∈I

DiA .

We should keep in mind that limDA is actually given by an object (limDA) and a natural
transformation δA : ∆(limDA) =⇒ DA. The value of LA is supposed to be just the object
part of limDA. From a morphism f : A → B we obtain for each i ∈ I a function
Dif ◦ (δA)i : LA → DiB, and thus a cone (LA,Df ◦ δA) on DB. Presheaf L maps the
morphism f : A→ B to the unique factorization Lf : LA =⇒ LB of the cone (LA,Df◦δA)
on DB through the limit cone LB on DB.

For every i ∈ I, there is a function Λi = (δA)i : LA → DiA. The family {Λi}i∈I is a
natural transformation from ∆LA to DA. This gives us a cone (L,Λ) on D, which is in
fact a limit cone. Indeed, if (S,Σ) is another cone on D then for every A ∈ C there exists
a unique function φA : SA → LA because SA is a cone on DA and LA is a limit cone
on DA. The family {φA}A∈C is the unique natural transformation φ : S =⇒ L for which
Σ = φ ◦ Λ.

A.6.6 Colimits

Colimits are the dual notion of limits. Thus, a colimit of a diagram D : I → C is a limit
of the dual diagram Dop : Iop → Cop in the dual (i.e., opposite) category Cop:

colim(D : I → C) = lim(Dop : Iop → Cop) .

Explicitly, the colimit of a diagram D : I → C is the initial object in the category of
cocones Cocone(D) on D. A cocone (A,α) on D is a natural transformation α : D =⇒ ∆A.
It is given by an object A ∈ C and, for each i ∈ I, a morphism αi : Di → A, such that
αi = αj ◦Du whenever u : i → j in I. A morphism between cocones f : (A,α) → (B, β)
is a morphism f : A→ B in C such that βi = f ◦ αi for all i ∈ I.

A colimit of D : I → C is then given by a cocone (C, ζ) on D such that, for every
cocone (A,α) on D there exists a unique morphism f : C → A such that αi = f ◦ ζi for all
i ∈ D. We denote a colimit of D by one of the following:

colimD colimi∈I Di lim−→
i∈I

Di .

Colimits are also called inductive limits.

Exercise A.6.9. Formulate the dual of Proposition A.6.7 and Proposition A.6.8 for col-
imits (coequalizers are defined in Section A.6.9).
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A.6.7 Binary coproducts

In a category C, the (binary) coproduct of objects A and B is an object A + B together
with injections ι0 : A→ A+B and ι1 : B → A+B such that, for every object C ∈ C and
all morphisms f : A → C, g : B → C there exists a unique morphism h : A + B → C for
which the following diagram commutes:

A
ι0 //

f
""

A+B

h

��

B
ι1oo

g
||

C

The arrow h : A+B → C is denoted by [f, g].
The coproduct A+ B is the colimit of the diagram D : 2→ C, where I is the discrete

category on two objects 0 and 1, and D0 = A, D1 = B.
In Set the coproduct is the disjoint union, defined by

X + Y =
{
〈0, x〉

∣∣ x ∈ X} ∪ {〈1, y〉 ∣∣ x ∈ Y } ,

where 0 and 1 are distinct sets, for example ∅ and {∅}. Given functions f : X → Z and
g : Y → Z, the unique function [f, g] : X + Y → Z is the usual definition by cases :

[f, g]u =

{
fx if u = 〈0, x〉
gx if u = 〈1, x〉 .

Exercise A.6.10. Show that the categories of posets and of topological spaces both have
coproducts.

A.6.8 Initial objects

An initial object in a category C is an object 0 ∈ C such that for every A ∈ C there exists
a unique morphism oA : 0→ A.

An initial object is the colimit of the empty diagram.
In Set, the initial object is the empty set.

Exercise A.6.11. What is the initial and what is the terminal object in the category of
groups?

A zero object is an object that is both initial and terminal.

Exercise A.6.12. Show that in the category of Abelian8 groups finite products and co-
products agree, that is 0 ∼= 1 and A×B ∼= A+B.

