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Chapter 4

Type Theory

4.1 The Curry-Howard correspondence

Consider the following natural deduction proof in propositional calculus.

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B
B

(1)
(A ∧B) ∧ (A⇒ B) ⇒ B

This deduction shows that

⊢ (A ∧B) ∧ (A⇒ B) ⇒ B.

But so does the following:

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

B
(1)

(A ∧B) ∧ (A⇒ B) ⇒ B

As does:

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
B

(1)
(A ∧B) ∧ (A⇒ B) ⇒ B

There is a sense in which the first two proofs are “equivalent”, but not the first and the
third. The relation (or property) of provability in propositional calculus ⊢ A discards such
differences in the proofs that witness it. According to the “proof-relevant” point of view,
sometimes called propositions as types, one retains as relevant some information about the
way in which a proposition is proved. This can be done by annotating the proofs with
proof-terms as they are constructed, as follows:
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6 Type Theory

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) ⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) ⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π2(π1(x)) : B

(1)
λx.π2(π1(x)) : (A ∧B) ∧ (A⇒ B) ⇒ B

The proof terms for the first two proofs are the same, namely λx.π2(x)(π1(π1(x))), but the
term for the third one is λx.π2(π1(x)), reflecting the difference in the proofs. The assign-
ment works by labelling assumptions as variables, and then associating term-constructors
to the different rules of inference: pairing and projection to conjunction introduction and
elimination, function application and λ-abstraction to implication elimination (modus po-
nens) and introduction. The use of variable binding to represent cancellation of premisses
is a particularly effective device.

From the categorical point of view, the relation of deducibility A ⊢ B is a mere preorder.
The addition of proof terms x : A ⊢ t : B results in a categorification of this preorder, in
the sense that it becomes a “proper” category, the preordered reflection of which is the
deducibility preorder. And now a remarkable fact emerges: it is hardly surprising that the
deducibility preorder has, say, finite products A ∧ B or even exponentials A ⇒ B; but it
is amazing that the category with proof terms x : A ⊢ t : B as arrows also turns out to be
a cartesian closed category, and indeed a proper one, with distinct parallel arrows, such as

π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) −→ B,

π2(π1(x)) : (A ∧B) ∧ (A⇒ B) −→ B.

This category of proofs contains information about the “proof theory” of the propositional
calculus, as opposed to its mere relation of deducibility.

And now another remarkable fact emerges: when the calculus of proof terms is formu-
lated as a system of simple type theory, it admits an alternate interpretation as a formal
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4.2 Cartesian closed categories 7

system of function abstraction and application. This dual interpretation of the system of
type theory—as the proof theory of propositional logic, and as formal system for manipulat-
ing functions—is sometimes called the Curry-Howard correspondence [Sco70, ML84, Tai68].
From the categorical point of view, it expresses a structural equivalence between the carte-
sian closed categories of proofs in propositional logic and terms in simple type theory, both
of which are categorifications of their common preorder reflection, the deducibility preorder
of propositional logic (cf. [MH92]).

In the following sections, we shall consider this remarkable correspondence in detail,
as well as some extensions of the basic case represented by cartesian closed categories:
categories with coproducts, cocomplete categories, and categories equipped with modal
operators. In the next chapter, it will be seen that this correspondence even extends to
proofs in quantified predicate logic and terms in dependent type theory, and beyond.

4.2 Cartesian closed categories

Exponentials

We begin with the notion of an exponential BA of two objects A,B in a category, motivated
by a couple of important examples. Consider first the category Pos of posets and monotone
functions. For posets P and Q the set Hom(P,Q) of all monotone functions between them
is again a poset, with the pointwise order:

f ≤ g ⇐⇒ fx ≤ gx for all x ∈ P . (f, g : P → Q)

Thus, when equipped with a suitable order, the set Hom(P,Q) becomes an object of Pos.

Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure on the set
Hom(K,M), defined pointwise by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

Thus the category Mon also admits such “internal Homs”. The same thing works in the
category Group of groups and group homomophisms, where the set Hom(G,H) of all ho-
momorphisms between groups G and H can be given a pointwise group structure.

These examples suggest a general notion of an “internal Hom” in a category: an “object
of morphisms A→ B” which corresponds to the hom-set Hom(A,B). The other ingredient
needed is an “evaluation” operation eval : BA×A→ B which evaluates a morphism f ∈ BA

at an argument a ∈ A to give a value eval ◦ ⟨f, a⟩ = f(a) ∈ B. This is always going to
be present as an operation on underlying sets, if we’re starting from a set of functions
Hom(A,B) between structured sets A and B, but even in that case it also needs to be an
actual morphism in the category. Finally, we need an operation of “transposition”, taking
a morphism f : C × A → B to one f̃ : C → AB. We shall see that this in fact separates
the previous two examples.
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8 Type Theory

Definition 4.2.1. In a category C with binary products, an exponential (BA, ϵ) of objectsA
and B is an object BA together with a morphism ϵ : BA × A → B, called the evaluation
morphism, such that for every f : C×A→ B there exists a unique morphism f̃ : C → BA,
called the transpose1 of f , for which the following diagram commutes.

BA BA × A
ϵ // B

C

f̃

OO

C × A

f̃ × 1A

OO

f

<<

Commutativity of the diagram of course means that ϵ ◦ (f̃ × 1A) = f .

Definition 4.2.1 is called the universal property of the exponential. It is just the category-
theoretic way of saying that a function f : C ×A→ B of two variables can be viewed as a
function f̃ : C → BA of one variable that maps z ∈ C to a function f̃ z = f⟨z,−⟩ : A→ B

that maps x ∈ A to f⟨z, x⟩. The relationship between f and f̃ is then the expected one:

(f̃ z)x = f⟨z, x⟩ .

That is all there is to it, except that by making the evaluation explicit, variables and
elements never need to be mentioned! The benefit of this is that the definition makes sense
also in categories whose objects are not sets, and whose morphisms are not functions—even
though some of the basic examples are of that sort.

In Poset the exponential QP of posets P and Q is the set of all monotone maps P → Q,
ordered pointwise, as above. The evaluation map ϵ : QP × P → Q is just the usual
evaluation of a function at an argument. The transpose of a monotone map f : R×P → Q
is the map f̃ : R → QP , defined by, (f̃ z)x = f⟨z, x⟩, i.e. the transposed function. We say
that the category Pos has all exponentials.

Definition 4.2.2. Suppose C has all finite products. An object A ∈ C is exponentiable
when the exponential BA exists for every B ∈ C (along with an associated evaluation map
ϵ : BA × A → B). We say that C has exponentials if every object is exponentiable. A
cartesian closed category (ccc) is a category that has all finite products and exponentials.

Example 4.2.3. Consider again the example of the set Hom(M,N) of homomorphisms
between two monoidsM,N , equipped with the pointwise monoid structure. To be a monoid
homomorphism, the transpose h̃ : 1 → Hom(M,N) of a homomorphism h : 1 ×M → N
would have to take the unit element u ∈ 1 to the unit homomorphism u : M → N ,
which is the constant function at the unit u ∈ N . Since 1 ×M ∼= M , that would mean
that all homomorphisms h : M → N would have the same transpose, namely h̃ = u :
1 → Hom(M,N). So Mon cannot be cartesian closed. The same argument works in the
category Group, and in many related ones.

1Also, f is called the transpose of f̃ , so that f and f̃ are each other’s transpose.
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4.2 Cartesian closed categories 9

Exercise 4.2.4. Recall that monoids and groups can be regarded as (1-object) categories,
and then their homomorphisms are just functors. So we have full subcategories,

Mon ↪→ Group ↪→ Cat .

Is the category Cat of all (small) categories and functors cartesian closed? What about the
subcategory of all groupoids,

Grpd ↪→ Cat ,

defined as those categories in which every arrow is an iso?

Two characterizations of CCCs

Proposition 4.2.5. In a category C with binary products an object A is exponentiable if,
and only if, the functor

−× A : C → C
has a right adjoint

−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is (BA, ϵB), where
ϵB : BA × A → A is the counit of the adjunction at B. Indeed, the universal property of
the exponential is just the universal property of the counit ϵ : (−)A ⇒ 1C .

Conversely, suppose for every B there is an exponential (BA, ϵB). As the object part
of the right adjoint we then take BA. For the morphism part, given g : B → C, we can
define gA : BA → CA to be the transpose of g ◦ ϵB,

gA = (g ◦ ϵB)∼

as indicated below.

BA × A
ϵB //

gA × 1A
��

B

g

��
CA × A ϵC

// C

(4.1)

The counit ϵ : −A ×A =⇒ 1C at B is then ϵB itself, and the naturality square for ϵ is then
exactly (4.1), i.e. the defining property of (f ◦ ϵB)∼:

ϵC ◦ (gA × 1A) = ϵC ◦ ((g ◦ ϵB)∼ × 1A) = g ◦ ϵB .

The universal property of the counit ϵ is precisely the universal property of the exponential
(BA, ϵB)

Note that because exponentials can be expressed as right adjoints to binary products,
they are determined uniquely up to isomorphism. Moreover, the definition of a cartesian
closed category can then be phrased entirely in terms of adjoint functors: we just need to
require the existence of the terminal object, binary products, and exponentials.
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10 Type Theory

Proposition 4.2.6. A category C is cartesian closed if, and only if, the following functors
have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,
(−× A) : C → C . (A ∈ C)

Here !C is the unique functor from C to the terminal category 1 and ∆ is the diagonal
functor ∆A = ⟨A,A⟩, and the right adjoint of −× A is exponentiation by A.

The significance of the adjoint formulation is that it implies the possibility of a purely
equational specification (adjoint structure on a category is “algebraic”, in a sense that can
be made precise; see [?]). It follows that there is a equational formulation of the definition
of a cartesian closed category.

Proposition 4.2.7 (Equational version of CCC). A category C is cartesian closed if, and
only if, it has the following structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A × B for all A,B ∈ C together with morphisms π0 : A × B → A and
π1 : A × B → B, and for every pair of morphisms f : C → A, g : C → B a
morphism ⟨f, g⟩ : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism ϵ : BA × A → B, and a
morphism f̃ : C → BA for every morphism f : C × A→ B.

