
Introduction to Categorical Logic
[DRAFT: September 15, 2024]

Steve Awodey Andrej Bauer

Contents

1 Algebraic Theories 7
1.1 Syntax and semantics . 7

1.1.1 Models of algebraic theories . 10
1.1.2 Theories as categories . 14
1.1.3 Models as functors . 16
1.1.4 Soundness and completeness . 21
1.1.5 Functorial semantics . 24

1.2 Lawvere duality . 26
1.2.1 Logical duality . 26
1.2.2 Lawvere algebraic theories . 34
1.2.3 Algebraic categories . 37
1.2.4 Algebraic functors . 42
1.2.5 Dualities for algebraic theories . 48
1.2.6 Definability∗ . 49

2 Propositional Logic 51
2.1 Propositional calculus . 51
2.2 Truth values . 54
2.3 Boolean algebra . 57
2.4 Lawvere duality for Boolean algebras . 59
2.5 Functorial semantics for propositional logic 63
2.6 Stone representation . 71
2.7 Stone duality . 74
2.8 Cartesian closed posets . 78
2.9 Heyting algebras . 83
2.10 Frames and locales . 92

3 First-Order Logic 97
3.1 Predicate logic . 97

3.1.1 Theories . 100
3.1.2 Subobjects . 103
3.1.3 Cartesian logic . 107
3.1.4 Quantifiers as adjoints . 120

[DRAFT: September 15, 2024]

4 CONTENTS

3.2 Regular and coherent logic . 127

3.2.1 Regular categories . 127

3.2.2 Images and existential quantifiers 133

3.2.3 Regular theories . 137

3.2.4 The classifying category of a regular theory 141

3.2.5 Coherent logic . 150

3.2.6 Freyd embedding theorem . 153

3.3 Heyting and Boolean categories . 153

3.3.1 Heyting logic . 156

3.3.2 First-order logic . 161

3.3.3 Examples . 165

3.3.4 Kripke-Joyal semantics . 169

3.3.5 Joyal embedding theorem . 173

3.3.6 Kripke completeness . 175

3.4 Hyperdoctrines . 175

4 Type Theory 181

4.1 The Curry-Howard correspondence . 181

4.2 Cartesian closed categories . 183

4.3 Simple type theory . 190

4.4 Interpretation of λ-calculus in a CCC . 198

4.5 Functorial semantics of STT in CCCs . 201

4.6 The internal language of a CCC . 205

4.7 Embedding and completeness theorems . 211

4.8 Kripke models . 214

4.9 Dependent type theory . 216

4.10 Locally cartesian closed categories . 219

4.11 Functorial semantics of DTT in LCCCs . 221

4.12 Coherence and natural models . 223

4.13 Universes . 226

4.14 Induction and W-types . 226

5 Dependent Type Theory 227

5.1 Dependent type theory . 227

5.2 Inductive types . 227

5.2.1 Initial algebras for endofunctors . 227

5.2.2 Inductive and coinductive types . 227

5.2.3 Bracket types . 228

5.3 Dependent type theory with FOL . 228

[DRAFT: September 15, 2024]

CONTENTS 5

A Category Theory 229
A.1 Categories . 229

A.1.1 Examples . 230
A.1.2 Categories of structures . 231
A.1.3 Basic notions . 232

A.2 Functors . 233
A.2.1 Functors between sets, monoids and posets 234
A.2.2 Forgetful functors . 234

A.3 Constructions of Categories and Functors 234
A.3.1 Product of categories . 234
A.3.2 Slice categories . 235
A.3.3 Arrow categories . 236
A.3.4 Opposite categories . 237
A.3.5 Representable functors . 237
A.3.6 Group actions . 238

A.4 Natural Transformations and Functor Categories 239
A.4.1 Directed graphs as a functor category 241
A.4.2 The Yoneda embedding . 242
A.4.3 Equivalence of categories . 244

A.5 Adjoint Functors . 246
A.5.1 Adjoint maps between preorders . 247
A.5.2 Adjoint functors . 249
A.5.3 The unit of an adjunction . 251
A.5.4 The counit of an adjunction . 253

A.6 Limits and Colimits . 254
A.6.1 Binary products . 254
A.6.2 Terminal objects . 255
A.6.3 Equalizers . 255
A.6.4 Pullbacks . 256
A.6.5 Limits . 257
A.6.6 Colimits . 261
A.6.7 Binary coproducts . 262
A.6.8 Initial objects . 262
A.6.9 Coequalizers . 263
A.6.10 Pushouts . 263
A.6.11 Limits as adjoints . 264
A.6.12 Preservation of limits . 266

B Logic 269
B.1 Concrete and abstract syntax . 269
B.2 Free and bound variables . 271
B.3 Substitution . 272
B.4 Judgments and deductive systems . 272

[DRAFT: September 15, 2024]

6 CONTENTS

B.5 Example: Equational reasoning . 274
B.6 Example: Predicate calculus . 274

C Formalities 277

Bibliography 279

[DRAFT: September 15, 2024]

Chapter 1

Algebraic Theories

Algebraic theories are descriptions of structures that are given entirely in terms of oper-
ations and equations. All such algebraic notions have in common some quite deep and
general properties, from the existence of free algebras to Lawvere’s duality theory. The
most basic of these are presented in this chapter. The development also serves as a first
example and template for the general scheme of functorial semantics, to be applied to
other logical notions in later chapters.

1.1 Syntax and semantics

We begin with a general approach to algebraic structures such as groups, rings, and lattices.
These are characterized by axiomatizations which involve only a single sort of variables
and constants, operations, and equations. It is important that the operations are defined
everywhere, which excludes two important examples: fields, because the inverse of 0 is un-
defined, and categories because composition is defined only for certain pairs of morphisms.

Let us start with the quintessential algebraic theory: the theory of groups. In first-
order logic, a group can be described as a set G with a binary operation · : G × G → G,
satisfying the two first-order axioms:

∀x, y, z ∈ G . (x · y) · z = x · (y · z)
∃ e ∈ G .∀x ∈ G .∃ y ∈ G . (e · x = x · e = x ∧ x · y = y · x = e)

Taking a closer look at the logical form of these axioms, we see that the second one, which
expresses the existence of a unit and inverse elements, is somewhat unsatisfactory because
it involves nested quantifiers. Not only does this complicate the interpretation, but it is
not really necessary, since the unit element and inverse operation in a group are uniquely
determined. Thus we can add them to the structure and reformulate as follows. The unit
is to be represented by a distinguished constant e ∈ G, and the inverse is to be a unary
operation −1 : G→ G. We then obtain an equivalent formulation in which all axioms can

[DRAFT: September 15, 2024]

8 Algebraic Theories

be expressed as (universally quantified) equations :

x · (y · z) = (x · y) · z
x · e = x e · x = x

x · x−1 = e x−1 · x = e

The universal quantifiers ∀x ∈ G,∀ y ∈ G, etc. are no longer needed in stating the axioms,
since we can interpret all variables as ranging over all elements of G (because of our
restriction to totally defined operations). Nor do we really need to explicitly mention the
particular set G in the specification. Finally, since the constant e can be regarded as a
nullary operation, i.e., a function e : 1→ G, the specification of the group concept consists
solely of operations and equations. This leads to the following general definition of an
algebraic theory.

Definition 1.1.1. A signature Σ for an algebraic theory consists of a family of sets
{Σk}k∈N. The elements of Σk are called the k-ary operations. In particular, the elements
of Σ0 are the nullary operations or constants.

The terms of a signature Σ are the expressions constructed inductively by the following
rules:

1. variables x, y, z, . . . , are terms,

2. if t1, . . . , tk are terms and f ∈ Σk is a k-ary operation then f(t1, . . . , tk) is a term.

Definition 1.1.2 (cf. Definition 1.2.10). An algebraic theory T = (ΣT, AT) is given by a
signature ΣT and a set AT of axioms, which are equations between terms (formally, pairs
of terms).

Algebraic theories are also called equational theories. We do not assume that the sets
Σk or AT are finite, but the individual terms and equations always involve only finitely
many variables.

Example 1.1.3. The theory of a commutative ring with unit is an algebraic theory. There
are two nullary operations (constants) 0 and 1, a unary operation −, and two binary
operations + and ·. The equations are:

(x+ y) + z = x+ (y + z) (x · y) · z = x · (y · z)
x+ 0 = x x · 1 = x

0 + x = x 1 · x = x

x+ (−x) = 0 (x+ y) · z = x · z + y · z
(−x) + x = 0 z · (x+ y) = z · x+ z · y

x+ y = y + x x · y = y · x

Example 1.1.4. The “empty” or trivial theory T0 with no operations and no equations
is the theory of a set.

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 9

Example 1.1.5. The theory with one constant and no equations is the theory of a pointed
set, cf. Example A.4.11.

Example 1.1.6. Let R be a ring. There is an algebraic theory of left R-modules. It has
one constant 0, a unary operation −, a binary operation +, and for each a ∈ R a unary
operation a, called scalar multiplication by a. The following equations hold:

(x+ y) + z = x+ (y + z) , x+ y = y + x ,

x+ 0 = x , 0 + x = x ,

x+ (−x) = 0 , (−x) + x = 0 .

For every a, b ∈ R we also have the equations

a(x+ y) = a x+ a y , a(b x) = (ab)x , (a+ b)x = a x+ b x .

Scalar multiplication by a is usually written as a ·x instead of a x. If we replace the ring R
by a field F we obtain the algebraic theory of a vector space over F (even though the theory
of fields is not algebraic!).