Exercise A.6.13. Suppose A and B are Abelian groups. Is there a difference between their
coproduct in the category Group of groups, and their coproduct in the category AbGroup
of Abelian groups?

8An Abelian group is one that satisfies the commutative law x · y = y · x.
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A.6.9 Coequalizers

Given objects and morphisms

A
f //

g
// B

q // Q

we say that q coequalizes f and g when e◦f = e◦g. A coequalizer of f and g is a universal
coequalizing morphism; thus q : B → Q is a coequalizer of f and g when it coequalizes
them and, for all s : B → S, if s◦f = s◦ g then there exists a unique morphism r : Q→ S
such that s = r ◦ q:

A
f //

g
// B

q //

s
��

Q

r

��
S

In Set the coequalizer of parallel functions f : A → B and g : A → B is the quotient
set Q = B/∼ where ∼ is the least equivalence relation on B satisfying

fx = gy ⇒ x ∼ y .

The function q : B → Q is the canonical quotient map which assigns to each element x ∈ B
its equivalence class [x] ∈ B/∼. In general, a coequalizer can be thought of as the quotient
by the equivalence relation generated by the corresponding equation.

Exercise A.6.14. Show that a coequalizer is an epimorphism, i.e., if q : B → Q is a
coequalizer of f and g, then, for all u, v : Q → T , u ◦ q = v ◦ q implies u = v. [Hint: use
the duality between limits and colimits and Exercise A.6.3.]

Definition A.6.15. A morphism is a regular epi if it is a coequalizer.

The difference between epis and regular epis is also illustrated in the category Top: a
continuous map f : X → Y is epi when it is surjective, whereas it is a regular epi when it
is a topological quotient map.9

A.6.10 Pushouts

A pushout of f : A → B and g : A → C is an object Q with morphisms q0 : B → Q and
q1 : C → Q such that q0 ◦ f = q1 ◦ g, and whenever r0 : B → R, r1 : C → R are such that

9A continuous map f : X → Y is a topological quotient map when it is surjective and, for every U ⊆ Y ,
U is open if, and only if, f∗U is open.
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r0 ◦ f = r1 ◦ g, then there exists a unique s : Q→ R such that r0 = s ◦ q0 and r1 = s ◦ q1:

A
g //

f

��

C

q1

�� r1

��

B q0
//

r0
,,

Q

s

��
R

We indicate that Q is a pushout by drawing a square corner next to it, as in the above
diagram. The above pushout Q is sometimes denoted by B +A C.

A pushout as above is a colimit of the diagram D : I → C where the index category I is

• 2 //

1
��

•

•

and D1 = f , D2 = g.
In Set, the pushout of f : A→ C and g : B → C is the quotient set

Q = (B + C)/∼

where B + C is the disjoint union of B and C, and ∼ is the least equivalence relation
on B + C such that, for all x ∈ A,

fx ∼ gx .

The functions q0 : B → Q, q1 : C → Q are the injections, q0x = [x], q1y = [y], where [x] is
the equivalence class of x.

A.6.11 Limits as adjoints

Limits and colimits can be defined as adjoints to certain very simple functors.
First, observe that an object A ∈ C can be viewed as a functor from the terminal

category 1 to C, namely the functor which maps the only object ? of 1 to A. Since 1 is the
terminal object in Cat, there exists a unique functor !C : C → 1, which maps every object
of C to ?.

Now we can ask whether this simple functor !C : C → 1 has any adjoints. Indeed,
it has a right adjoint just if C has a terminal object 1C, for the corresponding functor
1C : 1 → C has the property that, for every A ∈ C we have a (trivially natural) bijective
correspondence:

!A : A→ 1C

1? : !CA→ ?
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Similarly, an initial object is a left adjoint to !C:

0C a !C a 1C .