These new objects and morphisms are required to satisfy the following equations:

1. For every f : A→ 1,

f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π0 ◦ ⟨f, g⟩ = f , π1 ◦ ⟨f, g⟩ = g , ⟨π0 ◦ h, π1 ◦ h⟩ = h .

3. For all f : C × A→ B, g : C → BA,

ϵ ◦ (f̃ × 1A) = f , (ϵ ◦ (g × 1A))
∼ = g .

where for e : E → E ′ and f : F → F ′ we define

e× f := ⟨eπ0, fπ1⟩ : E × F → E ′ × F ′.
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4.2 Cartesian closed categories 11

These equations ensure that certain diagrams commute and that the morphisms that are
required to exist are unique. For example, let us prove that (A × B, π0, π1) is the product
of A and B. For f : C → A and g : C → B there exists a morphism ⟨f, g⟩ : C → A× B.
Equations

π0 ◦ ⟨f, g⟩ = f and π1 ◦ ⟨f, g⟩ = g

enforce the commutativity of the two triangles in the following diagram:

C

f

""

g

||

⟨f, g⟩
��

A A×Bπ0
oo

π1
// B

Suppose h : C → A × B is another morphism such that f = π0 ◦ h and g = π1 ◦ h. Then
by the third equation for products we get

h = ⟨π0 ◦ h, π1 ◦ h⟩ = ⟨f, g⟩ ,

and so ⟨f, g⟩ is unique.

Exercise 4.2.8. Use the equational characterization of CCCs, Proposition 4.2.7, to show
that the category Pos of posets and monotone functions is cartesian closed, as claimed.
Also verify that that Mon is not. Which parts of the definition fail in Mon?

Exercise 4.2.9. Use the equational characterization of CCCs, Proposition 4.2.7, to show
that the product category Πi∈I Ci of any (set-indexed) family (Ci)i∈I of cartesian closed
categories Ci is cartesian closed. Is the same true for an arbitrary limit in Cat?

Some proper CCCs

We next review some important examples of (non-poset) cartesian closed categories, most
of which have already been discussed.

Example 4.2.10. The first example is the category Set. We already know that the ter-
minal object is a singleton set and that binary products are cartesian products. The
exponential of X and Y in Set is just the set of all functions from X to Y ,

Y X =
{
f ⊆ X × Y

∣∣ ∀x : X . ∃! y : Y . ⟨x, y⟩ ∈ f
}
.

The evaluation morphism eval : Y X ×X → Y is the usual evaluation of a function at an
argument, i.e., eval⟨f, x⟩ is the unique y ∈ Y for which ⟨x, y⟩ ∈ f .

[DRAFT: April 17, 2024]



12 Type Theory

Example 4.2.11. The category Cat of all small categories is cartesian closed. The expo-
nential of small categories C and D is the category DC of functors, with natural transfor-
mations as arrows (see ??). Note that if D is a groupoid (all arrows are isos), then so is DC.
It follows that the category of groupoids is full (even as a 2-category) in Cat. Since limits
of groupoids in Cat are also groupoids, the inclusion of the full subcategory Grpd ↪→ Cat
preserves limits. It also preserves the CCC structure.

Example 4.2.12. The same reasoning as in the previous example shows that the full
subcategory Pos ↪→ Cat of all small posets and monotone maps is also cartesian closed,
and the (limit preserving) inclusion Pos ↪→ Cat also preserves exponentials. Note that the
(non-full) forgetful functor U : Pos → Set does not, and that U(QP ) ⊆ (UQ)UP is in
general a proper subset.

Exercise 4.2.13. There is a full and faithful functor I : Set → Poset that preserves finite
limits as well as exponentials. How is this related to the example Grpd ↪→ Cat?

The foregoing examples are instances of the following general situation.

Proposition 4.2.14. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a left adjoint reflection L : E → S preserving finite products. Suppose moreover that for
any two objects A,B in S, the exponential iBiA is again in S. Then S has all exponentials,
and these are preserved by i.

Proof. By assumption, we have L ⊣ i with isomorphic counit LiS ∼= S for all S ∈ S.
Let us identify S with the subcategory of E that is its image under i : S ↪→ E . The
assumption that BA is again in S for all A,B ∈ S, along with the fullness of S in E , gives
the exponentials, and the closure of S under finite products in E ensures that the required
transposes will also be in S.

Alternately, for any A,B ∈ S set BA = L(iBiA). Then for any C ∈ S, we have natural
isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= E

(
iC, iL(iBiA)

)
∼= S

(
C,L(iBiA)

)
∼= S

(
C,BA

)
where in the fifth line we used the assumption that iBiA is again in S, in the form iBiA ∼= iE
for some E ∈ S, which is then necessarily L(iBiA) = LiE ∼= E.

A related general situation that covers some (but not all) of the above examples is this:

Proposition 4.2.15. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a right adjoint reflection R : E → S. If i preserves finite products, then S also has all
exponentials, and these are computed first in E, and then reflected by R into S.
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4.2 Cartesian closed categories 13

Proof. For any A,B ∈ S set BA = R(iBiA) as described. Now for any C ∈ S, we have
natural isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= S

(
C,R(iBiA)

)
∼= S

(
C,BA

)
.

An example of the foregoing is the inclusion of the opens into the powerset of points of
a space X,

OX ↪→ PX

This frame homomorphism is associated to the map |X| → X of locales (or in this case,
spaces) from the discrete space on the set of points of X.

Exercise 4.2.16. Which of the examples follows from which proposition?

Example 4.2.17. For any set X, the slice category Set/X is cartesian closed. The product
of f : A → X and g : B → X is the pullback A×X B → X, which can be constructed as
the set of pairs

A×X B → X = {⟨a, b⟩ | fa = gb} .

The exponential, however, is not simply the set

{h : A→ B | f = g ◦ h} ,

(what would the projection to X be?), but rather the set of all pairs

{⟨x, h : Ax → Bx⟩ | x ∈ X, f = g ◦ h} ,

where Ax = f−1{x} and Bx = g−1{x}, with the evident projection to X.

Exercise 4.2.18. Prove that Set/X is always cartesian closed.

Example 4.2.19. A presheaf category Ĉ is cartesian closed, provided the index category
C is small. To see what the exponential of presheaves P and Q ought to be, we use the
Yoneda Lemma. If QP exists, then by Yoneda Lemma and the adjunction (−×P ) ⊣ (−P ),
we have for all A ∈ C,

QP (A) ∼= Nat(yA,QP ) ∼= Nat(yA× P,Q) .

Because C is small Nat(yA× P,Q) is a set, so we can define QP to be the presheaf

QP = Nat(y−× P,Q) .

[DRAFT: April 17, 2024]



14 Type Theory

The evaluation morphism E : QP × P =⇒ Q is the natural transformation whose compo-
nent at A is

EA : Nat(yA× P,Q)× PA→ QA ,

EA : ⟨η, x⟩ 7→ ηA⟨1A, x⟩ .

The transpose of a natural transformation ϕ : R × P =⇒ Q is the natural transformation
ϕ̃ : R =⇒ QP whose component at A is the function that maps z ∈ RA to the natural
transformation ϕ̃Az : yA× P =⇒ Q, whose component at B ∈ C is

(ϕ̃Az)B : C(B,A)× PB → QB ,

(ϕ̃Az)B : ⟨f, y⟩ 7→ ϕB⟨(Rf)z, y⟩ .

Exercise 4.2.20. Verify that the above definition of QP really gives an exponential of
presheaves P and Q.

It follows immediately that the category of graphs Graph is cartesian closed because it
is the presheaf category Set·⇒·. The same is of course true for the “category of functions”,
i.e. the arrow category Set→, as well as the category of simplicial sets Set∆

op

from topology.

Exercise 4.2.21. This exercise is for students with some background in linear algebra.
Let Vec be the category of real vector spaces and linear maps between them. Given vector
spaces X and Y , the linear maps L(X, Y ) between them form a vector space. So define
L(X,−) : Vec → Vec to be the functor which maps a vector space Y to the vector space
L(X, Y ), and it maps a linear map f : Y → Z to the linear map L(X, f) : L(X, Y ) →
L(X,Z) defined by h 7→ f ◦ h. Show that L(X,−) has a left adjoint −⊗X, but also show
that this adjoint is not the binary product in Vec.

A few other instructive examples that can be explored by the interested reader are the
following.

• Etale spaces over a base space X. This category can be described as consisting of
local homeomorphisms f : Y → X and commutative triangles over X between such
maps. It is equivalent to the category Sh(X) of sheaves on X. See [?, ch.n].

• Various subcategories of topological spaces (sequential spaces, compactly-generated
spaces). Cf. [?].

• Dana Scott’s category Equ of equilogical spaces [?].

4.3 Simple type theory

The λ-calculus is an abstract theory of functions, much like group theory is an abstract
theory of symmetries. There are two basic operations that can be performed with functions.
The first one is the application of a function to an argument: if f is a function and a is an
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4.3 Simple type theory 15

argument, then fa is the application of f to a, also called the value of f at a. The second
operation is abstraction: if x is a variable and t is an expression in which x may appear,
then there is a function f defined by the equation

fx = t .

Here we gave the name f to the newly formed function. But we could have expressed the
same function without giving it a name; this is usually written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation, which is more
convenient when such abstractions are nested, namely

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the function that
maps an argument a to the function λy. (a+ y), which maps an argument b to the value
a+ b. The variable x is said to be bound in t in the expression λx. t.

It may seem strange that in specifying the abstraction of a function, we switched
from talking about objects (functions, arguments, values) to talking about expressions :
variables, names, equations. This “syntactic” point of view seems to have been part of
the notion of a function from the start, in the theory of algebraic equations. It is the
reason that the λ-calculus is part of logic, unlike the theory of cartesian closed categories,
which remains thoroughly semantical (and “variable-free”). The relation between the two
different points of view occupies the rest of this chapter—and, indeed, the entire subject
of logic!