Example 1.1.7. In computer science, inductive datatypes are examples of algebraic the-
ories. For example, the datatype of binary trees with leaves labeled by integers might be
defined as follows in a programming language:

type tree = Leaf of int | Node of tree * tree

This corresponds to the algebraic theory with a constant Leaf n for each integer n and a
binary operation Node. There are no equations. Actually, when computer scientists define
a datatype like this, they have in mind a particular model of the theory, namely the free
one.

Example 1.1.8. An obvious non-example is the theory of posets, formulated with a binary
relation symbol x ≤ y and the usual axioms of reflexivity, transitivity and anti-symmetry,
namely:

x ≤ x

x ≤ y , y ≤ z ⇒ x ≤ z

x ≤ y , y ≤ x⇒ x = x

On the other hand, using an operation of greatest lower bound or “meet” x ∧ y, one can
make the equational theory of “∧-semilattices”:

x ∧ x = x

x ∧ y = y ∧ x
x ∧ (y ∧ z) = (x ∧ y) ∧ z

[DRAFT: September 15, 2024]

10 Algebraic Theories

Then, defining a partial ordering by x ≤ y ⇔ x = (x ∧ y) we arrive at the notion of a
“poset with meets”, which is equational (of course, the same can be done with joins x∨ y
as well). We will show later (in section ??) that there is no reformulation of the general
theory of posets into an equivalent equational one by considering the category of models of
the theory, i.e. the category of posets, and showing that it lacks a general property enjoyed
by all categories of algebras.

Exercise 1.1.9. Let G be a group. Formulate the notion of a (left) G-set (i.e. a functor
G→ Set) as an algebraic theory.

1.1.1 Models of algebraic theories

Let us now consider models of an algebraic theory, i.e. algebras. Classically, a group can be
given by a set G, an element e ∈ G, a function m : G×G→ G and a function i : G→ G,
satisfying the group axioms:

m (x,m (y, z)) = m (m (x, y) , z)

m (x, i x) = m (i x, x) = e

m (x, e) = m (e, x) = x

for any x, y, z ∈ G. Observe, however, that this notion can easily be generalized so that
we can speak of models of group theory in categories other than Set. This is accomplished
simply by translating the equations between arbitrary elements into equations between
the operations themselves: thus a group is given, first, by an object G ∈ Set and three
morphisms

e : 1→ G , m : G×G→ G , i : G→ G .

The associativity axiom is then expressed by the commutativity of the following diagram:

G×G×G m× π2 //

π0 ×m

��

G×G

m

��
G×G m

// G

(1.1)

Note that we have omitted the canonical associativity functionG× (G×G) ∼= (G×G)×G,
which should be inserted into the top left corner of the diagram. The equations for the

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 11

unit and the inverse are similarly expressed by commutativity of the following diagrams:

G× 1
1G × e //

π0

##

G×G

m

��

1×Ge× 1Goo

π1

{{
G

G
⟨1G, i⟩ //

!G

��

G×G

m

��

G
⟨i, 1G⟩oo

!G

��
1 e

// G 1e
oo

(1.2)

This formulation makes sense in any category C with finite products.

Definition 1.1.10. Let C be a category with finite products. A group in C consists of an
object G equipped with arrows:

G×G m // G Gioo

1

e

OO

such that the above diagrams (1.1) and (1.2) expressing the group equations commute.

There is also an obvious corresponding generalization of a group homomorphism in Set
to homomorphisms of groups in C. Namely, an arrow in C between (the underlying objects
of) groups, say h :M → N , is a homomorphism if it commutes with the interpretations of
the basic operations m, i, and e,

h ◦mM = mN ◦ h2 h ◦ iM = iN ◦ h h ◦ eM = eN

as indicated in:

M2 h2 //

mM

��

N2

mN

��
M

h
// N

M h //

iM
��

N

iN
��

M
h
// N

1 = //

eM
��

1

eN
��

M
h
// N

Together with the evident composition and identity arrows inherited from C, this gives a
category of groups in C, which we denote:

Group(C)

In general, we define an interpretation I of a theory T in a category C with finite
products to consist of an object I ∈ C and, for each basic operation f of arity k, a
morphism f I : Ik → I. (More formally, I is the tuple consisting of an underlying object
|I| and the interpretations f I , but we shall write simply I for |I|.) In particular, basic
constants are interpreted as morphisms 1→ I. The interpretation is then extended to all

[DRAFT: September 15, 2024]

12 Algebraic Theories

terms as follows: a general term t will be interpreted together with a context of variables
x1, . . . , xn (a list without repetitions), where the variables appearing in t are among those
appearing in the context. We write

x1, . . . , xn | t (1.3)

for a term t in context x1, . . . xn. The interpretation of such a term in context (1.3) is a
morphism tI : In → I, determined by the following specification:

1. The interpretation of a variable xi among the x1, . . . xn is the i-th projection πi :
In → I.

2. A term of the form f (t1, . . . , tk) is interpreted as the composite:

In

(
t1
I , . . . , tk

I
)
// Ik

f I // I

where ti
I : In → I is the interpretation of the subterm ti, for i = 1, . . . , k, and f I is

the interpretation of the basic operation f .

It is clear that the interpretation of a term really depends on the context, and when
necessary we shall write tI = [x1, . . . , xn | t]I . For example, the term f x1 is interpreted as
a morphism f I : I → I in context x1, and as the morphism f I ◦ π1 : I2 → I in the context
x1, x2.

Suppose u and v are terms in context x1, . . . , xn. Then we say that the equation in
context x1, . . . , xn | u = v is satisfied by the interpretation I if uI and vI are the same
morphism in C. In particular, if u = v is an axiom of the theory, and x1, . . . , xn are all the
variables appearing in either u or v, we say that I satisfies the axiom u = v, written

I |= u = v,

if [x1, . . . , xn | u]I and [x1, . . . , xn | v]I are the same morphism,

In
[x1, . . . , xn | u]I //

[x1, . . . , xn | v]I
// I . (1.4)

We can then define, as expected:

Definition 1.1.11 (cf. Definition 1.2.10). A model M of an algebraic theory T in a cate-
gory C with finite products (also called a T-algebra) is an interpretation of the signature ΣT,

f I : Ik −→ I in C,

for all f ∈ ΣT, that satisfies the axioms AT,

I |= u = v,

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 13

for all (u = v) ∈ AT.
A homomorphism of models h : M → N is an arrow in C that commutes with the

interpretations of the basic operations,

h ◦ fM = fN ◦ hk

for all f ∈ ΣT, as indicated in:

Mk hk //

fM
��

Nk

fN
��

M
h
// N

The category of T-models in C is written,

Mod(T, C).

A model of the trivial theory T0 in C is therefore just an object A in C, and a homo-
morphism is just a map, so

Mod(T0, C) = C.
A model of the theory TGroup of groups in C is a group in C, in the above sense, and similarly
for homomorphisms, so:

Mod(TGroup, C) = Group(C)
as defined above. In particular, a model in Set is just a group in the usual sense, so we
have:

Mod(TGroup, Set) = Group(Set) = Group.

An example of a new kind is provided by the following.

Example 1.1.12. A model of the theory of groups in a functor category SetC is the same
thing as a functor from C into the category groups,

Group(SetC) = Group(Set)C ∼= GroupC.

Indeed, for each object C ∈ C there is an evaluation functor,

evalC : SetC → Set

with evalC(F) = F (C), and evaluation preserves products since these are computed point-
wise in the functor category. Moreover, every arrow h : C → D in C gives rise to an
obvious natural transformation h : evalC → evalD. Thus for any group G in SetC, we have
groups evalC(G) = G(C) for each C ∈ C and group homomorphisms hG : G(C) → G(D)
for each h : C → D, comprising a functor G : C → Group. Conversely, it is clear that a
functor H : C→ Group determines a group H in SetC with underlying object U ◦H, where
U : Group → Set is the forgetful functor, so that for each C ∈ C we have a group HC
with underlying set UHC = |HC|. These constructions are clearly mutually inverse (up
to canonical isomorphisms determined by the choice of products). Thus, briefly, a group
in the category of variable sets may be regarded as a variable group.

[DRAFT: September 15, 2024]

14 Algebraic Theories

Exercise 1.1.13. Verify the details of the isomorphism of categories

Mod(T, SetC) ∼= Mod(T, Set)C,

as example 1.1.12, for an arbitrary algebraic theory T.

Exercise 1.1.14. Determine what a group is in the following categories: the category of
graphs Graph, the category of topological spaces Top, and the category of groups Group.
(Hint: Only the last case is tricky. Before thinking too hard about it, prove the following
lemma [Bor94, Lemma 3.11.6], known as the Eckmann-Hilton argument. Let G be a set
provided with two binary operations · and ⋆ and a common unit e, so that x · e = e · x =
x⋆e = e⋆x = x. Suppose the two operations commute, i.e., (x⋆y) ·(z ⋆w) = (x ·z)⋆(y ·w).
Then they coincide, and are commutative and associative.)

1.1.2 Theories as categories

The syntactically presented notion of an algebraic theory is a practical convenience, but
as a specification of a mathematical concept, say that of a group, it has some defects. We
would prefer a presentation-free notion that captures the group concept without tying it
to a specific syntactic presentation (the example below indicates why). One such notion
can be given by a category with a certain universal property, which determines it uniquely,
up to equivalence of categories.

Let us consider group theory again. The algebraic axiomatization in terms of unit,
multiplication and inverse is not the only possible one. For example, an alternative formu-
lation uses the unit e and a binary operation ⊙, called double division, along with a single
axiom [McC93]:

(x⊙ (((x⊙ y)⊙ z)⊙ (y ⊙ e)))⊙ (e⊙ e) = z .