Now consider the diagonal functor,

∆ : C → C × C,

defined by ∆A = 〈A,A〉, ∆f = 〈f, f〉. When does this have adjoints?
If C has all binary products, then they determine a functor

−×− : C × C → C

which maps 〈A,B〉 to A × B and a pair of morphisms 〈f : A → A′, g : B → B′〉 to
the unique morphism f × g : A × B → A′ × B′ for which π0 ◦ (f × g) = f ◦ π0 and
π1 ◦ (f × g) = g ◦ π1,

A

f

��

A×Bπ0oo π1 //

f × g
��

B

g

��
A′ A′ ×B′π0
oo

π1
// B′

The product functor × is right adjoint to the diagonal functor ∆. Indeed, there is a natural
bijective correspondence:

〈f, g〉 : 〈A,A〉 → 〈B,C〉
f × g : A→ B × C

Similarly, binary coproducts are easily seen to be left adjoint to the diagonal functor,

+ a ∆ a × .

Now in general, consider limits of shape I in a category C. There is the constant
diagram functor

∆ : C → CI

that maps A ∈ C to the constant diagram ∆A : I → C. The limit construction is a functor

lim←− : CI → C

that maps each diagram D ∈ CI to its limit lim←−D. These two are adjoint, ∆ a lim←−, because
there is a natural bijective correspondence between cones α : ∆A =⇒ D on D, and their
factorizations through the limit of D,

α : ∆A =⇒ D

A→ lim←−D

An analogous correspondence holds for colimits, so that we obtain a pair of adjunctions,

lim−→ a ∆ a lim←− ,

which, of course, subsume all the previously mentioned cases.
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Exercise A.6.16. How are the functors ∆ : C → CI , lim−→ : CI → C, and lim←− : CI → C
defined on morphisms?

A.6.12 Preservation of limits

We say that a functor F : C → D preserves products when, given a product

A A×Bπ0oo π1 // B

its image in D,

FA F (A×B)
Fπ0oo Fπ1 // FB

is a product of FA and FB. If D has chosen binary products, F preserves binary products
if, and only if, the unique morphism f : F (A×B)→ FA×FB which makes the following
diagram commutative is an isomorphism: 10

F (A×B)

f

��

Fπ0

zz

Fπ1

$$
FA FA× FBπ0

oo
π1

// FB

In general, a functor F : C → D is said to preserve limits of shape I when it maps
limit cones to limit cones: if (L, λ) is a limit of D : I → C then (FL, F ◦ λ) is a limit of
F ◦D : I → D.

Analogously, a functor F : C → D is said to preserve colimits of shape I when it maps
colimit cocones to colimit cocones: if (C, ζ) is a colimit of D : I → C then (FC, F ◦ ζ) is
a colimit of F ◦D : I → D.

Proposition A.6.17. (a) A functor preserves finite (small) limits if, and only if, it pre-
serves equalizers and finite (small) products. (b) A functor preserves finite (small) colimits
if, and only if, it preserves coequalizers and finite (small) coproducts.

Proof. This follows from the fact that limits are constructed from equalizers and products,
cf. Proposition A.6.8, and that colimits are constructed from coequalizers and coproducts,
cf. Exercise A.6.9.

Proposition A.6.18. For a locally small category C, the Yoneda embedding y : C → Ĉ
preserves all limits that exist in C.

10Products are determined up to isomorphism only, so it would be too restrictive to require F (A×B) =
FA× FB. When that is the case, however, we say that the functor F strictly preserves products.
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Proof. Suppose (L, λ) is a limit of D : I → C. The Yoneda embedding maps D to the

diagram y ◦D : I → Ĉ, defined by

(y ◦D)i = yDi = C(−, Di) .

and it maps the limit cone (L, λ) to the cone (yL, y ◦ λ) on y ◦D, defined by

(y ◦ λ)i = yλi = C(−, λi) .

To see that (yL, y ◦ λ) is a limit cone on y ◦ D, consider a cone (M,µ) on y ◦ D. Then
µ : ∆M =⇒ D consists of a family of functions, one for each i ∈ I and A ∈ C,

(µi)A : MA→ C(A,Di) .