There are two kinds of λ-calculus: the typed and the untyped. In the untyped version
there are no restrictions on how application is formed, so that an expression such as

λx. (xx)

is valid, whatever it may mean. We will concentrate here on the typed λ-calculus. In typed
λ-calculus every expression has a type, and there are rules for forming valid expressions and
types. For example, we can only form an application fa when a has a type A and f has a
type A → B, which indicates a function taking arguments of type A and giving results of
type B. The judgment that expression t has a type A is written as

t : A .

To computer scientists the idea of expressions having types is familiar from programming
languages, whereas mathematicians can think of types as sets and read t : A as t ∈ A.
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16 Type Theory

Simply-typed λ-calculus. We now give a more formal definition of what constitutes a
simply-typed λ-calculus. First, we are given a set of simple types, which are generated from
basic types by formation of products and function types:

Basic types B ::= B0 | B1 | B2 · · ·
Simple types A ::= B | A1 × A2 | A1 → A2.

We adopt the convention that function types associate to the right:

A→ B → C = A→ (B → C) .

We assume there is a countable set of variables x, y, u, . . .We are also given a set of
basic constants. The set of terms is generated from variables and basic constants by the
following grammar:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. a variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if u and t are terms then ⟨u, t⟩ is a term, called a pair,

5. if t is a term then fst t and snd t are terms,

6. if u and t are terms then u t is a term, called an application

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term, called a
λ-abstraction.

The variable x is bound in λx : A . t. Application associates to the left, thus s t u = (s t)u.
The set of free variables FV(t) of a term t is determined as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(⟨u, t⟩) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .
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4.3 Simple type theory 17

If x1, . . . , xn are distinct variables and A1, . . . , An are types then the sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted by a dot ·,
and it is a valid context. Contexts are denoted by capital Greek letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition the free variables of t
must occur in Γ, but Γ may contain other variables as well. We read the above judgment
as “in context Γ the term t has type A”. Next we describe the rules for deriving typing
judgments.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An | xi : Ai

(1 ≤ i ≤ n)

• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections are:

Γ | a : A Γ | b : B
Γ | ⟨a, b⟩ : A×B

Γ | t : A×B

Γ | fst t : A
Γ | c : A×B

Γ | snd t : B

• The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | a : A

Γ | t a : B

Γ, x : A | t : B
Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms: for terms of type A in context Γ,

Γ | s : A , Γ | t : A ,

the judgment that they are equal is written as

Γ | s = t : A .

Note that s and t necessarily have the same type; it does not make sense to compare terms
of different types. We have the following rules for equations, the effect of which is to make
equality between terms into an equivalence relation at each type, and a congruence with
respect to all of the operations, just as for algebraic theories:
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18 Type Theory

• Equality is an equivalence relation:

Γ | t = t : A

Γ | s = t : A

Γ | t = s : A

Γ | s = t : A Γ | t = u : A

Γ | s = u : A

• The substitution rule:

Γ | s = t : A Γ, x : A | u = v : B

Γ | u[s/x] = v[t/x] : B

• The weakening rule:

Γ | s = t : A

Γ, x : B | s = t : A

• Unit type:

Γ | t = ∗ : 1

• Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | ⟨u, s⟩ = ⟨v, t⟩ : A×B

Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B

Γ | snd s = snd t : A

Γ | t = ⟨fst t, snd t⟩ : A×B

Γ | fst ⟨s, t⟩ = s : A Γ | snd ⟨s, t⟩ = t : A

• Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

Γ | λx : A . (t x) = t : A→ B
if x ̸∈ FV(t) (η-rule)

This completes the description of a simply-typed λ-calculus.
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Simply-typed λ-theories. Apart from the above rules for equality, which are part of
the λ-calculus, we might want to impose additional equations between terms. In this case
we speak of a λ-theory. Thus, a λ-theory T is given by a set of basic types and a set of
basic constants, called the signature, and a set of equations of the form

Γ | s = t : A .

Note that we can always state the equations equivalently in closed form simply by λ-
abstracting all the variables in the context Γ.

We summarize the preceding definitions.

Definition 4.3.1. A (simply-typed) signature S is given by a set of basic types (Bi)i∈I
together with a set of basic (typed) constants (cj : Cj)j∈J ,

S =
(
(Bi)i∈I , (cj : Cj)j∈J

)
.

A simply-typed λ-theory T = (S,E) is a simply-typed signature S together with a set of
equations between terms,

E =
(
uk = vk : Ak

)
k∈K .

Example 4.3.2. The theory of a group is a simply-typed λ-theory. It has one basic type
G and three basic constants, the unit e, the inverse i, and the group operation m,

e : G , i : G → G , m : G× G → G ,

with the following familiar equations:

x : G | m⟨x, e⟩ = x : G

x : G | m⟨e, x⟩ = x : G

x : G | m⟨x, ix⟩ = e : G

x : G | m⟨ix, x⟩ = e : G

x : G, y : G, z : G | m⟨x, m⟨y, z⟩⟩ = m⟨m⟨x, y⟩, z⟩ : G

Example 4.3.3. More generally, any (Lawvere) algebraic theory A (as in Chapter ??)
determines a λ-theory Aλ. There is one basic type A and for each operation f of arity k
there is a basic constant f : Ak → A, where Ak is the k-fold product A × · · · × A. It is
understood that A0 = 1. The terms of A are translated to corresponding terms of Aλ in a
straightforward manner. For every axiom u = v of A there is a corresponding one in Aλ,

x1 : A, . . . , xn : A | u = v : A

where x1, . . . , xn are the variables occurring in u and v.

Example 4.3.4. The theory of a directed graph is a simply-typed theory with two basic
types, V for vertices and E for edges, and two basic constants, source src and target trg,

src : E → V , trg : E → V .

There are no equations.
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Example 4.3.5. The theory of a simplicial set is a simply-typed theory with one basic
type Xn for each natural number n, and the following basic constants, also for each n, and
each 0 ≤ i ≤ n:

di : Xn+1 → Xn , si : Xn → Xn+1 .

The equations are as follows, for all natural numbers i, j:

didj = dj−1di, if i < j,

sisj = sj+1si, if i ≤ j,

disj =


sj−1di, if i < j,

id, if i = j or i = j + 1,

sjdi−1, if i > j + 1.

Example 4.3.6. An example of a λ-theory found in the theory of programming languages
is the mini-programming language PCF. It is a theory in simply-typed λ-calculus with a
basic type nat for natural numbers, and a basic type bool of Boolean values,

Basic types B ::= nat type | bool type.

There are basic constants zero 0, successor succ, the Boolean constants true and false,
comparison with zero iszero, and for each type A the conditional condA and the fixpoint
operator fixA. They have the following types:

0 : nat

succ : nat → nat

true : bool

false : bool

iszero : nat → bool

condA : bool → A→ A

fixA : (A→ A) → A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 4.3.7 (D.S. Scott). Another example of a λ-theory is the theory of a reflexive
type. This theory has one basic type D and two constants

r : D → D → D s : (D → D) → D
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satisfying the equation
f : D → D | r (s f) = f : D → D (4.2)

which says that s is a section and r is a retraction, so that the function type D → D is a
subspace (even a retract) of D. A type with this property is said to be reflexive. We may
additionally stipulate the axiom

x : D | s (rx) = x : D (4.3)

which implies that D is isomorphic to D → D.
A reflexive type can be used to interpret the untyped λ-calculus into the typed λ-

calculus.

Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are generated by
the following grammar:

t ::= v | t! t2 | λx. t .
In words, a variable is a term, an application t t′ is a term, for any terms t and t′, and a
λ-abstraction λx. t is a term, for any term t. Variable x is bound in λx. t. A context is a
list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed in Γ. The
judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really necessary
but we include it because it is always good practice to list the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | (λx. t)u = t[u/x]
(β-rule)

Γ | λx. (t x) = t
if x ̸∈ FV(t) (η-rule)

[DRAFT: April 17, 2024]



22 Type Theory

The untyped λ-calculus can be translated into the theory of a reflexive type from Exam-
ple 4.3.7. An untyped context Γ is translated to a typed context Γ∗ by typing each variable
in Γ with the reflexive type D, i.e., a context x1, . . . , xk is translated to x1 : D, . . . , xk : D.
An untyped term t is translated to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .

For example, the term λx. (x x) translates to s (λx : D . ((rx)x)). A judgment

Γ | u = t (4.4)

is translated to the judgment
Γ∗ | u∗ = t∗ : D . (4.5)

Exercise∗ 4.3.8. Prove that if equation (4.4) is provable then equation (4.5) is provable
as well. Identify precisely at which point in your proof you need to use equations (4.2)
and (4.3). Does provability of (4.5) imply provability of (4.4)?

Higher-order logic

This example presumes familiarity with the results of Chapter ??, or at least with the
basic categorical approach to first-order logic as presented in [?, ?]. The approach to
IHOL presented here is closely tied to topos theory, which is to be treated in greater depth
in Chapter ??.

4.4 Interpretation of λ-calculus in a CCC

We now consider semantic aspects of the λ-calculus and λ-theories. Suppose T is a λ-
theory and C is a cartesian closed category. An interpretation [[−]] of T in C is given by
the following data:

• For every basic type B in T an object [[B]] ∈ C. The interpretation is extended to all
types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

• For every basic constant c of type C, a morphism [[c]] : 1 → [[C]].

The interpretation is extended to all terms in context as follows.

• A context Γ = x1 : A1, · · · , xn : An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object,

[[·]] = 1 .
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• A typing judgment

Γ | t : A

will be interpreted as a morphism

[[Γ | t : A]] : [[Γ]] → [[A]] .

The interpretation is defined inductively by the following rules:

• The i-th variable is interpreted as the i-th projection,

[[x0 : A0, . . . , xn : An | xi : Ai]] = πi : [[Γ]] → [[Ai]] .

• A basic constant c : C in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

• The interpretation of projections and pairs is

[[Γ | ⟨t, u⟩ : A×B]] = ⟨[[Γ | t : A]], [[Γ | u : B]]⟩ : [[Γ]] → [[A]]× [[B]]

[[Γ | fst t : A]] = π0 ◦ [[Γ | t : A×B]] : [[Γ]] → [[A]]

[[Γ | snd t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]] → [[B]] .