The usual group operations are related to double division as follows:

x⊙ y = x−1 · y−1 , x−1 = x⊙ e , x · y = (x⊙ e)⊙ (y ⊙ e) .

There may be practical reasons for prefering one formulation of group theory over another,
but this should not determine what the general concept of a group is. For example, we
would like to avoid particular choices of basic constants, operations, and axioms. This is
akin to the situation where an algebra is presented by generators and relations: the algebra
itself is regarded as independent of any particular such presentation. Similarly, one usually
prefers a basis-free theory of vector spaces: it is better to formulate the general idea of a
vector space without refering explicitly to a basis, even though every vector space has one.

As a first step, one could simply take all operations built from unit, multiplication,
and inverse as basic, and all valid equations of group theory as axioms. But we can go
a step further and collect all the operations into a category, thus forgetting about which
ones were “basic”, and which equalities were “axioms”. We first describe this construction
of a “syntactic category” Syn(T) for an algebraic theory T, and then determine a universal
characterization of it.

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 15

As objects of Syn(T) we take the contexts, i.e. sequences of distinct variables,

[x1, . . . , xn] . (n ≥ 0)

Actually, it will be more convenient to take equivalence classes under renaming of variables,
so that [x1, x3] = [x2, x1]. That is to say, the objects are just natural numbers; but it will
be useful to continue to write them as contexts.

A morphism from [x1, . . . , xm] to [x1, . . . , xn] is then an n-tuple (t1, . . . , tn), where
each tk is a term in the context x1, . . . , xm, possibly after renaming the variables. Two such
morphisms (t1, . . . , tn) and (s1, . . . , sn) are equal if, and only if, the axioms of the theory
formally imply that tk = sk for every k = 1, . . . , n,

T ⊢ tk = sk .

Here we are using the usual notion of equational deduction T ⊢ (see Section B.5). Strictly
speaking, morphisms are thus equivalence classes of tuples of terms in context,

[x1, . . . , xm | t1, . . . , tn] : [x1, . . . , xm] −→ [x1, . . . , xn],

where two terms are equivalent when the theory proves them to be equal (after renaming
the variables). Since it is rather cumbersome to work with such equivalence classes, we
shall work with the terms directly, but keeping in mind that equality between them is this
equivalence. Note also that the context of the morphism agrees with its domain, so we can
omit it from the notation when that domain is clear. The composition of two morphisms

(t1, . . . , tm) : [x1, . . . , xk] −→ [x1, . . . , xm]

(s1, . . . , sn) : [x1, . . . , xm] −→ [x1, . . . , xn]

is the morphism (r1, . . . , rn) whose i-th component is obtained by simultaneously substi-
tuting in si the terms t1, . . . , tm for the variables x1, . . . , xm:

ri = si[t1/x1, . . . , tm/xm] (1 ≤ i ≤ n)

The identity morphism on the object [x1, . . . , xn] is the equivalence class of (x1, . . . , xn).
Using the usual rules of deduction for equational logic (Section B.5), it is easy to verify

that these specifications are well-defined on equivalence classes, and therefore make Syn(T)
a category.

Definition 1.1.15. The category Syn(T) just defined is called the syntactic category of
the algebraic theory T.

The syntactic category Syn(T) (which may be thought of as the “Lindenbaum-Tarski
category” of T, see ??) contains the same “algebraic” information as the theory T from
which it was built, but in a syntax-invariant way. Two different syntactic presentations
of T — like the ones for groups mentioned above — will give rise to essentially the same
category Syn(T) (i.e. up to isomorphism). In this sense, the category Syn(T) is the abstract,
algebraic object presented by the “generators and relations” (the operations and equations)
of T. But there is another, more important, sense in which Syn(T) represents T, as we
next show.

Exercise 1.1.16. Show that the syntactic category Syn(T) has all finite products.

[DRAFT: September 15, 2024]

16 Algebraic Theories

1.1.3 Models as functors

Having represented an algebraic theory T by the syntactic category Syn(T) constructed
from it, we next show that Syn(T) has the universal property that models of T correspond
uniquely to certain functors from Syn(T). More precisely, given any category with finite
products C (which we shall call an FP-category), there is a natural (in C) equivalence,

M∈ Mod(T, C)
M : Syn(T)→ C

(1.5)

between models M of T in C and finite product preserving functors (“FP-functors”)
M : Syn(T) → C. The equivalence is mediated by a “universal model” U in Syn(T),
corresponding to the identity functor 1Syn(T) : Syn(T)→ Syn(T) under the above displayed
equivalence. By naturality, every modelM then arises as the functorial imageM(U) ∼=M
of U under an essentially unique FP-functor M : Syn(T)→ C.

To give the details of the correspondence (1.5), let T be an arbitrary algebraic theory
and Syn(T) the syntactic category constructed from T as in Definition 1.1.15. It is easy to
show that the product in Syn(T) of two objects [x1, . . . , xn] and [x1, . . . , xm] is the object
[x1, . . . , xn+m], and that Syn(T) has all finite products, including 1 = [−], the empty context
(see Exercise 1.1.16). Moreover, there is a distinguished T-model U in Syn(T) essentially
consisting of the signature ΣT itself, which we call the syntactic model : the underlying
object U = |U| is the context [x1] of length one, and each operation symbol f , of say arity
k, is interpreted as “itself”, namely:

Uk fU
//

=

��

U

=

��
[x1, . . . , xk]

[f(x1, . . . , xk)]
// [x1]

(1.6)

The axioms are then satisfied, because the equivalence relation on terms is just T-provable
equality (see Section B.5). Explicitly, for all terms s, t we have:

U |= s = t ⇐⇒ T ⊢ s = t. (1.7)

We record this fact as the following.

Proposition 1.1.17. The syntactic model U in Syn(T) is “logically generic” in the sense
that it satisfies all and only the T-provable equations, as in (1.7).

Proof. For the proof, one shows that every term t is interpreted in U by “itself”, i.e. by
its own equivalence class under T-provable equality,

(x1, . . . , xm | t)U = [x1, . . . , xm | t]

This is a simple induction on the construction of t, where the base case is given by (1.6).

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 17

Even more important than being logically generic, though, is the following universal
property of the syntactic model U in Syn(T).

Any model M in any finite product category C is the image of U under an
essentially unique, finite product preserving functorM♯ : Syn(T)→ C,

M♯(U) ∼=M .

(See Definition 1.1.20 below for a more precise formulation.) In this sense, the syntactic
category Syn(T) may be thought of as the “free finite product category with a model of
T”. To show this formally, first observe that any FP-functor F : Syn(T) → C takes the
syntactic model U in Syn(T) to a model FU in C, with underlying interpretations

fFU = FfU : FUk → FU for each f ∈ Σk.

Indeed, that is true for any FP-category S in place of Syn(T) and any model in S. Similarly,
any natural transformation ϑ : F → G between FP-functors determines a homomorphism
of models h = ϑU : FU → GU . In more detail, suppose f : U×U → U is a basic operation,
then there is a commutative diagram,

FU × FU h× h //

∼=

��
fFU

��

GU ×GU

∼=

��
fGU

��

F (U × U)
ϑU×U //

Ff

��

G(U × U)

Gf

��
FU

h = ϑU
// GU

where the upper square commutes by preservation of products, and the lower one by
naturality. Thus the operation “evaluation at U” always determines a functor,

evalU : HomFP(Syn(T), C) −→ Mod(T, C) (1.8)

from the category of finite product preserving functors Syn(T)→ C, with natural transfor-
mations as arrows, into the category of T-models in C. Indeed, this much is also true for
any model in any FP-category S; what is special about U is the following.

Proposition 1.1.18. The functor (1.8) is an equivalence of categories, natural in C.

[DRAFT: September 15, 2024]

18 Algebraic Theories

Proof. LetM be any model in an FP-category C. Then the underlying interpretation of
M is an assignment f 7→ fM for f ∈ Σ, which determines a functor M♯ : Syn(T) → C,
defined on objects by

M♯[x1, . . . , xk] = |M|k

and on morphisms by
M♯[t1, . . . , tn] =

(
t1

M, . . . , tn
M)

.

In more detail,M♯ is defined on a morphism

[x1, . . . , xk | t] : [x1, . . . , xk]→ [x1, . . . , xn]

in Syn(T) by the following rules:

1. The morphism
[x1, . . . , xk | xi] : [x1, . . . , xk]→ [x1]

is mapped to the i-th projection

πi :M
k →M.

2. The morphism
[x1, . . . , xk | f(t1, . . . , tm)] : [x1, . . . , xk]→ [x1]

is mapped to the composite

Mk

(
M♯t1, . . . ,M♯tm

)
//Mm fM

//M

where theM♯ti :M
k →M are the values ofM♯ on the morphisms [ti] : [x1, . . . , xk]→

[xi], for i = 1, . . . ,m, and fM is the interpretation of the basic operation f .

3. The morphism
[t1, . . . , tn] : [x1, . . . , xk]→ [x1, . . . , xn]

is mapped to the morphism
(
M♯t1, . . . ,M♯tn

)
where theM♯ti are the values ofM♯

on the morphisms [ti] : [x1, . . . , xk]→ [xi], and(
M♯t1, . . . ,M♯tn

)
:Mk −→Mn

is the evident n-tuple in the FP-category C.

ThatM♯ : Syn(T) → C really is a functor follows from the assumption that the inter-
pretation M is a model, meaning that all the equations of the theory are satisfied by it, so
that these specifications are well-defined on equivalence classes. Here we use the soundness
of equational deduction with respect to models in FP categories.

Note that the functor M♯ is defined in such a way that it obviously preserves finite
products, and that there is an isomorphism of models,

M♯(U) ∼=M.