For every A ∈ C and m ∈MA we get a cone on D consisting of morphisms

(µi)Am : A→ Di . (i ∈ I)

There exists a unique morphism φAm : A→ L such that (µi)Am = λi ◦ φAm. The family
of functions

φA : MA→ C(A,L) = (y ◦ L)A (A ∈ C)

forms a factorization φ : M =⇒ yL of the cone (M,µ) through the cone (L, λ). This
factorization is unique because each φAm is unique.

In effect we showed that a covariant representable functor C(A,−) : C → Set preserves
existing limits,

C(A, lim←−
i∈I

Di) ∼= lim←−
i∈I
C(A,Di) .

By duality, the contravariant representable functor C(−, A) : Cop → Set maps existing
colimits to limits,

C(lim−→
i∈I

Di, A) ∼= lim←−
i∈I
C(Di, A) .

Exercise A.6.19. Prove the above claim that a contravariant representable functor C(−, A) :
Cop → Set maps existing colimits to limits. Use duality between limits and colimits. Does
it also follow by a simple duality argument that a contravariant representable functor
C(−, A) maps existing limits to colimits? How about a covariant representable functor
C(A,−) mapping existing colimits to limits?

Exercise A.6.20. Prove that a functor F : C → D preserves monos if it preserves limits.
In particular, the Yoneda embedding preserves monos. Hint: Exercise A.6.5.

Proposition A.6.21. Right adjoints preserve limits, and left adjoints preserve colimits.
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Proof. Suppose we have adjoint functors

C
F

((
⊥ D
G

gg

and a diagram D : I → D whose limit exists in D. We would like to use the following slick
application of Yoneda Lemma to show that G preserves limits: for every A ∈ C,

C(A,G(lim←−D)) ∼= D(FA, lim←−D) ∼= lim←−
i∈I
D(FA,Di)

∼= lim←−
i∈I
C(A,GDi) ∼= C(A, lim←−(G ◦D)) .

Therefore G(limD) ∼= lim(G ◦D). However, this argument only works if we already know
that the limit of G ◦D exists.

We can also prove the stronger claim that whenever the limit of D : I → D exists then
the limit of G ◦D exists in C and its limit is G(limD). So suppose (L, λ) is a limit cone
of D. Then (GL,G ◦ λ) is a cone on G ◦D. If (A,α) is another cone on G ◦D, we have
by adjunction a cone (FA, γ) on D,

αi : A→ GDi

γi : FA→ Di

There exists a unique factorization f : FA → L of this cone through (L, λ). Again by
adjunction, we obtain a unique factorization g : A → GL of the cone (A,α) through the
cone (GL,G ◦ λ):

f : FA→ L

g : A→ GL

The factorization g is unique because γ is uniquely determined from α, f uniquely from α,
and g uniquely from f .

By a dual argument, a left adjoint preserves colimits.
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Appendix B

Logic

B.1 Concrete and abstract syntax

By syntax we generally mean manipulation of finite strings of symbols according to given
grammatical rules. For instance, the strings “7)6 + /(8” and “(6 + 8)/7” both consist of
the same symbols but you will recognize one as junk and the other as well formed because
you have (implicitly) applied the grammatical rules for arithmetical expressions.

Grammatical rules are usually quite complicated, as they need to prescribe associativity
of operators (does “5 + 6 + 7” mean “(5 + 6) + 7” or “5 + (6 + 7)”?) and their precedence
(does “6 + 8/7” mean “(6 + 8)/7” or “6 + (8/7)”?), the role of white space (empty space
between symbols and line breaks), rules for nesting and balancing parentheses, etc. It is
not our intention to dwell on such details, but rather to focus on the mathematical nature
of well-formed expressions, namely that they represent inductively generated finite trees.1

Under this view the string “(6+8)/7” is just a concrete representation of the tree depicted
in Figure B.1.