• The interpretation of application and λ-abstraction is

[[Γ | t u : B]] = ϵ ◦ ⟨[[Γ | t : A→ B]], [[Γ | u : A]]⟩ : [[Γ]] → [[B]]

[[Γ | λx : A . t : A→ B]] = ([[Γ, x : A | t : B]])∼ : [[Γ]] → [[B]][[A]]

where ϵ : [[A → B]] × [[A]] → [[B]] is the evaluation morphism for [[B]][[A]] and ([[Γ, x :
A | t : B]])∼ is the transpose of the morphism

[[Γ, x : A | t : B]] : [[Γ]]× [[A]] → [[B]] .

Definition 4.4.1. An interpretation of a λ-theory T is a model of T if it satisfies all the
axioms of T, in the sense that for every axiom Γ | u = v : A of T, the interpretations of u
and v coincide as arrows in C,

[[Γ | u : A]] = [[Γ | v : A]] : [[Γ]] −→ [[A]].

It follows that all equations that are provable in T are also satisfied in any model, by
the following basic fact.
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Proposition 4.4.2 (Soundness). If T is a λ-theory and [[−]] a model of T in a cartesian
closed category C, then for every equation in context Γ | s = t : C that is provable from the
axioms of T, we have

[[Γ | s : C]] = [[Γ | t : C]] : [[Γ]] −→ [[C]] .

Briefly, for all T-models [[−]],

T ⊢ (Γ | s = t : C) implies [[−]] |= (Γ | s = t : C) .

The proof is a straightforward induction, first on the typing judgements for the inter-
pretation, and then on the equational rules for the equations. If we stop after the first
step, we can consider just the following notion of inhabitation:

Remark 4.4.3 (Inhabitation). There is another notion of provability for the λ-calculus,
related to the Curry-Howard correspondence of section 4.1, relating it to propositional
logic. If we regard types as “propositions” rather than generalized algebraic structures,
and terms as “proofs” rather than operations in such structures, then it is more natural
to ask whether there even is a term a : A of some type, than whether two terms of the
same type are equal s = t : A. Of course, this only makes sense when A is considered
in the empty context · ⊢ A, rather than Γ ⊢ A for non-empty Γ (consider the case where
Γ = x : A, . . . ). We say that a type A is inhabited (by a closed term) when there is some
⊢ a : A, and regard an inhabited type A as one that is provable. There is then a different
notion of soundness related to this notion of provability.

Proposition 4.4.4 (Inhabitation soundness). If T is a λ-theory and [[−]] a model of T in
a cartesian closed category C, then for every type A that is inhabited in T, there is a point
1 → [[A]] in C. Thus for all T-models [[−]],

⊢ a : A implies there is a point 1 → [[A]] .

This follows immediately from the fact that [[·]] = 1 for the empty context; for then the
interpretation of any ⊢ a : A is a point

[[a]] : 1 → [[A]] .

Example 4.4.5. 1. A model of an algebraic theory A, extended to a λ-theory Aλ as in
Example 4.3.3, taken in a CCC C, is just a model of the algebraic theory A in the
underlying finite product category |C|× of C. An important difference, however, is
that in defining the category of models

ModFP(A, |C|×)

we can take all homomorphisms of models of A as arrows, while the arrows in the
category

Modλ(Aλ, C)
of λ-models are best taken to be isomorphisms, for which one has an obvious way to
deal with the contravariance of the function type [[A→ B]] = [[B]][[A]] (this is discussed
in more detail in the next section).
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2. A model of the theory of a reflexive type, Example 4.3.7, in Set must be the one-
element set 1 = {⋆} (prove this!). Fortunately, the exponentials in categories of
presheaves are not computed pointwise; otherwise it would follow that this theory
has no non-trivial models at all! (And then, by Theorem 4.7.6, that the theory itself
is degenerate, in the sense that all equations are provable.) That there are non-
trivial models is an important fact in the semantics of programming languages and
the subject called domain theory. A fundamental paper in which this is shown is [?].

3. A (positive) propositional theory T may be regarded as a λ-theory, and a model in
a cartesian closed poset P is then the same thing as before: an interpretation of the
atomic propositions p1, p2, ... of T as elements [[p1]], [[p2]], ... ∈ P , such that the axioms
ϕ1, ϕ2, ... of T are all sent to 1 ∈ P by the extension of [[−]] to all formulas,

1 = [[ϕ1]] = [[ϕ2]] = · · · ∈ P .

Exercise 4.4.6. How are models of a (not necessarily propositional) λ-theory T in Carte-
sian closed posets related to models in arbitrary Cartesian closed categories? (Hint: Con-
sider the inclusion CCPos ↪→ CCC. Does it have any adjoints?)

4.5 Functorial semantics of STT in CCCs

In Chapter ?? we saw how algebraic theories can be viewed as categories (with finite
products), and their algebras, or models, as functors (preserving finite products), and we
arranged this analysis of the traditional relationship between syntax and sematics into
a framework that we called functorial semantics. In Chapter ??, we did the same for
propositional logic. As a common generalization of both, the same framework of functorial
semantics can be applied to λ-theories and their models in CCCs. The first step is to build
a classifying category CT from a λ-theory T, which again is constructed from the theory
itself as a syntactic category. This is done as follows:

Definition 4.5.1. For any λ-theory T, the syntactic category CT is determined as follows.

• The objects of CT are the types of T.

• Arrows A→ B are terms in context

[x : A | t : B] ,

where two such terms x : A | s : B and x : A | t : B represent the same morphism
when T proves x : A | s = t : B.

• Composition of the terms

[x : A | t : B] : A −→ B and [y : B | u : C] : B −→ C

is the term obtained by substituting t for y in u:

[x : A | u[t/y] : C] : A −→ C .
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• The identity morphism on A is the term [x : A | x : A].

Proposition 4.5.2. The syntactic category CT built from a λ-theory is cartesian closed.

Proof. We omit the equivalence classes brackets [x : A | t : B] and simply treat equivalent
terms as equal.

• The terminal object is the unit type 1. For any type A the unique morphism !A :
A→ 1 is the term

x : A | ∗ : 1 .

This morphism is indeed unique, because we have the equation

Γ | t = ∗ : 1

is an axiom for the terms of unit type 1.

• The product of objects A and B is the type A × B. The first and the second
projections are the terms

c : A×B | fst c : A , c : A×B | snd c : B .

Given morphisms

z : C | a : A , z : C | b : B ,

the term
z : C | ⟨a, b⟩ : A×B

represents the unique morphism satisfying

z : C | fst ⟨a, b⟩ = a : A , z : C | snd ⟨a, b⟩ = b : B .

Indeed, if fst t = a and snd t = b for some t, then

t = ⟨fst t, snd t⟩ = ⟨a, b⟩ .

• The exponential of objects A and B is the type A→ B with the evaluation morphism

e : (A→ B)× A
∣∣ (fst e)(snd e) : B .

The transpose of a morphism w : C × A | t : B is the term

z : C | λx : A . (t[⟨z, x⟩/w]) : A→ B .

Showing that this is the transpose of t amounts to showing, in context w : C × A,

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t : B
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Indeed, we have:

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t[⟨fstw, sndw⟩/w] = t[w/w] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique, because
any morphism z : C | s : A→ B that satisfies

(s[fstw/z])(sndw) = t

is equal to λx : A . (t[⟨z, x⟩/w]), because then

t[⟨z, x⟩/w] = (s[fstw/z])(sndw)[⟨z, x⟩/w] =
(s[fst ⟨z, x⟩/z])(snd ⟨z, x⟩) = (s[z/z])x = s x .

Therefore,
λx : A . (t[⟨z, x⟩/w]) = λx : A . (s x) = s ,

as claimed.

Now as before, the syntactic category allows us to replace a model [[−]] in a CCC C
with a functor M : CT → C. More precisely, we have the following.

Lemma 4.5.3. A model [[−]] of a λ-theory T in a cartesian closed category C determines
a cartesian closed functor M : CT → C with

M(B) = [[B]], M(c) = [[c]] : 1 → [[C]] =M(C) , (4.6)

for all basic types B and basic constants c : C. Moreover, M is unique up to a unique
isomorphism of CCC functors, in the sense that given another model N satisfying (4.6),
there is a unique natural iso M ∼= N , determined inductively by the comparison maps
M(1) ∼= N(1),

M(A×B) ∼= MA×MB ∼= NA×NB ∼= N(A×B) ,

and similarly for M(BA).

Proof. Straightforward.

We then also have the usual functorial semantics theorem:

Theorem 4.5.4. For any λ-theory T, the syntactic category CT classifies T-models, in the
sense that for any cartesian closed category C there is an equivalence of categories

Modλ
(
T, C

)
≃ CCC

(
CT , C

)
, (4.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of CCC functors.
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Proof. The only thing remaining to show is that, given a model [[−]] in a CCC C and a
CCC functor f : C → D, there is an induced model [[−]]f in D, given by the interpretation
[[A]]f = f [[A]]. This is straightforward, just as for algebraic theories.

Remark 4.5.5. As mentioned in Example 4.4.5(1) the categories involved in the equiva-
lence (4.7) are groupoids, in which every arrow is iso. The reason we have defined them as
such is that the contravariant argument A in the function type A → B prevents us from
specifying a non-iso homomorphism of models h :M → N by the obvious recursion on the
type structure.