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 19

Thus we have shown that the functor “evaluation at U”,

evalU : HomFP(Syn(T), C) −→ Mod(T, C) (1.9)

is essentially surjective on objects, since evalU(M♯) =M♯(U) ∼=M.

We leave the verification that it is full and faithful as an easy exercise.

Exercise 1.1.19. Verify this. (Hint: A homomorphism is entirely determined by what
it does to the underlying object, and a natural transformation between FP functors is
similarly determined by its component at [x1].)

Finally, naturality in C means the following. Suppose M is a model of T in any FP-
category C. Any FP-functor F : C → D to another FP-category D then takes M to a
model F (M) in D. Just as for the special case of U , the interpretation is given by setting
fF (M) = F (fM) for the basic operations f (and composing with the canonical isos coming
from preservation of products, F (M) × F (M) ∼= F (M ×M), etc.). Since equations are
described by commuting diagrams, F takes a model to a model, and the same is true for
homomorphisms. Thus F : C → D induces a functor on T-models,

Mod(T, F) : Mod(T, C) −→ Mod(T,D).

By naturality of (1.8), we mean that the following square commutes up to natural
isomorphism:

HomFP(Syn(T), C)
evalU //

HomFP(Syn(T), F)

��

Mod(T, C)

Mod(T, F)

��
HomFP(Syn(T),D)

evalU
//Mod(T, C)

(1.10)

But this is clear, since for any FP-functor M : Syn(T)→ C we have:

evalU ◦ HomFP(Syn(T), F)(M) = (HomFP(Syn(T), F)(M))(U)
= (F ◦M)(U)
= F (M(U))
= F (evalU(M))
∼= Mod(T, F)(evalU(M))

= Mod(T, F) ◦ evalU(M).

[DRAFT: September 15, 2024]

20 Algebraic Theories

The equivalence of categories

HomFP(Syn(T), C) ≃ Mod(T, C) (1.11)

actually determines Syn(T) and the universal model U uniquely, up to equivalence of cat-
egories and isomorphism of models. Indeed, to recover U , just put Syn(T) for C and the
identity functor 1Syn(T) on the left, to get U in Mod(T, Syn(T)) on the right! To see that
Syn(T) itself is also determined, observe that (1.11) says that the functor Mod(T, C) is
representable, with representing object Syn(T), in an appropriate (i.e. bicategorical) sense.
As usual, this fact can also be formulated in elementary terms as a universal mapping
property of Syn(T), as follows:

Definition 1.1.20. The classifying category of an algebraic theory T is an FP-category CT
with a distinguished model U , called the universal model, such that:

(i) for any modelM in any FP-category C, there is an FP-functor

M♯ : CT → C

and an isomorphism of modelsM∼=M♯(U).

(ii) for any FP-functors F,G : CT → C and model homomorphism h : F (U) → G(U),
there is a unique natural transformation ϑ : F → G with

ϑU = h.

Observe that (i) says that the evaluation functor (1.8) is essentially surjective, and
(ii) that it is full and faithful. The category CT is then determined, up to equivalence,
by this universal mapping property. Specifically, if (C,U) and (D,V) are both classifying
categories for the same theory, then there are classifying functors,

C
V♯

,, D
U ♯

ll

the composites of which are necessarily isomorphic to the respective identity functors, since
e.g. U ♯(V♯(U)) ∼= U ♯(V) ∼= U .

We have now shown not only that every algebraic theory has a classifying category CT,
but also that the syntactic category Syn(T) is such a classifying category, and that it is
essentially determined by that property. We record this as the following.

Theorem 1.1.21. Every algebraic theory T has a classifying category CT, which can be
constructed as the syntactic category Syn(T) of T, in the sense of Definition 1.1.15.

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 21

Example 1.1.22. Let us see explicitly what the foregoing definitions give us in the case of
the theory of groups TGroup. Let us write G = syn(TGroup) for the syntactic category, which
has contexts [x1, . . . , xn] as objects, and terms built from variables and the group operations
(modulo renaming of variables and provability from the group laws) as arrows. A finite
product preserving functorG : G→ Set is determined uniquely, up to natural isomorphism,
by its action on the context [x1] and the terms representing the basic operations. If we set

|G| := G[x1] , uG := G(· | e) ,
iG := G(x1 | x1−1) , mG = G(x1, x2 | x1 · x2) ,

then G = (|G|, uG, iG,mG) is just a group, with unit uG, inverse iG, and multiplication mG.
That the interpretation G satisfies the group equaitons follows from the fact that G does
(it is generic by Proposition 1.1.17), the preservation of finite products by G, and its
functoriality, which implies preservation of the corresponding commutative diagrams.

Conversely, any group G = (G, u, i,m) determines a finite product preserving func-
tor G♯ : G → Set, by setting G♯[x1] = G, etc. Thus Mod(G, Set) will indeed be equivalent
to Group once we show that both categories have the same notion of morphisms. This is
shown just as in the general case above.

Example 1.1.23. Recall from 1.1.12 that a group G in the functor category SetC is es-
sentially the same thing as a functor G : C → Group. From the point of view of alge-
bras as functors, this amounts to the observation that product-preserving functors G →
Hom(C, Set) correspond (by exponential transposition) to functors C → HomFP(G, Set),
where the latter Hom-set consists just of product-preserving functors (since products in
functor categories are computed pointwise). The correspondence extends to natural trans-
formations, giving the previously observed (Example 1.1.12) equivalance of categories,

Group(SetC) ≃ Group(Set)C = GroupC.

1.1.4 Soundness and completeness

Consider an algebraic theory T and an equation s = t between terms of the theory. If
the equation can be proved from the axioms of the theory, T ⊢ s = t, then every model
M of the theory in any FP-category satisfies the equation, M |= s = t. This is called
the soundness of the equational calculus with respect to categorical models, and it can be
shown by a straightforward induction on the equational proof that establishes T ⊢ s = t.
The converse statement reads:

M |= s = t, for allM ⇒ T ⊢ s = t .

This is called completeness, and (together with soundness) it says that the equational cal-
culus suffices for proving all (and only) the equations that hold generally in the semantics.
For functorial semantics, this condition holds in an especially strong way: by Proposition

[DRAFT: September 15, 2024]

22 Algebraic Theories

1.1.17, we already know that the syntactic model U in Syn(T) is logically generic, in the
sense that satisfaction by U is equivalent to provability in T,

U |= s = t ⇐⇒ T ⊢ s = t.

But since Syn(T) is a classifying category for T and U is universal in the sense of Definition
1.1.20 it follows that we also have completeness:

Theorem 1.1.24 (Soundness and completeness of equational logic). For any terms s, t
we have T ⊢ s = t if and only if every modelM in every FP-category C satisfies s = t.

Proof. We have a classifying category CT ≃ Syn(T) with universal model U . If T ⊢ s = t,
then by Proposition 1.1.17 we have U |= s = t, meaning that sU = tU . But then for any
modelM in an FP-category C, we obtainM |= s = t by applying the classifying functor
M♯ : CT → C, which preserves the interpretations of s and t,

M♯(sU) = sM
♯(U) = sM

and so from sU = tU we get sM = tM.
Conversely, if M |= s = t for every model M, then in particular U |= s = t, and so

T ⊢ s = t, since U is generic.

Classically, it is seldom the case that there exists a generic model; instead, one usu-
ally considers completeness with respect to a class of special models, say, those in Set.
Completeness with respect to a restricted class of models is of course a stronger statement
than completeness with respect to all models in all categories; indeed, one need only test
an equation in the restricted class to know that it can be proved, and therefore holds in
all models. Toward the classical result, we can first consider completeness with respect to
just “variable models” in Set, i.e. in arbitrary functor categories SetC. That result follows
immediately from the next lemma.

Lemma 1.1.25. Let T be an algebraic theory. The Yoneda embedding

y : CT → ĈT = SetC
op
T

is a generic model for T.

Proof. The Yoneda embedding y : CT → ĈT preserves all limits, and in particular finite
products, hence it determines a model Y = y(U) in the category of presheaves ĈT. Like
all models, Y satisfies all the equations that hold in U , simply because y is an FP functor.
But because y is also faithful, any equation that holds in Y must already hold in U , and is
therefore provable, since U is generic.

Example 1.1.26. We consider group theory one more time. We again write simply G for
the syntactic (classifying) category of the theory TGroup of groups. As a presheaf on G, the

generic group Y ∈ Ĝ satisfies every equation that is satisfied by all groups, and no others.

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 23

Let us describe its underlying object Y = |Y| explicitly as a “variable set”. By definition,
the presheaf Y is represented by the underlying object U = |U| of the universal group in
G, which in syntactic terms is the context with one variable,

Y = y[x1] = G(−, [x1]) .

The values of this functor thus comprise a family of sets parametrized by the objects
[x1, . . . , xn] of G; namely, for every n ∈ N, we have the set

Yn = G([x1, . . . , xn], [x1])

consisting of all (equivalence classes of) terms [x1, . . . , xn | t] in n variables (modulo the
equations of group theory); but this is just the set of elements of the free group F (n) on n
generators! Thus we have

Yn = G([x1, . . . , xn], [x1]) ∼= |F (n)| ∼= Set(1, |F (n)|) ∼= Group(F (1), F (n)).

Moreover, the action of the functor Y on a map

s : [x1, . . . , xm] −→ [x1, . . . , xn] in G

can be described by substitution of the terms s = (s1, . . . , sn) into the elements t ∈ Yn,

Y (s)(t) = G(s, [x1])(t) = t[s1/x1, . . . , sn/xn] .