+ 7

86

/

Figure B.1: The tree represented by (6 + 8)/7

Concrete representation of expressions as finite strings of symbols is called concrete
syntax, while in abstract syntax we view expressions as finite trees. The passage from the

1We are limiting attention to the so-called context-free grammar, which are sufficient for our purposes.
More complicated grammars are rarely used to describe formal languages in logic and computer science.
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former to the latter is called parsing and is beyond the scope of this book. We will always
specify only abstract syntax and assume that the corresponding concrete syntax follows
the customary rules for parentheses, associativity and precedence of operators.

As an illustration we give rules for the (abstract) syntax of propositional calculus in
Backus-Naur form:

Propositional variable p ::= p1 | p2 | p3 | · · ·
Propositional formula φ ::= p | ⊥ | > | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ¬φ

The vertical bars should be read as “or”. The first rule says that a propositional variable
is the constant p1, or the constant p2, or the constant p3, etc.2 The second rule tells us
that there are seven inductive rules for building a propositional formula:

• a propositional variable is a formula,

• the constants ⊥ and > are formulas,

• if φ1, φ2, and φ are formulas, then so are φ1 ∧ φ2, φ1 ∨ φ2, φ1 ⇒ φ2, and ¬φ.

Even though abstract syntax rules say nothing about parentheses or operator associativity
and precedence, we shall rely on established conventions for mathematical notation and
write down concrete representations of propositional formulas, e.g., p4∧(p1∨¬p1)∧p4∨p2.

A word of warning: operator associativity in syntax is not to be confused with the usual
notion of associativity in mathematics. We say that an operator ? is left associative when
an expression x ? y ? z represents the left-hand tree in Figure B.2, and right associative
when it represents the right-hand tree. Thus the usual operation of subtraction − is left

* z

yx

*x

y z

* *

Figure B.2: Left and right associativity of x ? y ? z

associative, but is not associative in the usual mathematical sense.

2In an actual computer implementation we would allow arbitrary finite strings of letters as propositional
variables. In logic we only care about the fact that we can never run out of fresh variables, i.e., that there
are countably infinitely many of them.
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B.2 Free and bound variables

Variables appearing in an expression may be free or bound. For example, in expressions∫ 1

0

sin(a · x) dx, x 7→ ax2 + bx+ c, ∀x . (x < a ∨ b < x)

the variables a, b and c are free, while x is bound by the integral operator
∫

, the function
formation 7→, and the universal quantifier ∀, respectively. To be quite precise, it is an oc-
currence of a variable that is free or bound. For example, in expression φ(x)∨∃x .Aψ(x, x)
the first occurrence of x is free and the remaining ones are bound.

In this book the following operators bind variables:

• quantifiers ∃ and ∀, cf. ??,

• λ-abstraction, cf. ??,

• search for others ??.

When a variable is bound we may always rename it, provided the renaming does not
confuse it with another variable. In the integral above we could rename x to y, but not to
a because the binding operation would capture the free variable a to produce the unintended∫ 1

0
sin(a2) da. Renaming of bound variables is called α-renaming.
We consider two expressions equal if they only differ in the names of bound variables,

i.e., if one can be obtained from the other by α-renaming. Furthermore, we adhere to
Barendregt’s variable convention [?, p. 2], which says that bound variables are always
chosen so as to differ from free variables. Thus we would never write φ(x) ∨ ∃x .Aψ(x, x)
but rather φ(x)∨∃ y .Aψ(y, y). By doing so we need not worry about capturing or otherwise
confusing free and bound variables.

In logic we need to be more careful about variables than is customary in traditional
mathematics. Specifically, we always specify which free variables may appear in an expres-
sion.3 We write

x1 : A1, . . . , xn : An | t

to indicate that expression t may contain only free variables x1, . . . , xn of types A1, . . . , An.
The list

x1 : A1, . . . , xn : An

is called a context in which t appears. To see why this is important consider the different
meaning that the expression x2 + y2 ≤ 1 recevieves in different contexts:

• x : Z, y : Z | x2 + y2 ≤ 1 denotes the set of tuples {(−1, 0), (0, 1), (1, 0), (0,−1)},

• x : R, y : R | x2 + y2 ≤ 1 denotes the closed unit disc in the plane, and

3This is akin to one of the guiding principles of good programming language design, namely, that all
variables should be declared before they are used.
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• x : R, y : R, z : R | x2 + y2 ≤ 1 denotes the infinite cylinder in space whose base is
the closed unit disc.