In more detail, given hA : [[A]]M → [[A]]N and hB : [[B]]M → [[B]]N , there is no obvious
candidate for a map

hA→B : [[A→ B]]M −→ [[A→ B]]N ,

when all we have are the following induced maps:

[[A→ B]]M = // ([[B]]M)[[A]]M
(hB)

[[A]]M

// ([[B]]N)[[A]]M

([[B]]M)[[A]]N

([[B]]M)hA

OO

(hB)
[[A]]N

// ([[B]]N)[[A]]N

([[B]]N)hA

OO

=
// [[A→ B]]N

One solution is therefore to take isos hA : [[A]]M ∼= [[A]]N and hB : [[B]]M ∼= [[B]]N and then
use the inverses h−1

A : [[A]]N → [[A]]M in the contravariant positions, in order to get things
to line up:

[[A→ B]]M = // ([[B]]M)[[A]]M

([[B]]M)h
−1
A ∼
��

(hB)
[[A]]M

// ([[B]]N)[[A]]M

([[B]]N)h
−1
A∼

��

([[B]]M)[[A]]N

(hB)
[[A]]N

// ([[B]]N)[[A]]N

=
// [[A→ B]]N

This suffices to at get a category of models Modλ
(
T, C

)
, rather than just as set, which is

enough structure to determine the equivalence (4.7). Note that for an algebraic theory A,
this category of λ-models in Set, say, Modλ(Aλ) is still the (wide but non-full) subcategory
of isomorphisms of conventional (algebraic) A-models

Modλ(Aλ) ↣ Mod(A) .

We shall consider other solutions to the problem of contravariance below.

We can now proceed just as we did in the case of algebraic theories and prove that the
semantics of λ-theories in cartesian closed categories is complete, in virtue of the syntactic
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construction of the classifying category CT. Specifically, a λ-theory T has a canonical
interpretation [−] in the syntactic category CT, which interprets a basic type A as itself, and
a basic constant c of type A as the morphism [x : 1 | c : A]. The canonical interpretation
is a model of T, also known as the syntactic model, in virtue of the definition of the
equivalence relation [−] on terms. In fact, it is a logically generic model of T, because by
the construction of CT, for any terms Γ | u : A and Γ | t : A, we have

T ⊢ (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= Γ | u = t : A .

For the record, we therefore have now shown:

Proposition 4.5.6. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (4.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by CCC functors (Proposition 4.4.2).

Corollary 4.5.7. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every CCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

4.6 The internal language of a CCC

In the case of algebraic theories, we were able to recover the syntactic category from the
semantics by taking certain Set-valued functors on the category of models in Set. This
then extended to a duality between the category of all algebraic theories and that of all
“algebraic categories”, which we defined as the categories of Set-valued models of some
algebraic theory (and also characterized abstractly). In the (classical) propositional case,
this syntax-semantics duality was seen to be exactly the classical Stone duality between the
categories of Boolean algebras and of Stone topological spaces. That sort of duality theory
seems to be more difficult to formulate for λ-theories, however, now that we have taken the
category of models to be just a groupoid (but see Remark ??). Nonetheless, there is still a
correspondence between λ-theories and CCCs, which we get by organizing the former into
a category, which is then equivalent to that of the latter. But note that this is analogous to
the equivalence between algebraic theories, regarded syntactically, and regarded as finite
product categories—rather than to the duality between syntax and semantics.

In order to define the equivalence in question, we first need a suitable notion of mor-
phism of theories. A translation τ : S → T of a λ-theory S into a λ-theory T is given by
the following data:

[DRAFT: April 17, 2024]



30 Type Theory

1. For each basic type A in S a type τA in T. The translation is then extended to all
types by the rules

τ1 = 1 , τ(A×B) = τA× τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type A in S a term τc of type τA in T. The translation
of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ⟨t, u⟩ = ⟨τt, τu⟩ , τ(λx : A . t) = λx : τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .

A context Γ = x1 : A1, . . . , xn : An is translated by τ to the context

τΓ = x1 : τA1, . . . , xn : τAn .

Furthermore, a translation is required to preserve the axioms of S: if Γ | t = u : A is an
axiom of S then T proves τΓ | τt = τu : τA. It then follows that all equations proved by S
are translated to valid equations in T.

A moment’s consideration shows that a translation τ : S → T is the same thing as a
model of S in CT, despite being specified entirely syntactically. More precisely, λ-theories
and translations between them clearly form a category: translations compose as functions,
therefore composition is associative. The identity translation ιT : T → T translates every
type to itself and every constant to itself.

Definition 4.6.1. Let λThr be the category whose objects are λ-theories and morphisms
are translations between them.

We now have an isomorphism of sets,

HomλThr(S,T) ∼= Modλ(S, CT) , (4.8)

which is natural in the theory S, as can be seen by considering the canonical interpretation
of S in CS induced by the identity translation ιS : S → S.

Let C be a small cartesian closed category. There is a λ-theory L(C) corresponding
to C, called the internal language of C, and defined as follows:

1. For every object A ∈ C there is a basic type ⌜A⌝.

2. For every morphism f : A → B there is a basic constant ⌜f⌝ whose type is ⌜A⌝ →
⌜B⌝.

3. For every A ∈ C there is an axiom

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝ .
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4. For all morphisms f : A→ B, g : B → C, and h : A→ C such that h = g ◦ f , there
is an axiom

x : ⌜A⌝ | ⌜h⌝x = ⌜g⌝ (⌜f⌝x) : ⌜C⌝ .

5. There is a constant
T : 1 → ⌜1⌝ ,

and for all A,B ∈ C there are constants

PA,B : ⌜A⌝× ⌜B⌝ → ⌜A×B⌝ , EA,B : (⌜A⌝ → ⌜B⌝) → ⌜BA⌝ .

They satisfy the following axioms:

u : ⌜1⌝ | T ∗ = u : ⌜1⌝

z : ⌜A×B⌝ | PA,B⟨⌜π0⌝z, ⌜π1⌝z⟩ = z : ⌜A×B⌝

w : ⌜A⌝× ⌜B⌝ | ⟨⌜π0⌝(PA,Bw), ⌜π1⌝(PA,Bw)⟩ = w : ⌜A⌝× ⌜B⌝

f : ⌜BA⌝ | EA,B(λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨f, x⟩))) = f : ⌜BA⌝

f : ⌜A⌝ → ⌜B⌝ | λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨(EA,Bf), x⟩)) = f : ⌜A⌝ → ⌜B⌝

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure the
isomorphisms ⌜1⌝ ∼= 1, ⌜A×B⌝ ∼= ⌜A⌝× ⌜B⌝, and ⌜BA⌝ ∼= ⌜A⌝ → ⌜B⌝. Types A and B
are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that S proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories S and T is a pair of translations

S
τ

** T
σ

jj

such that, for any type A in S and any type B in T,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : CCC → λThr ,

where CCC is the category of small cartesian closed categories and functors between them
that preserve finite products and exponentials. Such functors are also called cartesian
closed functors or ccc functors. If F : C → D is a cartesian closed functor then L(F ) :
L(C) → L(D) is the translation given by:
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1. A basic type ⌜A⌝ is translated to ⌜FA⌝.

2. A basic constant ⌜f⌝ is translated to ⌜Ff⌝.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and EFA,FB, respec-
tively.

We now have a functor L : CCC → λThr. How about the other direction? We already
have the construction of syntactic category which maps a λ-theory S to a small cartesian
closed category CS. This extends to a functor

C : λThr → CCC ,

because a translation τ : S → T induces a functor Cτ : CS → CT in an obvious way: a basic
type A ∈ CS is mapped to the object τA ∈ CT, and a basic constant x : 1 | c : A is mapped
to the morphism x : 1 | τc : A. The rest of Cτ is defined inductively on the structure of
types and terms.

Theorem 4.6.2. The functors L : CCC → λThr and C : λThr → CCC constitute an
equivalence of categories “up to equivalence” (a biequivalence of 2-categories). This means
that for any C ∈ CCC there is an equivalence of categories

C ≃ CL(C) ,

and for any S ∈ λThr there is an equivalence of theories

S ≃ L(CS) .

Proof. For a small cartesian closed category C, consider the functor ηC : C → CL(C), defined
for an object A ∈ C and f : A→ B in C by

ηCA = ⌜A⌝ , ηCf = (x : ⌜A⌝ | ⌜f⌝x : ⌜B⌝) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝

and for all f : A→ B and g : B → C,

x : ⌜A⌝ | ⌜g ◦ f⌝x = ⌜g⌝(⌜f⌝x) : ⌜C⌝ .

To see that ηC is an equivalence of categories, it suffices to show that for every object
X ∈ CL(C) there exists an object θCX ∈ C such that ηC(θCX) ∼= X. The choice map θC is
defined inductively by

θC1 = 1 , θC⌜A⌝ = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)
θCY .
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We skip the verification that ηC(θCX) ∼= X. In fact, θC can be extended to a functor
θC : CL(C) → C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1CL(C) .

Given a λ-theory S, we define a translation τS : S → L(CS). For a basic type A let

τSA = ⌜A⌝ .

The translation τSc of a basic constant c of type A is

τSc = ⌜x : 1 | c : τSA⌝ .

In the other direction we define a translaton σS : L(CS) → S as follows. If ⌜A⌝ is a basic
type in L(CS) then

σS ⌜A⌝ = A ,

and if ⌜x : A | t : B⌝ is a basic constant of type ⌜A⌝ → ⌜B⌝ then

σS ⌜x : A | t : B⌝ = λx : A . t .

The basic constants T, PA,B and EA,B are translated by σS into

σS T = λx : 1 . x ,

σS PA,B = λp : A×B . p ,

σS EA,B = λf : A→ B . f .

If A is a type in S then σS(τSA) = A. For the other direction, we would like to show, for
any type X in L(CS), that τS(σSX) ∼= X. We prove this by induction on the structure of
type X:

1. If X = 1 then τS(σS1) = 1.

2. If X = ⌜A⌝ is a basic type then A is a type in S. We proceed by induction on the
structure of A:

(a) If A = 1 then τS(σS⌜1⌝) = 1. The types 1 and ⌜1⌝ are isomorphic via the
constant T : 1 → ⌜1⌝.

(b) If A is a basic type then τS(σS⌜A⌝) = ⌜A⌝.

(c) If A = B × C then τS(σS⌜B × C⌝) = ⌜B⌝ × ⌜C⌝. But we know ⌜B⌝ × ⌜C⌝ ∼=
⌜B × C⌝ via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τS(σS(Y × Z)) = τS(σSY ) × τS(σSZ). By induction hypothesis,
τS(σSY ) ∼= Y and τS(σSZ) ∼= Z, from which we easily obtain

τS(σSY )× τS(σSZ) ∼= Y × Z .