In terms of the free groups F (n), the terms s1, . . . , sn in the context x1, . . . , xm are elements
of the free group F (m), and so they determine a unique homomorphism

s : F (n) ∼= F (1) + ...+ F (1) −→ F (m)

such that s(xi) = si for i = 1, ..., n. Composition with s : F (n) → F (m) then encodes
the corresponding substitution, in the sense that the following diagram commutes (as the
reader should verify!).

[x1, . . . , xn] G([x1, . . . , xn], [x1])
∼= //

G(s, [x1])

��

Group(F (1), F (n))

Group(F (1), s)

��

F (n)

s

��
[x1, . . . , xm]

s

OO

G([x1, . . . , xm], [x1]) ∼=
// Group(F (1), F (m)) F (m)

(1.12)
Finally, the unit, inverse, and multiplication operations of the internal group Y are deter-
mined at each stage Yn by the corresponding operations on the free group F (n) (as the
reader should verify!). We will discover a deeper reason for this in Section 1.2.1.

[DRAFT: September 15, 2024]

24 Algebraic Theories

Finally, we can consider the completeness of equational logic with respect to all Set-
valued modelsM : CT → Set, which of course correspond to classical T-algebras. We need
the following:

Lemma 1.1.27. For any small category C, there is a jointly faithful family (Ei)i∈I of
FP-functors Ei : Set

C → Set, with I a set. That is, for any maps f, g : A→ B in SetC, if
Ei(f) = Ei(g) for all i ∈ I, then f = g.

Proof. We can take I = C0, the set of objects of C, and the evaluation functors

Ec = evalc : Set
C → Set ,

for all c ∈ C. These are clearly jointly faithful. Note that they also preserve all limits and
colimits, since these are constructed pointwise in functor categories.

Proposition 1.1.28. Suppose T is an algebraic theory. For any terms s, t,

M |= s = t for all modelsM in Set ⇐⇒ T ⊢ s = t.

Thus the equational logic of algebraic theories is sound and complete with respect to Set-
valued semantics.

Proof. Combine the foregoing lemma with the fact, from Lemma 1.1.25, that the Yondea
embedding is a generic model.

The completeness of equational reasoning was originally proved by Birkhoff [Bir35].
The proof is not particularly difficult; we have chosen to redo it in this way because the
method will generalize to other systems of logic in later chapters.

Exercise 1.1.29. We described the functor Y = yU : Gop → Set represented by the
underlying object U = [x1] of the universal group U in terms of the free groups F (n).
Verify that the action of Y on the arrows of G is indeed given by substitution of terms
by checking that diagram (1.12) commutes. Also describe the group structure on Y in Ĝ
explicitly in terms of that on the free groups.

Exercise 1.1.30. Let t = t(x1, . . . , xn) be a term of group theory in the variables x1, . . . , xn.
On the one hand we can think of t as an element of the free group F (n), and on the other

we can consider the interpretation of t with respect to the representable group Y in Ĝ,
namely as a natural transformation tY : Y n → Y . Suppose s = s(x1, . . . , xn) is another
such term in the same variables x1, . . . , xn. Show that sY = tY if, and only if, s = t in the
free group F (n).

1.1.5 Functorial semantics

Let us summarize our treatment of algebraic theories so far. We have reformulated certain
traditional logical notions in terms of categorical ones. The traditional approach may be
described as involving the following four different parts:

[DRAFT: September 15, 2024]

1.1 Syntax and semantics 25

Terms
There is an underlying type theory consisting of types and terms. For algebraic
theories there is only one type, which is not even explicitly mentioned. The terms
are built from variables and a signature consisting of some basic operation symbols.

Equations
Algebraic theories have a particularly simple logic that involves only equations
between terms and equational reasoning, which is basically substitution of equals
for equals and the laws of an equivalence relation.

Theories
An algebraic theory then consists of a signature and a set of axioms, which are
just equations between terms. Such theories are regarded as logical syntax : sets of
uninterpreted, formal expressions, generated inductively by rules of inference.

Models
An algebraic theory can be modeled by a set equipped with some operations inter-
preting the signature. Such an interpretation is a model if it satisfies the axioms
of the theory, meaning that the functions interpreting the terms that occur in the
equational axioms are actually equal.

The alternative approach of functorial semantics may be summarized as follows:

Theories are categories
From a given theory we construct a structured category that captures the same
information in a way that is independent of a particular presentation by basic
operations and axioms.

Models are functors
A model is a structure-preserving functor from the theory to a category with the
same structure. For algebraic theories, a model is a functor that preserves finite
products, which ensures that all valid equations of the theory are preserved, and
the axioms are therefore satisfied.

Homomorphisms are natural transformations
We obtain the notion of a homomorphism of models for free: since models are
functors, the homomorphisms between them are just the natural transformations.
Such homomorphisms agree with the usual notion, consisting of a function on the
underlying sets that “respects” the algebraic structure.

Universal models
By allowing for models in categories other than Set, functorial semantics admits
universal models : a model U in the classifying category CT, such that any model
anywhere is a functorial image of U by an essentially unique, structure-preserving
functor. Thus U has all and only those logical properties that are had by all models,
since such properties are preserved by the functors in question.

[DRAFT: September 15, 2024]

26 Algebraic Theories

Logical completeness
The construction of the classifying category CT from the syntax of the theory T
shows that the universal model is also generic: it has exactly those properties that
are provable in the theory T. This implies the soundness and completeness of the
logic with respect to general categorical semantics. Completeness with respect to
a restricted class of models, such as those in Set, then results from an embedding
theorem for the classifying category.

1.2 Lawvere duality

The scheme of functorial semantics outlined in the previous section applies to many other
systems of logic than algebraic theories, some of which will be considered in later chapters.
A further aspect of this approach is especially transparent in the case of algebraic theories;
namely, a deep and fascinating duality relating syntax and semantics. We devote the rest
of this chapter to its investigation.

1.2.1 Logical duality

There is a remarkable and far-reaching duality in logic of the form

Syntax ≃ Semanticsop.

It was discovered by F.W. Lawvere in the 1960s and presented in some early papers,
[Law63a, Law63b, Law65, Law69], but it has still hardly been noticed in conventional
logic—perhaps because its recognition requires the tools of category theory.

We can see this duality quite clearly in the case of algebraic theories. Let CT be the
classifying category for an equational theory T, like the theory of groups, constructed
syntactically as in section 1.1.2 above. So the objects of CT are contexts of variables
[x1 . . . , xn], up to renaming, and the arrows (t1, ..., tn) : [x1 . . . , xm] → [x1 . . . , xn] are n-
tuples of terms in context [x1 . . . , xm

∣∣ ti], up to T-provable equality. We will see that
this syntactic category CT is in fact dual to a certain subcategory of models of T (in Set).
Specifically, there is a small, full subcategory mod(T) ↪→ Mod(T) and an equivalence of
categories,

CT ≃ mod(T)op,

making the syntactic category CT dual to a subcategory of the semantic category Mod(T).
Thus, in particular, there is an invariant representation of the syntax of the theory T
“hidden” inside the category of models of T.

Indeed, it is quite easy to specify mod(T) explicitly: it is the full subcategory of Mod(T)
on the finitely generated free models F (n),

mod(T)0 =
{
F (n)

∣∣ n ∈ N
}
.

We will have a more intrinsic characterization by the end of this chapter.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 27

Theorem 1.2.1. Let T be an algebraic theory, and let

mod(T) ↪→ Mod(T)

be the full subcategory of finitely generated free models of T. Then mod(T)op classifies T
models. That is to say, for any FP-category C, there is an equivalence of categories,

HomFP(mod(T)op, C) ≃ Mod(T, C), (1.13)

which is natural in C.

Before giving the (somewhat lengthy, but straightforward) proof of the theorem, let us
observe that the syntax-semantics duality follows immediately. Indeed, given (1.13), there
is then an equivalence,

CT ≃ mod(T)op (1.14)

between the (syntactically constructed) classifying category CT and the opposite of the (se-
mantic) category mod(T) of finitely generated free models, because by Proposition 1.1.18,
both categories CT and mod(T)op represent the same functor Mod(T, C).

Proof of Theorem 1.2.1. First, observe that mod(T)op has all finite products, since mod(T)
has all finite coproducts. Indeed, for the finitely generated free algebras F (n) we have

F (n) + F (m) ∼= F (n+m),

0 ∼= F (0),

in Mod(T), since the left adjoint F preserves all colimits.
For the universal T-algebra U in mod(T)op, let

U = F (1),

so that every object in mod(T)op is indeed a power of U ,

F (n) ∼= Un.

We next interpret the signature ΣT. For each basic operation symbol f ∈ ΣT, with arity
k, there is an element of the free algebra F (k) built from the operation fF (k) : F (k)k →
F (k) and the k generators x1, . . . , xk ∈ F (k), namely

fF (k)(x1, . . . , xk).

E.g. in the theory of groups, there is the element x·y in the free group on the two generators
x, y. By freeness of F (1), each element t ∈ F (k) determines a unique homomorphism
t : F (1)→ F (k) in mod(T) taking the generator x ∈ F (1) to t = t(x). Thus associated to
the element fF (k)(x1, . . . , xk) ∈ F (k) there is a homomorphism

fF (k)(x1, . . . , xk) : F (1) −→ F (k) in mod(T).

[DRAFT: September 15, 2024]

28 Algebraic Theories

We take this map, regarded as an arrow in mod(T)op, as the U -interpretation of the basic
operation symbol f ,

fU := fF (k)(x1, . . . , xk) : U
k −→ U in mod(T)op.

It then follows easily that for any term in context (x1 . . . , xk
∣∣ t), the interpretation

[x1 . . . , xk
∣∣ t]U : Uk −→ U

will be the unique homomorphism tF (k) : F (1) → F (k) corresponding to the element
tF (k) ∈ F (k) (proof by induction!).