In single-sorted theories there is only one type or sort A. In this case we abbreviate a
context by listing just the variables, x1, . . . , xn.

B.3 Substitution

Substitution is a basic syntactic operation which replaces (free occurrences of) distinct
variables x1, . . . , xn in an expression t with expressions t1, . . . , tn, which is written as

t[t1/x1, . . . , tn/xn].

We sometimes abbreviate this as t[~t/~x] where ~x = (x1, . . . , xn) and ~t = (t1, . . . , tn). Here
are several examples:

(x2 + x+ y)[(2 + 3)/x] = (2 + 3)2 + (2 + 3) + y

(x2 + y)[y/x, x/y] = y2 + x(
∀x .

(
x2 < y + x3

))
[x+ y/y] = ∀ z .

(
z2 < (x+ y) + z3

)
.

Notice that in the third example we first renamed the bound variable x to z in order to
avoid a capture by ∀.

Substitution is simple to explain in terms of trees. Assuming Barendregt’s convention,
the substitution t[u/x] means that in the tree t we replace the leaves labeled x by copies
of the tree u. Thus a substitution never changes the structure of the tree–it only “grows”
new subtrees in places where the substituted variables occur as leaves.

Substitution satisfies the distributive law

(t[u/x])[v/y] = (t[v/y])[u[v/y]/x],

provided x and y are distinct variables. There is also a corresponding multivariate version
which is written the same way with a slight abuse of vector notation:

(t[~u/~x])[~v/~y] = (t[~v/~y])[~u[~v/~y]/~x].

B.4 Judgments and deductive systems

A formal system, such as first-order logic or type theory, concerns itself with judgments.
There are many kinds of judgments, such as:

• The most common judgments are equations and other logical statements. We distin-
guish a formula φ and the judgment “φ holds” by writing the latter as

` φ .

The symbol ` is generally used to indicate judgments.
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• Typing judgments
` t : A

expressing the fact that a term t has type A. This is not to be confused with the
set-theoretic statement t ∈ u which says that individuals t and u (of type “set”) are
in relation “element of” ∈.

• Judgments expressing the fact that a certain entity is well formed. A typical example
is a judgment

` x1 : A1, . . . , xn : An ctx

which states that x1 : A1, . . . , xn : An is a well-formed context. This means that
x1, . . . , xn are distinct variables and that A1, . . . , An are well-formed types. This
kind of judgement is often omitted and it is tacitly assumed that whatever entities
we deal with are in fact well-formed.

A hypothetical judgement has the form

H1, . . . , Hn ` C

and means that hypotheses H1, . . . , Hn entail consequence C (with respect to a given
decuctive system). We may also add a typing context to get a general form of judgment

x1 : A1, . . . , xn : An | H1, . . . , Hm ` C.

This should be read as: “if x1, . . . , xn are variables of types A1, . . . , An, respectively, then
hypotheses H1, . . . , Hm entail conclusion C.” For our purposes such contexts will suffice,
but you should not be surprised to see other kinds of judgments in logic.

A deductive system is a set of inference rules for deriving judgments. A typical inference
rule has the form

J1 J2 · · · Jn
J

C

This means that we can infer judgment J if we have already derived judgments J1, . . . , Jn,
provided that the optional side-condition C is satisfied. An axiom is an inference rule of
the form

J

A two-way rule
J1 J2 · · · Jn

K1 K2 · · · Km

is a combination of n+m inference rules stating that we may infer each Ki from J1, . . . , Jn
and each Ji from K1, . . . , Km.

A derivation of a judgment J is a finite tree whose root is J , the nodes are inference
rules, and the leaves are axioms. An example is presented in the next subsection.