4. The case X = Y → Z is similar.
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Composing the isomorphism 4.8 with the equivalence 4.7 we can formulate the foregoing
Theorem 4.6.2 as an adjoint equivalence.

Corollary 4.6.3. There is a biequivalence between the categories λThr of λ-theories and
translations between them (and isos thereof), and the category CCC of cartesian closed
categories and CCC functors (and natural isos),

HomλThr

(
T,LC

) ∼= Modλ
(
T, C

)
,

≃ HomCCC

(
CT , C

)
.

This is mediated by an adjunction,

CCC
L ,,

λThr
C

ll

with C ⊣ L, between the syntactic category functor C and the internal language functor L.

Exercise 4.6.4. In the proof of Theorem 4.6.2 we defined, for each C ∈ CCC, a functor
ηC : C → CL(C). Verify that this determines a natural transformation η : 1CCC =⇒ C ◦ L
which is an equivalence of categories. What about the translation ϵT : T → L(CT)—is that
an isomorphism?

See the book [?] for another approach to the biequivalence of Corollary 4.6.3, which
turns it into an equivalence of categories by fixing the CCC structure and requiring it to
be preserved strictly.

4.7 Embedding and completeness theorems

We have considered the λ-calculus as a common generalization of both propositional logic,
modelled by poset CCCs such as Boolean and Heyting algebras, and equational logic,
modelled by finite product categories. Accordingly, there are then two different notions
of “provability”, as discussied in Remark 4.4.3; namely, the derivability of a closed term
⊢ a : A, and the derivability of an equation between two (not necessarily closed) terms of
the same type Γ ⊢ s = t : A. With respect to the semantics, there are then two different
corresponding notions of soundness and completeness: for “inhabitation” of types, and for
equality of terms. We consider special cases of these notions in more detail below.

Conservativity

With regard to the former notion, inhabitation, one can also consider the question of how
it compares with simple provability in propositional logic: e.g. a positive propositional
formula ϕ in the variables p1, p2, ..., pn obviously determines a type Φ in the corresponding
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λ-theory T(X1, X2, ..., Xn) over n basic type symbols. What is the relationship between
provability in positive propositional logic, PPL ⊢ ϕ, and inhabitation in the associated
λ-theory, T(X1, X2, ..., Xn) ⊢ t : Φ? Let us call this the question of conservativity of λ-
calculus over PPL. According to the basic idea of the Curry-Howard correspondence from
Section 4.1, the λ-calculus is essentially the “proof theory of PPL”. So one should expect
that starting from an inhabited type Φ, a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ
should result in a corresponding proof of ϕ in PPL just by “rubbing out the proof terms”.
Conversely, given a provable formula ⊢ ϕ, one should be able to annotate a proof of it in
PPL to obtain a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ in the λ-calculus (although
perhaps not the same term that one started with, if the proof was obtained from rubbing
out a term).

We can make this idea precise semantically as follows. Write |C| for the poset reflection
of a category C, that is, the left adjoint to the inclusion i : Pos ↪→ Cat, and let η : C → |C|
be the unit of the adjunction.

Lemma 4.7.1. If C is cartesian closed, then so is |C|, and η : C → |C| preserves the CCC
structure.

Proof. Exercise!

Exercise 4.7.2. Prove Lemma 4.7.1.

Corollary 4.7.3. The syntactic category PPC(p1, p2, ..., pn) of the positive propositional
calculus on n propositional variables is the poset reflection of the syntactic category CT(X1,X2,...,Xn)

of the λ-theory T(X1, X2, ..., Xn),

|CT(X1,X2,...,Xn)| ∼= PPC(p1, p2, ..., pn) .

Proof. We already know that CT(X1,X2,...,Xn) is the free cartesian closed category on n gener-
ating objects, and that PPC(p1, p2, ..., pn) is the free cartesian closed poset on n generating
elements. From the universal property of CT(X1,X2,...,Xn), we get a CCC map

CT(X1,X2,...,Xn) −→ PPC(p1, p2, ..., pn)

taking generators to generators, and it extends along the quotient map to |CT(X1,X2,...,Xn)|
by the universal property of the poset reflection. Thus it suffices to show that the quotient
map preserves, and indeed creates, the CCC structure on |CT(X1,X2,...,Xn)|, which follows
from the Lemma 4.7.1.

Remark 4.7.4. Corollary 4.7.3 can be extended to other systems of type theory and logic,
with further operations such as CCCs with sums 0, A+B (“bicartesian closed categories”),
and the full intuitionistic propositional calculus IPC with the logical operations ⊥ and p∨q.
We leave this as a topic for the interested student.
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Completeness

As was the case for equational theories and propositional logic, the fact that there is
a generic model (Proposition 4.5.6) allows the general completeness theorem stated in
Corollary 4.5.7 to be specialized to various classes of special models, via embedding (or
“representation”) theorems, this time for CCCs, rather than for finite product categories or
Boolean/Heyting algebras. We shall consider three such cases: “variable” models, Kripke
models, and topological models. In each case, an “embedding theorem” of the form:

Every CCC embeds into one of the special form X .

gives rise to a completeness theorem of the form:

For all λ-theories T, if 1 → [[A]]M in all T-models M in all X , then T ⊢ a : A,

and if [[a]]M = [[b]]M : 1 → [[A]] in all T-models M in all X , then T ⊢ a = b : A.

This of course follows the same pattern that we saw for the simpler “proof relevant” case
of equational (i.e. finite product) theories, and the even simpler “proof irrelevant” case
of propositional logic, but now the proofs of some of the embedding theorems for CCCs
require more sophisticated methods.

Variable models

By a variable model of the λ-calculus we mean one in a CCC of the form Ĉ = SetC
op

, i.e.
presheaves on a (small) category C. We regard such a model as “varying over C”, just as
we saw earlier that a presheaf of groups on e.g. the simplex category ∆ may be seen both
as a simplicial group—a simplicial object in the category of groups—and as a group in the
category Set∆

op

of simplicial sets. The basic embedding theorem that we use in specializing
Proposition 4.5.6 to such variable models is the following, which is one of the fundamental
facts of categorical semantics.

Lemma 4.7.5. For any small cartesian closed category C, the Yoneda embedding

y : C ↪→ SetC
op

preserves the cartesian closed structure.

This is of course the “categorified” analogue of Lemma ??, which we used for the Kripke
completeness of the positive propositional calculus PPC.

Proof. We can just evaluate yA(X) = C(X,A). It is clear that y1(X) = C(X, 1) ∼= 1
naturally in X, and that y(A×B)(X) = C(X,A × B) ∼= C(X,A) × C(X,B) ∼= (yA ×
yB)(X) for all A,B,X, naturally in all three arguments. For BA ∈ C, we then have

y(BA)(X) = C(X,BA) ∼= C(X × A,B) ∼= Ĉ(y(X × A), yB) ∼= Ĉ(yX × yA, yB),
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since y is full and faithful and, as we just showed, preserves ×. But now recall that the
exponential QP of presheaves P,Q is defined at X by the specification

QP (X) = Ĉ(yX × P,Q) .

So, continuing where we left off, Ĉ(yX × yA, yB) = yByA(X), and we’re done.

For an early version of the following theorem (and much more), see the nice paper
[Sco80] by Dana Scott.

Theorem 4.7.6. For any λ-theory T, we have the following:

(i) A type A is inhabited,

T ⊢ a : A

if, and only if, for every a small category C, in every model [[−]] in presheaves SetC
op

on C, there is a point

1 → [[A]] .

(ii) For any terms Γ | s, t : A,
T ⊢ (Γ | s = t : A)

if, and only if,

[[Γ ⊢ s : A]] = [[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

for every such presheaf model.

Proof. We simply specialize the general completeness statement of Corollary 4.5.7 to CCCs
of the form Ĉ using Lemma 4.7.5, together with the fact that the Yoneda embedding is
full (and therefore reflects inhabitation) and faithful (and therefore reflects satisfaction of
equations).

4.8 Kripke models

By a Kripke model of (a theory T in) the λ-calculus, we mean a model [[−]] in the sense of
Definition 4.4.1 in a presheaf CCC of the form SetK for a poset K, i.e. a variable model
in the sense of the previous section, where the domain of variation is just a poset, rather
than a proper category. As with Kirpke models of propositional logic, we can regard such
a model as varying through (branching) time, over a causally ordered state space, or some
other partially-ordered parameter space. By Theorem 4.5.4, such a model (K, [[−]]) is
essentially the same thing as a CCC functor M : CT → SetK , taking values in “variable
sets”. Regarding the λ-calculus as the proof theory of the propositional calculus via the
Curry-Howard correspondence (Section 4.1), it is perhaps not surprising that it should
be (inhabitation) complete with respect to such Kripke models, in light of Theorem ??.
Completeness with respect to equations between terms is another matter, though; while
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true, the proof is far from a simple generalization of other known results. It can perhaps
be seen as a verification that βη-equivalence is the “right” notion of equality for proofs.

Before considering such questions, however, let us first spell out explicitly what such a
Kripke model looks like for the simple example of a theory T of an object with a commu-
tative, binary operation,

T =
(
B, m : B× B → B, x ∗ y = y ∗ x

)
.

There is one basic type symbol B, a binary operation symbol ∗ : B × B → B, and a single
equation x, y : B |x ∗ y = y ∗ x : B. Let K be a poset with ordering relation j ≤ k for
j, k ∈ K.

A Kripke model M of T over K consists, first, of a family of sets (Mk)k∈K , equipped
with functions

mj,k :Mj →Mk (for all j ≤ k ∈ K) ,

satisfying the conditions:

mk,k = 1Mk
, mj,k ◦mi,j = mi,k (for all j ≤ k ∈ K) .

This is of course exactly a functor M : K → Set, as the interpretation M = [[B]] of the
basic type symbol B. Next, we need functions

sk :Mk ×Mk →Mk (for all k ∈ K)

satisfying

sk
(
mj,k(x),mj,k(y)

)
= mj,k

(
sj(x, y)

)
(for all j ≤ k ∈ K and x, y ∈Mj) .