Moreover, for every axiom (s = t) of T, we then have U |= s = t. Indeed,

[x1 . . . , xk
∣∣ s]U = [x1 . . . , xk

∣∣ t]U : Uk −→ U

if, and only if, the corresponding homomorphisms s, t : F (1)→ F (k) agree, which they do
just if the associated elements of the free algebra F (k) agree, by the freeness of F (1). And
the latter holds, in turn, simply because F (k) is a T-algebra. Indeed, consider the example
of the two generators x, y of the free abelian group F (2), for which we have x · y = y · x
simply because F (2) is abelian. Thus we indeed have a T-model U in mod(T)op, consisting
of the free algebras.

We next show that U has the required universal property, in three steps:

Step 1. Let A be any T-algebra in Set. Then there is a product-preserving functor,

A♯ : mod(T)op → Set

with A♯(U) ∼= A (as T-models), namely:

A♯(−) = HomMod(T)(−,A),

where we of course restrict the representable functor HomMod(T)(−,A) : Mod(T)op → Set
along the (full) inclusion

mod(T) ↪→ Mod(T)

of the finitely generated, free algebras. The (restricted) functor

A♯ : mod(T)op → Set

clearly preserves products: for each object Un ∈ mod(T)op, we have

A♯(Un) = HomMod(T)(F (n),A) ∼= HomSet(n, |A|) ∼= An

and, in particular, A♯(U) ∼= A.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 29

Finally, let us show that for any basic operation symbol f , we have A♯(fU) = fA, up
to isomorphism. Indeed, given any algebra A and operation fA : An → A, we have a
commutative diagram,

An
fA

//

∼=
��

A

∼=
��

Hom(F (n),A)
f ∗

// Hom(F (1),A)

(1.15)

where f ∗ is precomposition with the homomorphism

F (n) F (1)
fF (n)(x1, . . . , xn)oo

To see that (1.15) commutes, take any (a1, . . . , an) ∈ An with associated homomorphism

(a1, . . . , an) : F (n) → A and precompose with fF (n)(x1, . . . , xn) to get a map F (1) → A,
picking out the element

(a1, . . . , an) ◦ fF (n)(x1, . . . , xn)(x) = (a1, . . . , an)(f
F (n)(x1, . . . , xn))

= (a1, . . . , an) ◦ fF (n)(x1, . . . , xn)

= fA ◦ (a1, . . . , an)(x1, . . . , xn)
= fA(a1, . . . , an)

where x is the generator of F (1), and we have used the fact that (a1, . . . , an) is a homo-
morphism and therefore commutes with the respective interpretations of f .

But now note that

F (n) F (1)
fF (n)(x1, . . . , xn)oo

in mod(T) is
Un

fU
// U

in mod(T)op, and that Hom(F (n),A) = A♯(Un) and f ∗ = A♯(fU). Thus (1.15) shows that
indeed A♯(fU) = fA, up to isomorphism. Thus we indeed have A♯(U) ∼= A as algebras, as
required.

We leave it to the reader to verify that any homomorphism h : F (U) → G(U) of T-
algebras F (U), G(U) arising from FP-functors F,G : mod(T)op → Set is of the form h = ϑU
for a unique natural transformation ϑ : F → G.

Exercise 1.2.2. Show this.

[DRAFT: September 15, 2024]

30 Algebraic Theories

Step 2. Let C be any (locally small) category, and A a T-algebra in SetC. Using the
isomorphism

Mod(T, SetC) ∼= Mod(T)C,

each A(C) is a T-algebra (in Set), which by Step 1 has a classifying functor,

A(C)♯ : mod(T)op → Set.

Together, these determine a single functor A♯ : mod(T)op → SetC, defined on any Un ∈
mod(T)op by

(A♯(Un))(C) ∼= A(C)♯(Un) ∼= (AC)n.

The action on arrows Un → Um in mod(T)op is similarly determined pointwise by the
components

(A♯(Un))(C) ∼= A(C)♯(Un)→ A(C)♯(Um) = (A♯(Um))(C),

for all C ∈ C.
In this way, we have an FP-functor A♯ : mod(T)op → SetC, and an isomorphism of

models A♯(U) ∼= A in SetC. It is then clear that any natural transformation A♯ → B♯ gives
rise to a homomorphism A♯(U)→ B♯(U), and that the resulting functor

HomFP(mod(T)op, SetC)→ Mod(T, SetC)

is an equivalence.

Step 3. For the general case, let C be any (locally small) FP-category, and A a T-algebra
in C. Use the Yoneda embedding

y : C ↪→ SetC
op

to send A to an algebra A = y(A) in SetC
op

(since y preserves finite products). Now apply
Step 2 to get a classifying functor,

A♯ : mod(T)op → SetC
op

.

We claim that A♯ factors through the Yoneda embedding by an FP-functor A♯,

SetC
op

mod(T)op

A♯
::

A♯
// C.
?�

y

OO

Indeed, we know that the objects of mod(T)op all have the form Un, and for their images
we have

A♯(Un) ∼= A♯(U)n ∼= y(A)n ∼= y(An) .

[DRAFT: September 15, 2024]

1.2 Lawvere duality 31

Thus the images of the objects of mod(T)op are all representable. Since y is full and
faithful, the claim is established, and the resulting functor A♯ : mod(T)op → C preserves
finite products because A♯ does so, and y creates them. Clearly,

A♯(U) ∼= A,

since y reflects isos.
Naturality of the equivalence

HomFP(mod(T)op, C) ≃ Mod(T, C),

in C is essentially automatic, using the fact that it is induced by evaluating an FP functor
F : mod(T)op → C at the universal model U in mod(T)op.

As already mentioned, since the classifying category is uniquely determined, up to
equivalence, by its universal property, combining the foregoing theorem with the syntactic
construction of CT given in theorem 1.1.18 yields the following:

Corollary 1.2.3 (Logical duality for algebraic theories). For any algebraic theory T, there
is an equivalence of categories,

Syn(T) ≃ CT ≃ mod(T)op (1.16)

between the classifying category CT constructed syntactically as Syn(T) and the semantic
construction as the opposite of the category mod(T) of finitely generated, free models.

Thus, as claimed, the construction of the classifying category CT from the syntax of
T, on the one hand, and its semantic construction as mod(T), taken together, imply that
there is an invariant representation of the syntax of T hidden, as it were, in the opposite
of the semantics, namely the category Mod(T) of all T-models. The reader may wish to
reflect on the importance of (i) considering the category of all models, rather than the
mere collection of them, and (ii) generalizing from set-theoretic to categorical models, in
arriving at the fundamental logical duality expressed by (1.16).

In section 1.2.5 below, we shall consider how to actually recover this syntactic category
CT from the semantic category Mod(T) by identifying the subcategory mod(T) intrinsically;
indeed, it will be seen to consist of certain continuous functorsMod(T)→ Set. Before doing
this, however, let us examine the fundamental equivalence (1.16) explicitly in a few special
cases.

Example 1.2.4. Consider the trivial theory T0 of Example 1.1.4, with no basic operations
or equations. A model of T0 in Set is just a set X, equipped with no operations, and
satisfying no further conditions (and similarly in any other FP category). All T0-algebras
are free, and the finitely generated ones are just the finite sets, thus

mod(T0) = Setfin

[DRAFT: September 15, 2024]

32 Algebraic Theories

is the category of finite sets (to be more specific, let us take a skeleton, with one n-element
set [n] for each n ∈ N). Theorem 1.2.1 tells us that, for any FP category C, there is an
equivalence

HomFP(Set
op
fin, C) ≃ Mod(T0, C) ≃ C.

This simply says that Setopfin is the free FP category on one object. Equivalently, Setfin is
the free finite coproduct category on one object. And this is indeed the case, as one can
easily see directly (the objects are the finite cardinal numbers [0], [1], [2] = [1] + [1], . . .).

The logical duality of corollary 1.2.3 now tells us that the dual of the category of finite
sets is the syntactic category of T0,

CT0 ≃ Setopfin .

Let us see how the syntax of the pure theory of equality T0 is “hidden” in the opposite
of the category of finite sets. The only terms in context are the variables (x1, ..., xn | xi),
representing the product projections, and the provable equations are just those that are
true of them as terms, so xi = xj just if i = j. The maps [n] → [k] in CT0 are therefore
just tuples of variables,

(xi1 , ..., xik) : [x1, . . . , xn] −→ [x1, . . . , xk]

Our corollary tells us that this is the category of finite sets, which we can see immediately
by reading the contexts [x1, . . . , xn] as coproducts 1 + · · ·+1 and a tuple such as (x2, x5) :
[x1, . . . , x5]→ [x1, x2] as a cotuple like [i2, i5] : 11 + 12 → 11 + ...+ 15.

Example 1.2.5. For a less trivial example, consider the theory TAb of abelian groups.
Duality tells us that the syntactic category CTAb

is dual to the category of finitely generated,
free abelian groups Abfg,

CTAb
≃ Abopfgf .

This gives us a representation of the syntax of (abelian) group theory in the category of
abelian groups, which can be described concretely as follows, using fact that for Abelian
groups A,B we have an isomorphism A+B ∼= A×B.

• The basic types of variables [−] = 1, [x1] = U, [x1, x2] = U × U, . . . are represented
by the free abelian groups {0}, Z, Z+ Z = Z2, Z3,

• The group unit u : 1→ U is the zero homomorphism 0 : Z→ {0}.

• The inverse operation i : U → U is the unique homomorphism Z → Z taking 1 to
−1 (and therefore n to −n).