The set of all judgments that hold in a given deductive system is generated inductively
by starting with the axioms and applying inference rules.
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B.5 Example: Equational reasoning

Equational reasoning is so straightforward that one almost doesn’t notice it, consisting
mainly, as it does, of “substituting equals for equals”. The only judgements are equations
between terms, s = t, which consist of function symbols, constants, and variables. The
inference rules are just the usual ones making s = t a congruence relation on the terms.
More formally, we have the following specification of what may be called the equational
calculus.

Variable v ::= x | y | z | · · ·
Constant symbol c ::= c1 | c2 | · · ·

Function symbol fk ::= fk11 | fk22 | · · ·
Term t ::= v | c | fk(t1, . . . , tk)

The superscript on the function symbol fk indicates the arity.

The equational calculus has just one form of judgement

x1, . . . , xn | t1 = t2

where x1, . . . , xn is a context consisting of distinct variables, and the variables in the equa-
tion must occur among the ones listed in the context.

There are four inference rules for the equational calculus. They may be assumed to
leave the contexts unchanged, which may therefore be omitted.

t = t

t1 = t2
t2 = t1

t1 = t2, t2 = t3
t1 = t3

t1 = t2, t3 = t4
t1[t3/x] = t2[t4/x]

An equational theory T consists of a set of constant and function symbols (with arities),
and a set of equations, called axioms. We write

T ` t1 = t2

to mean that the equation t1 = t2 has a derivation from the axioms of T using the equational
calculus.

B.6 Example: Predicate calculus

We spell out the details of single-sorted predicate calculus and first-order theories. This is
the most common deductive system taught in classical courses on logic.
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The predicate calculus has the following syntax:

Variable v ::= x | y | z | · · ·
Constant symbol c ::= c1 | c2 | · · ·

Function symbol4 fk ::= fk11 | fk22 | · · ·
Term t ::= v | c | fk(t1, . . . , tk)

Relation symbol Rm ::= Rm1
1 | Rm2

2 | · · ·
Formula φ ::=⊥ | > | Rm(t1, . . . , tm) | t1 = t2 |

φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ¬φ | ∀x . φ | ∃x . φ.
The variable x is bound in ∀x . φ and ∃x . φ.

The predicate calculus has one form of judgement

x1, . . . , xn | φ1, . . . , φm ` φ

where x1, . . . , xn is a context consisting of distinct variables, φ1, . . . , φm are hypotheses
and φ is the conclusion. The free variables in the hypotheses and the conclusion must
occur among the ones listed in the context. We abbreviate the context with Γ and Φ with
hypotheses. Because most rules leave the context unchanged, we omit the context unless
something interesting happens with it.

The following inference rules are given in the form of adjunctions. See Appendix ?? for
the more usual formulation in terms of introduction an elimination rules.

φ1, . . . , φm ` φi Φ ` > Φ,⊥ ` φ

Φ ` φ1 Φ ` φ2

Φ ` φ1 ∧ φ2

Φ, φ1 ` ψ Φ, φ2 ` ψ
Φ, φ1 ∨ φ2 ` ψ

Φ, φ1 ` φ2

Φ ` φ1 ⇒ φ2

Γ, x, y | Φ, x = y ` φ
Γ, x | Φ ` φ[x/y]

Γ, x | Φ, φ ` ψ
Γ | Φ,∃x . φ ` ψ

Γ, x | Φ ` φ
Γ | Φ ` ∀x . φ

The equality rule implicitly requires that y does not appear in Φ, and the quantifier rules
implicitly require that x does not occur freely in Φ and ψ because the judgments below
the lines are supposed to be well formed.

Negation ¬φ is defined to be φ⇒ ⊥. To obtain classical logic we also need the law of
excluded middle,

Φ ` φ ∨ ¬φ
Comment on the fact that contraction and weakening are admissible.
Give an example of a derivation.
A first-order theory T consists of a set of constant, function and relation symbols with

corresponding arities, and a set of formulas, called axioms.
Give examples of a first-order theories.
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