This is just a natural transformation s :M ×M →M , as the interpretation s = [[∗]] of the
operation symbol ∗ : B × B → B. Finally, the interpretation (M, s) = [[B, ∗]] should satisfy
the equation x, y : B |x ∗ y = y ∗ x : B, meaning that

sk(x, y) = sk(y, x) (for all k ∈ K) ,

since two natural transformations are equal just if all of their components are equal. Thus
a Kripke model of this theory T is just a model of the underlying algebraic theory in
the functor category SetK—which of course is the same thing as a functor from K to the
category of T-models in Set.

A theory involving an operation of “higher type”, such as the section s : (D → D) → D
in (the theory of) a reflexive type (Example 4.3.7) is no more “non-standard”. Let D = [[D]]
be the interpretation of the basic type D, so that [[D → D]] = DD : K → Set is an exponential
presheaf. At each k ∈ K, we then have,

(DD)k = SetK
(
D ×K(k,−), D

)
,

which is trivial except on the upset ↑k, where it consists of natural transformations

Set ↑k
(
D ↑k,D ↑k

)
,
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where D ↑k : ↑k → Set is just D restricted to the upset ↑k ⊆ K, i.e. the composite

↑k ↪→ K
D−→ Set .

Given any such natural transformation ϑ : D ↑k −→ D ↑k, and any k ≤ j, the action of
the functor,

(DD)k → (DD)j

on ϑ is simply to restrict it further to ↑j ⊆↑k, thus taking ϑ to

ϑ ↑j : D ↑j −→ D ↑j ,

which is just the same function as ϑ, with the new domain of definition ↑j ⊆↑k.
The section s : (D → D) → D therefore takes, at each k ∈ K, such a ϑ : D ↑k −→ D ↑k

to an element sk(ϑ) ∈ Dk, respecting the restrictions ↑j ⊆↑k in the sense that

dk,jsk(ϑ) = sj(ϑ ↑j) ∈ Dj ,

where dk,j : Dk → Dj is the action of the functor D : K → Set.
In this way, the presheaf exponential DD : K → Set is entirely determined by the “base-

case” D : K → Set, and is still a “full function space” at each k ∈ K, but the functorial
action in k requires it not to be just DDk

k (which for a reflexive type would then be trivial at
all k ∈ K), but rather, to take the entire segment ↑k into account—much in the way that
k ⊩ φ ⇒ ψ was determined for Kripke models of the intuitionistic propositional calculus
IPC by considering all j ≥ k. (Indeed, one can explicitly formulate the Kripke semantics
for simple type theory in the usual Kripke-forcing style k ⊩ a : A, cf. [AGH21].)

The proof of the following theorem uses a deep result from topos theory (due to Joyal-
Tierney [?]) that is, unfortunately, beyond the scope of this book. It implies that, for every
small CCC C there is a poset K and a full and faithful CCC functor C ↪→ SetK .

Theorem 4.8.1 (Kripke completeness for λ-calculus). For any λ-theory T:

(i) A type A is inhabited just if it has a point 1 → [[A]] in every Kripke model (K, [[−]]).

(ii) Two terms are provably equal, T ⊢ (Γ | s = t : A), just if they are equal in every
Kripke model (K, [[−]]),

[[s]] = [[t]] : [[Γ]] −→ [[A]] .

For the proof, see [AR11], as well as [AGH21].

Remark 4.8.2. One can reformulate the Kripke semantics for simple type theory in terms
of discrete opfibrations of posets,

π : F −→ K ,

rather than (covariant) presheaves F : K → Set. Indeed, since the (full!) subcategory of
all such maps

dopFib/K ↪→ Pos/K
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is equivalent to SetK , this category is also cartesian closed. And with its obvious forgetful
functor

dopFib/K −→ Pos ,

this provides another useful perspective on the functor category SetK . This “fibrational”
point of view is pursued in [AR11]. It is particularly useful for the semantics of dependent
type theory, which we shall consider in next.

4.9 Dependent type theory

The Curry-Howard correspondence from Section 4.1 can be extended to natural deduction
proofs in first-order logic, providing a refinement of the “propositions as types/proofs
as terms” idea from propositional to quantificational logic. In place of the simple types
A× B,A → B representing the propositions A ∧ B and A ⇒ B, one has dependent types
Σx:AB(x) and Πx:AB(x) representing the quantified formulas ∃x:AB(x) and ∀x:AB(x). As
before, these types may have different terms s, t : Πx:AB(x), resulting from different proofs
of the corresponding propositions, so that the calculus of terms records more than mere
provability. Also as before, the resulting structure turns out to be one that is shared by
other categories not arising from logic—and now the coincidence is even more striking,
because the structure at issue is a much richer and more elaborate one. Where proofs
in the propositional calculus gave rise to a Cartesian closed category, the category of
proof terms of first-order logic will be seen to be locally Cartesian closed, a mathematical
structure also shared by sheaves on a space, Grothendieck toposes, categories of fibrations,
and other important examples.

Recall first the notion of a hyperdoctrine P : Cop → Cat from Section ??, and in
particular the distinction between poset-valued and proper ones. The latter correspond
more closely to dependent type theory, where the individual value categories P (c) may
be, e.g., cartesian closed, but they must also admit adjoints ΣA ⊣ p∗A ⊣ ΠA along all
projections pA : X × A → A in the category C of contexts. An important difference
between hyperdoctrines and dependent type theories, however, is that the category of
contexts in dependent type theory has not just finite products or finite limits, but also
additional structure resulting from an operation of context extension, which takes as input
a type in context Γ | A and returns a new context (Γ, x : A) together with a substitution
(Γ, x : A) → Γ. This is taking the “propositions-as-types” idea very seriously, by allowing
every proposition Γ | φ in first-order logic to form a type {Γ | φ}, or letting objects
A ∈ P (C) in a hyperdoctrine (C, P ) become arrows {A} → C in C.2

Dependently-typed lambda-calculus. We give a somewhat informal specification of
the syntax of the dependently-typed λ-calculus (see [?] for a more detailed exposition). To
formulate the rules, we revisit the rules of simple type theory from section 4.3 and adjust
them as follows.

2[Law70] does just this.
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Judgements: There are three kinds of judgements: for contexts, types, and terms, re-
spectively,

Γ ctx , Γ | A type , Γ | a : A .

For each of these there are also (judgemental) equalities, the rules for which are the expected
ones.

Contexts: These are formed by the rules:

(−) ctx
Γ | A type

Γ, x : A ctx

Here it is assumed that x is a fresh variable, not already occurring in Γ. Note that the
order of the types occurring in a context matters, since types to the right may depend on
ones to their left.

Types: In addition to the usual simple types, generated from basic types by formation of
products and function types, we may also have some basic types in context,

Basic dependent types Γ1 | B1, Γ2 | B2, · · ·

where the contexts Γ need not be basic. Further dependent types are formed from the
basic ones by the Σ and Π type formers, using the rules:

Γ, x : A | B type

Γ | Σx:AB type

Γ, x : A | B type

Γ | Πx:AB type

Terms: As for simple types, we assume there is a countable set of variables x, y, z, . . . .
We are also given a set of basic constants. The set of terms is generated from variables
and basic constants by the following grammar, just as for simple types:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

The rules for deriving typing judgments are as for simple types:

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An | xi : Ai

(1 ≤ i ≤ n)
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• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections now take the form:

Γ | a : A Γ | b : B(a)

Γ | ⟨a, b⟩ : Σx:AB

Γ | c : Σx:AB

Γ | fst c : A
Γ | c : Σx:AB

Γ | snd c : B(fst c)

We write e.g. B(a) rather than B[a/x] to indicate a substitution of the term a for
the variable x in the type B. We treat A×B as another way of writing Σx:AB, when
the variable x : A does not occur in the type B.

• The typing rules for application and λ-abstraction are now:

Γ | t : Πx:AB Γ | a : A

Γ | t a : B(a)

Γ, x : A | t : B
Γ | (λx : A . t) : Πx:AB

Equations: The equations between these terms are just as they were for simple types.

Equality types: Just as for first-order logic, we may also add a primitive equality type
x =A y for each type A, not to be confused with judgemental equality, which we shall
write as s ≡ t. The formation, introduction, and elimination rules for equality types are
as follows

Γ | s : A Γ | t : A
Γ | s =A t type

Γ | a : A

Γ | refla : a =A a

Γ | p : s =A t

Γ | s ≡ t

Γ | p : s =A t

Γ | p ≡ refls

This completes the description of dependent type theory.

Remark 4.9.1 (Identity types). This formulation of the rules for equality is known as the
extensional theory. There is also an intensional version, with different elimination (and
computation) rules, in which the types are sometimes called identity types and written
IdA(s, t) instead. See [?] for details.

Example 4.9.2 (The type-theoretic axiom of choice). Reading Σ as “there exists” and Π
as “for all”, a type such a Πx:AΣy:BR(x, y) can be regarded as a stating a proposition—in
this case, “for all x : A there is a y : B such that R(x, y)”. By Curry-Howard, such
a “proposition” is then provable if it has a closed term t : Πx:AΣy:BR(x, y), which then
corresponds to a proof, by unwinding the rules that constructed the term, and observing
that they correspond to the usual natural deduction rules for first-order logic.

This only partly true, however: the rules of construction for terms correspond to prov-
ability under a certain “constructive” conception of validity (see [?]). This is made clear
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by the following example, which is sometimes called the “type theoretic axiom of choice”,
because it sounds like the axiom of choice under the conventional interpretation; but this
statement is actually provable from the rules of type theory, rather than being an axiom!

Πx:AΣy:BR(x, y) → Σf :A→BΠx:AR(x, fx) . (4.9)

Exercise 4.9.3. Prove the type theoretic axiom of choice (4.9) from the rules for dependent
type theory given here.

4.10 Locally cartesian closed categories

Recall the following from Proposition ??.

Proposition 4.10.1. The following conditions on a category C with terminal object 1 are
equivalent:

1. Every slice category C/A is cartesian closed.

2. For every arrow f : B → A, the (post-) composition functor Σf : C/B → C/A has a
right adjoint f ∗, which in turn has a right adjoint Πf ,

B
f // A

C/B

Σf
((

Πf

66 C/Af ∗oo

Such a category is called locally cartesian closed.