• The group operation m : U × U → U is the homomorphism + : Z→ Z+ Z taking 1
to ⟨1, 0⟩+ ⟨0, 1⟩ = ⟨1, 1⟩, (using Z+ Z ∼= Z× Z).

[DRAFT: September 15, 2024]

1.2 Lawvere duality 33

• The laws of abelian groups (and no further ones!) hold under this interpretation, be-
cause by (1.15) the group structure on any abelian group A is induced by precompos-
ing with these “co-operations”. For instance, the multiplication +A : |A|× |A| → |A|
works by first “classifying” a pair of elements a, b ∈ |A| by the homomorphism
(a, b) : Z+ Z→ A and then precomposing with the comultiplication + : Z→ Z+ Z
to obtain the homomorphism a+ b : Z→ A, which classifies the element a+ b ∈ |A|.

Z+ Z
(a, b)

// A

Z
a+ b

<<

+

OO hom(Z+ Z, A)

hom(+, A)

��

∼= // |A| × |A|

+A

��
hom(Z, A) ∼=

// |A|

Example 1.2.6. The category of affine schemes is, by definition, the dual of the category
of commutative rings with unit,

Schemeaff = Ringop

There is therefore a ring object in affine schemes – called the affine line – based on the
finitely generated free algebra F (1) = Z[x], the ring of polynomials in one variable x with
integer coefficients. The “co-operations” of + and · are given in rings by the homomor-
phisms Z[x]→ Z[x, y] taking the generator x to the elements x+ y and x · y.
Exercise 1.2.7. Prove directly that Setfin is the free finite coproduct category on one
object.

Exercise 1.2.8. Show that for any algebraic theory T, the forgetful functor V : Mod(T)→
Set underlies an algebra V in the functor category SetMod(T). In more detail, each n-
ary operation symbol f determines a natural transformation fV : V n → V , since the
homomorphisms inMod(T) commute with the respective operations interpreting f . Indeed,
given any algebra A we have the underlying set V (A) = A and an operation fA : An → A,
and for every homomorphism h : A → B to another algebra B, there is a commutative
square,

An

fA

��

hn // Bn

fB

��
A

h
// B.

(1.17)

So we can set (fV)A = fA to get a natural transformation fV : V n → V . Now check that
this really is an algebra V in SetMod(T).

Exercise 1.2.9. ∗ Show that the algebra described in the previous exercise is represented
by the universal one U in mod(T)op ↪→ Mod(T)op under the (covariant) Yoneda embedding,

y : Mod(T)op −→ SetMod(T).

[DRAFT: September 15, 2024]

34 Algebraic Theories

1.2.2 Lawvere algebraic theories

Nothing in the foregoing account of the functorial semantics for algebraic theories really
depended on the primarily syntactic nature of such theories, i.e. their specification in terms
of operations and equations. We can thus generalize it to “abstract” algebraic theories,
which can be regarded as a presentation-free notion of an algebraic theory.

Definition 1.2.10 (cf. Definition 1.1.2). A Lawvere algebraic theory A is a small category
with finite products, the objects of which form a sequence A0, A1, A2, . . . with A0 = 1
terminal and An+1 = An × A1 for all n ∈ N. Thus every object is a product of finitely
many copies of the generating object A := A1.

Amodel of a Lawvere algebraic theory A in any category C with finite products is simply
an FP functorM : A→ C, and a homomorphism of models is just a natural transformation
ϑ :M →M ′ between such functors.

As was the case for the syntactic categories Syn(T), we could just as well have taken
the natural numbers 0, 1, 2, . . . themselves as the objects of a Lawvere algebraic theory A,
but the notation An is more suggestive. A Lawvere algebraic theory A in the sense of the
above definition determines an algebraic theory in the sense of Definition 1.1.2 as follows.
As basic operations with arity k we take all of the morphisms Ak → A:

Σ(A)k = HomA(A
k, A) (1.18)

There is a canonical interpretation in A of terms built from variables and morphisms
Ak → A, namely each morphism is interpreted by itself, and variables are interpreted as
product projects, as usual. An equation u = v is taken as an axiom of the theory A just
if the canonical interpretations of u and v coincide. Of course, the conventional logical
notions of a model 1.1.11 and a homomorphism of models then also correspond to the new,
functorial ones in the obvious way.

This more abstract view of algebraic theories immediately suggests some interesting
new examples.

Example 1.2.11. The algebraic theory of smooth maps C∞ is the category whose objects
are n-dimensional Euclidean spaces 1, R, R2, . . . , and whose morphisms are C∞-maps
between them. Recall that a C∞-map f : Rn → R is a function which has all higher
partial derivatives, and that a function f : Rn → Rm is a C∞-map exactly when all of its
composites πk ◦ f : Rn → R with the projections πk : Rm → R are C∞-maps.

A model of this theory in Set is (by definition) a finite product preserving functor
A : C∞ → Set. Up to natural isomorphism, such a model can be described as follows.
A C∞-algebra is given by a set A and for every smooth map f : Rn → R a function
Af : An → A such that if f : Rn → R and gi : Rm → R, i = 1, . . . , n, are smooth maps
then, for all a1, . . . , am ∈ A,

Af
(
(Ag1)⟨a1, . . . , am⟩, . . . , (Agn)⟨a1, . . . , am⟩

)
= A(f ◦ ⟨g1, . . . , gn⟩)⟨a1, . . . , am⟩ .

[DRAFT: September 15, 2024]

1.2 Lawvere duality 35

In particular, since multiplication and addition are smooth maps, A is a commutative ring
with unit. Such structures are known as C∞-rings. Therefore, the models in Set of the
theory of smooth maps are the C∞-rings (cf. [MR91]).

Example 1.2.12. Recall that a (total) recursive function f : Nm → Nn is one that can be
computed by a Turing machine. This means that there exists a Turing machine which on
input ⟨a1, . . . , am⟩ outputs the value of f⟨a1, . . . , am⟩. The algebraic theory Rec of recursive
functions is the category whose objects are finite powers of the natural numbers 1, N, N2,
. . . , and whose morphisms are recursive functions between them. The models of this theory
in a category C with finite products give a notion of computability in C.

Let us consider the category of all set-theoretic models R = Mod(Rec). First, there is
the “identity” model I ∈ R, defined by INk = Nk and If = f . Given any model S ∈ R,
its object part is determined by S1 = SN since SNk = Sk1 . For every n ∈ N there is a
morphism 1 → N in Rec defined by ⋆ 7→ n. Thus we have for each n ∈ N an element
sn = S(⋆ 7→ n) : 1 → S1. This defines a function s : N → S1 which in turn determines a
natural transformation σ : I =⇒ S whose component at Nk is s× · · · × s : Nk → Sk1 .

Example 1.2.13. In a category C with finite products every object A ∈ C determines a
full subcategory consisting of the finite powers 1, A,A2, A3, . . . and all morphisms between
them. This is the total theory TA of the object A in C.

Free algebras

In order to extend the logical duality of the foregoing section to the abstract case, we
will require the notion of a free model of an abstract algebraic theory. Of course, we
already have the conventional notion of free models determined in terms of the associated
conventional algebraic theory given by (1.18). But we can also determine free models
directly in terms of the abstract theory, in a way which then agrees with the conventional
ones.

Let A be a Lawvere algebraic theory, with objects 1, A,A2, We have the category
of models,

Mod(A) = HomFP(A, Set).

Let us first define the forgetful functor by evaluating at the generating object A ∈ A,

U := evalA : Mod(A)→ Set (1.19)

(M : A→ Set) 7→M(A). (1.20)

As before, we shall also write

|M | = U(M) =M(A). (1.21)

[DRAFT: September 15, 2024]

36 Algebraic Theories

Now for the finitary free functor F : Setfin → Mod(A), we set:

F (0) = HomA(1,−)
F (1) = HomA(A,−)

...

F (n) = HomA(A
n,−).

Note that this is a composite of the two (contravariant) functors,

Setfin → Aop → Mod(A),

given by n 7→ An andX 7→ HomA(X,−), and is therefore (covariantly) functorial. Note also
that the representables HomA(A

n,−) do indeed preserve finite products, and are therefore
in the full subcategory Mod(A) ↪→ SetA of models.

For adjointness we need to check that for any FP-functor M : A → Set there is a
natural (in both arguments) bijection,

HomMod(A)(F (n),M) ∼= HomSet(n, U(M)) . (1.22)

The right-hand side is plainly just |M |n. For the left-hand side we have:

HomMod(A)(F (n),M) = HomMod(A)(HomA(A
n,−),M)

= HomSetA(HomA(A
n,−),M) (Mod(A) is full)

∼= M(An) (by Yoneda)
∼= M(A)n (M is FP)

= |M |n (1.21).

The full definition of the free functor

F : Set→ Mod(A)

is then given by writing an arbitrary set X as a (filtered) colimit of its finite subsets
Xi ⊆ X, and setting F (X) = colimi F (Xi) in the category SetA. Since filtered colimits
commute with finite products, these colimits taken in SetA will remain in Mod(A).

Theorem 1.2.14. For any set X with free algebra F (X) as just defined, and any A-model
M , there is a natural isomorphism,

HomMod(A)(F (X),M) ∼= HomSet(X,U(M)) . (1.23)

Proof. The rest of the proof is now an easy exercise.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 37

By definition, the finitely generated free models F (n) are just the representables HomA(A
n,−);

therefore as the “semantic dual” mod(A) ↪→ Mod(A) of the theory A, in the sense of corol-
lary 1.2.3, we simply have (the full subcategory of HomFP(A, Set) on) the image of the
Yoneda embedding,

mod(A) � � //Mod(A) = HomFP(A, Set) �
� // SetA

Aop

≃

OO

=
// Aop.
?�

y

OO

So in the abstract case, the logical duality

A ≃ mod(A)op

comes down to the fact that the (contravariant) Yoneda embedding

Aop ↪→ SetA

represents A as (the dual of) a full subcategory of (product-preserving!) functors.
Summarizing, we have now shown:

Theorem 1.2.15. For any Lawvere algebraic theory A, there is an equivalence,

A ≃ mod(A)op

between A and the full subcategory of finitely generated free models.