The notation of course anticipates the interpretation of DTT.

Proof. Construct Π from exponentials and pullbacks; see the proof of Proposition ??.

Basic examples of LCCCs

We have the following basic examples, most of which we have already seen in Section ??
on hyperdoctrines,

1. Set: We have already seen the hyperdoctrine SetI of families of sets (Ai)i∈I , with
action of f : J → I on A : I → Set by precomposition f ∗A = A ◦ f : J → Set. The
equivalent hyperdoctrine

SetI ≃ Set/I

uses the slice categories Set/I with action by pullback f ∗ : Set/I → Set/J . It follows
that Set is locally cartesian closed.
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2. Presheaves: The LCC structure on presheaves Ĉ on a small category C follows from
the CCC structure on each slice, since each of the slice categories Ĉ/X is another

category of presheaves, namely
∫̂
CX, on the category of elements

∫
CX. That Ĉ is

a CCC is shown directly by computing the products of presheaves P ×Q pointwise,
and the exponential as QP = Hom(y(−)× P,Q).

3. Pos: The category of posets is cartesian closed, but not locally so. However, we
have seen that the category of discrete fibartions on a poset K is equivalent to a
category of presheaves dFib(K) ≃ SetK

op

. It follows that the (non-full) subcategory
dFib ↪→ Pos of posets and discrete fibrations as arrows would be locally cartesian
closed except for the fact that it lacks a terminal object. Thus every slice of this
category dFib(K)/P ≃ SetK

op

/P ≃ Set(
∫
KP )op is LCC.

4. An example similar to the foregoing is the non-full subcategory LocHom ↪→ Top of
topological spaces and local homeomorphisms between them, which lacks a terminal
object, but each slice of which LocHom/X ≃ Sh(X) is equivalent to the topos of
sheaves on the space X, and is therefore CCC (and so LCCC).

Exercise 4.10.2. Let P : Cop → Cat be a hyperdoctrine for which there are equivalences
PC ≃ C/C, naturally in C, with respect to the left adjoints Σf : C/C → C/D for all
f : C → D in C. Show that C is then LCC.

Exercise 4.10.3. Show that any LCCC C, regarded as a hyperdoctrine, has equality in
the sense of Remark ??.

4.11 Functorial semantics of DTT in LCCCs

As was done for simple type theory in Section 4.6, we can again develop the relationship
between the type theory and its models using the framework of functorial semantics. This is
now a common generalization of λ-theories modelled in CCCs and first-order logic modelled
in Heyting categories. The first step is to build a classifying category CT from a theory T
in dependent type theory as a syntactic category, which we then show classifies T-models
in LCCCs. We omit the essentially routine details, and merely state the main result, the
proof of which is analogous to previous cases. A detailed treatment can be found in the
seminal paper [See84].

Theorem 4.11.1. For any theory T in dependent type theory, the locally cartesian closed
syntactic category CT classifies T-models, in the sense that for any locally cartesian closed
category C there is an equivalence of categories

Mod
(
T, C

)i ≃ LCCC
(
CT , C

)i
, (4.10)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of LCCC functors.
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As a corollary, as before, we have that dependent type theory is complete with respect to
the semantics in locally cartesian closed categories, in virtue of the syntactic construction
of the classifying category CT. Specifically, any theory T has a canonical interpretation
[−] in the syntactic category CT which is logically generic in the sense that, for any terms
Γ | s : A and Γ | t : A, we have

T ⊢ (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= Γ | u = t : A .

For the record, we again have:

Proposition 4.11.2. For any dependently typed theory T,

T ⊢ (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (4.10) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by LCCC functors (as in Proposition 4.4.2).

Corollary 4.11.3. For any dependently typed theory T,

T ⊢ (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every LCCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

The embedding and completeness theorems of Section 4.7 with respect to general
presheaf and Kripke models can also be extended to dependently typed theories. See
[AR11] for details. There is also a version of Kripke-Joyal forcing for such theories (and an
associated completeness theorem), for which the interested reader can consult [AGH21].

4.12 Coherence and natural models

The LCCC semantics of DTT as developed in [See84] uses the codomain hyperdoctrine
of an LCC C to interpret the dependent types. Thus the contexts Γ and substitutions
σ : ∆ → Γ are interpreted as the objects and arrow of C, and the dependent types Γ | A
and terms Γ | t : A are interpreted as objects A → Γ in the slice category C/Γ and
their global sections t : Γ → A (over Γ). However, there is a problem with this kind
of semantics (as first pointed out by [Hof]): as a hyperdoctrine, this interpretation is an
indexed category, or pseudofunctor C/− : Cop → Cat, but the syntax of DTT produces an
actual presheaf of types in context Ty : Cop → Set, since substitution into dependent types
is strictly functorial with respect to composition of substitutions, in the sense that for a
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type in context Γ | A and substitutions σ : ∆ → Γ and τ : Θ → ∆ we have an equality of
types in context,

Θ | (A[σ])[τ ] ≡ A[σ ◦ τ ] ,

rather than the (canonical) isomorphism ∼= fitting into the two-pullbacks diagram of the
hyperdoctrine, namely:

(σ ◦ τ)∗A ∼=
//

$$

))
τ ∗σ∗A //

��

σ∗A //

��

A

��
Θ τ //

σ ◦ τ
44∆ σ // Γ

A similar problem occurs in the Beck-Chavalley conditions, where the hyperdoctrine struc-
ture has only canonical isos, rather than the strict equalities that obtain in the syntax,
such as

(Πx:AB)[σ] ≡ (Πx:A[σ]B[σ]) .

There are various different solutions to this problem in the literature, some involving
“strictifications” of the LCC slice-category hyperdoctrine (including both left- and right-
adjoint strictifications), as well as other semantics altogether, such as categories-with-
families [Dyb96], categories-with-attributes, and comprehension categories. A solution
based on the notion of a representable natural transformation, given in [Awo16], is as
follows.

Definition 4.12.1. Let C be a small category. A natural transformation f : Y → X of
presheaves on C is called representable if all of its fibers are representable objects, in the
following sense: for every C ∈ C and x ∈ X(C), there is a D ∈ C, a p : D → C, and a
y ∈ Y (D) such that the following square is a pullback,

yD

yp
��

y // Y

f
��

yC x
// X.

(4.11)

A representable natural transformation is the same thing as a category with families
in the sense of Dybjer [Dyb96]. Indeed, let us write the objects of C as Γ,∆, . . . and the
arrows as σ : ∆ → Γ, . . . , thinking of C as a “category of contexts”. Let p : U̇ → U be a
representable map of presheaves, and write its elements as:

A ∈ U(Γ) ⇔ Γ | A
a ∈ U̇(Γ) ⇔ Γ | a : A,
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where A = p ◦ a, as indicated in:

U̇

p
��

yΓ

a
??

A
// U.

Thus we regard U as the presheaf of types, with U(Γ) the set of all types in context
Γ, and U̇ as the presheaf of terms, with U̇(Γ) the set of all terms in context Γ, while the
component pΓ : U̇(Γ) → U(Γ) is the typing of the terms in context Γ.

Naturality of p : U̇ → U means that for any substitution σ : ∆ → Γ, we have an action
on types and terms:

Γ | A ⇒ ∆ | Aσ
Γ | a : A ⇒ ∆ | aσ : Aσ .

While, by functoriality, given any further τ : Θ → ∆, we have

(Aσ)τ = A(σ ◦ τ) (aσ)τ = a(σ ◦ τ),

as well as

A1 = A a1 = a

for the identity substitution 1 : Γ → Γ.
Finally, the representability of p : U̇ → U is exactly the operation of context extension:

given any Γ | A, by Yoneda we have the corresponding map A : yΓ → U , and we let
pA : Γ.A → Γ be (the map representing) the pullback of p along A, as in (4.11). We
therefore have a pullback square:

yΓ.A

ypA
��

qA // U̇

p
��

yΓ
A
// U,

(4.12)

where the map qA : Γ.A→ U̇ now determines a term

Γ.A | qA : ApA.

Henceforth we may omit the y for the Yoneda embedding, letting the Greek letters serve
to distinguish representable presheaves and their morphisms.

The fact that (4.12) is a pullback means that given any σ : ∆ → Γ and ∆ | a : Aσ,
there is a map

(σ, a) : ∆ → Γ.A,
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and this operation satisfies the equations

pA ◦ (σ, a) = σ

qA(σ, a) = a,

as indicated in the following diagram.

∆

σ

##

(σ, a)
!!

a

��
Γ.A

pA
��

qA
// U̇

p
��

Γ
A
// U

Moreover, by the uniqueness of (σ, a), for any τ : ∆′ → ∆, we also have:

(σ, a) ◦ τ = (σ ◦ τ, aτ)
(pA, qA) = 1.

Comparing the foregoing with the definition of a category with families in [Dyb96], we
have shown:

Proposition 4.12.2. Let p : U̇ → U be a natural transformation of presheaves on a small
category C with a terminal object. Then p is representable in the sense of Definition 4.12.1
just in case (C, p) is a category with families.

The notion of a category with families is a variable-free way of presenting dependent
type theory, including contexts and substitutions, types and terms in context, and context
extension. Accordingly, we may think of a representable map of presheaves on a category C
as a “type theory over C” — with C serving as the category of contexts and substitutions
(the requirement that C should have a terminal object, representing the “empty context”,
is purely conventional).

One can show that such a map of presheaves is essentially determined by a class of maps
in C that is closed under all pullbacks; these maps correspond to the types in context (see
[Awo16]).

Definition 4.12.3. A natural model of type theory on a small category C is a representable
map of presheaves on C,

p : U̇ → U.

Exercise 4.12.4. Let T be a dependent type theory and CT its category of contexts and
substitutions. Define the presheaves Ty : CTop → Set of types-in-context and Tm : CTop →
Set of terms-in-context, along with a natural transformation,

p : Tm → Ty

that takes a term to its type. Show that p : Tm → Ty is a natural model of type theory.
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