Exercise 1.2.16. Prove theorem 1.2.14.

1.2.3 Algebraic categories

Given an arbitrary category A, we may ask: When is A the category of models for some
algebraic theory? Such categories are sometimes called varieties, at least in universal alge-
bra, and there are well-known recognition theorems such as Birkhoff’s famous HSP-theorem,
which says that a class of interpretations for some fixed signature are all those satisfying a
set of equations if the class is closed under Products, Subalgebras, and Homomorphic im-
ages (i.e. quotients by an algebra congruence). Toward the goal of “recognizing” a category
of algebras (without being given the signature!), let us define:

Definition 1.2.17. An algebraic category A is a (locally small) category equivalent to one
of the form

HomFP(A, Set) ↪→ SetA

where A is any small finite product category and HomFP(A, Set) is the full subcategory of
finite product preserving functors. If A is a Lawvere algebraic theory (i.e. the objects are
generated under finite products by a single object), then we will say that A is a Lawvere
algebraic category.

[DRAFT: September 15, 2024]

38 Algebraic Theories

If A ≃ HomFP(A, Set) is a Lawvere algebraic category, then in particular there will be
a forgetful functor, determined by evaluation at the generating object A of A,

U = evalA : A → Set. (1.24)

It follows immediately that U preserves all limits, and one can show without difficulty
that it also preserves all filtered colimits (cf. exercise 1.2.23). We require only one further
condition to “recognize” A as algebraic, namely creation of “U -absolute coequalizers”.

Definition 1.2.18. In any category D, a coequalizer c : Y → Z of maps a, b : X ⇒ Y is
absolute if, for every category D′ and functor G : D → D′, the map Gc : GY → GZ is a
coequalizer of the maps Ga,Gb : GX ⇒ GY . A functor F : C → D may be said to create
F -absolute coequalizers if for every parallel pair of maps a, b : X ⇒ Y in C and absolute
coequalizer q : FY → Q of Fa, Fb : FX ⇒ FY in D, there is a unique object Z and map
c : Y → Z in C with FZ = Q and Fc = q, which, moreover, is a coequalizer in C.

C

F

��

X
a //

b
// Y

c // Z

D FX
Fa //

Fb
// FY q

// Q

(1.25)

Thus, roughly, F creates those coequalizers in C that are absolute in D.

Theorem 1.2.19. Given a category A equipped with a functor U : A → Set, the following
conditions are equivalent.

1. A is a Lawvere algebraic category, and U ∼= evalA : A → Set. In more detail, there
is a Lawvere algebraic theory A, and an equivalence,

A ≃ HomFP(A, Set) ↪→ SetA ,

associating U : A → Set to the evaluation at the generating object of A ∈ A.

2. U : A → Set has a left adjoint F : Set → A, preserves all filtered colimits, and
creates U-absolute coequalizers.

3. A is monadic over Set (via U : A → Set),

A ≃ SetT

for a finitary monad T : Set→ Set.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 39

Proof. (1⇒2) Suppose first that A is Lawvere algebraic, so

A ≃ Mod(A) = HomFP(A, Set) ↪→ SetA

for a Lawvere algebraic theory A. By theorem 1.2.14 we know that U has a left adjoint
F : Set→ A. It also preserves filtered colimits because they commute with finite products,
and so a filtered colimit of FP functors, calculated in SetA, is again an FP functor. This
suffices, since colimits are computed pointwise in SetA and U is an evaluation functor.

For creation of U -absolute coequalizers, suppose we have maps f, g : A ⇒ B in A and
an absolute coequalizer c : UB → C for Uf, Ug : UA ⇒ UB in Set; we want to put an
algebra structure on C making c a homomorphism c : B → C, and a coequalizer of f and
g in A.

UAn

σA

��

Ufn //

Ugn
// UB

n

σB

��

cn // Cn

σC

��
UA

Uf //

Ug
// UB c

// C

(1.26)

For each function symbol σ ∈ Σ we have commutative squares as on the left in the above
diagram, because f and g are homomorphisms. It follows by a simple diagram chase that
c ◦ σB coequalizes the pair Ufn, Ugn : UAn ⇒ UBn. Since c : UB → C is absolute, it is
preserved by the functor (−)n, and therefore cn : UBn → Cn is a coequalizer of Ufn, Ugn.
There is therefore a unique map σC : Cn → C as indicated, making the right hand square
commute. Doing this for each σ ∈ Σ gives an interpretation of Σ on C. This is seen to
be an algebra structure because the maps cn are surjections. Thus c : B → C becomes a
homomorphism, which is easily seen to be a coequalizer in A.

(2⇒3) Taking the standard monad (T, η, µ) on Set with underlying functor T = U ◦F ,
we want to show that the canonical comparison map

A → SetT

to the category of T -algebras is an isomorphism. This follows by Beck’s theorem (see
[Lan71, VI.7]) from the condition that U creates absolute coequalizers. Moreover, T pre-
serves filtered colimits (i.e. is “finitary”) because each of F and U do so.

(3⇒1) Let (T, η, µ) be a finitary monad on Set and U : SetT → Set the forgetful functor
from the category of T -algebras. We want an algebraic theory A and an equivalence

SetT ≃ Mod(A)

commuting with U and evaluation at the generator of A, where recallMod(A) = HomFP(A, Set).
Let

A = (SetT)
op

fgf (1.27)

[DRAFT: September 15, 2024]

40 Algebraic Theories

be the dual of the full subcategory of finitely generated free T -algebras. The objects of A
are thus of the form T0, T1, T2, ... where Tn = T (n), equipped with the multiplication µn :
T 2(n)→ T (n) as algebra structure map. Since, as free algebras, T (n+m) ∼= T (n)+T (m)
we indeed have Tn × Tm ∼= Tn+m as objects of A, and T1 as the generating object.
By the first two steps of this proof, we know that the algebraic category Mod(A) is also
(finitary) monadic,

Mod(A) ≃ SetM ,

with monad M = UM ◦FM , where FM ⊣ UM is the free-forgetful adjunction for Mod(A) =
HomFP(A, Set), and UM ∼= evalT1 . Thus it will suffice to show that M ∼= T , as monads, in
order to conclude that

Mod(A) ≃ SetM ≃ SetT .

Moreover, since both M and T are finitary, it suffices to show that their respective restric-
tions to the dense subcategory Setfin ↪→ Set are isomorphic. By (1.22), we know that the
finite free functor FM(n) has the form

FM(n) = HomA(Tn,−) = Hom(SetT)fgf
(−, ⟨T (n), µn⟩)

thus using the fact that UM ∼= evalT1 we see that

M(n) = UM(FM(n)) = UM
(
Hom(SetT)fgf

(−, ⟨T (n), µn⟩)
)

∼= Hom(SetT)fgf
(⟨T (1), µ1⟩, ⟨T (n), µn⟩)

∼= HomSet(1, T (n)) ∼= T (n).

This theorem can be used to show, for example, that the theory of posets cannot be
given an equational reformulation (unlike ∧-semilattices, which can), by showing that the
category Pos is not Lawvere algebraic (via the underlying set functor U : Pos→ Set).

Exercise 1.2.20. Show this. (Hint: determine the left adjoint of U , and the resulting
monad U ◦ F : Set→ Set.)

Remark 1.2.21. Another “recognition theorem” that can be found in [Bor94] is the fol-
lowing:

Theorem (Borceux II.3.9). Given a category A, equipped with a functor U : A → Set, the
following conditions are equivalent.

1. A is equivalent to the category of models of some Lawvere algebraic theory T,

A ≃ Mod(T)

with U : A → Set the corresponding forgetful functor.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 41

2. A has coequalizers and kernel pairs, and U : A → Set has a left adjoint F : Set→ A,
preserves all filtered colimits and regular epimorphisms, and reflects isomorphisms.

Exercise 1.2.22. A split coequalizer for maps f, g : A ⇒ B is a map e : B → C together
with s and t as indicated below,

A
f //

g
// B

t

ZZ
e // C

s

ZZ (1.28)

satisfying the equations

ef = eg, ft = 1B, gt = se, es = 1C .

Show that a split coequalizer is an absolute coequalizer.

Exercise 1.2.23. A filtered colimit of algebras can be described directly as follows: First
consider the case of sets. Let the index category J be filtered and D : J→ Set a diagram.
The colimiting set colimj Dj can be described as the quotient of the coproduct (

∐
j Dj)/∼,

where the equivalence relation ∼ is defined by:

(di ∈ Di) ∼ (dj ∈ Dj) ⇔ tik(di) = tjk(dj) for some tik : i→ k and tjk : j → k in J.

1. Show that this is an equivalence relation using the filteredness of J.

2. Now assume that theDj all have an algebra structure and that all the transition maps
tik : Di → Dk are homomorphisms. Show that the colimit set D∞ = colimj Dj is also
an algebra of the same kind by defining each of the operations σ∞ : D∞× ...×D∞ →
D∞ on equivalence classes as

σ∞⟨[di], ..., [d′j]⟩ = [σk⟨tik(di), ..., tjk(d′j)⟩]

for suitable k. Show that this is well-defined, and that D∞, so equipped, also satisfies
the equations satisfied by the Dj.

Example 1.2.24. A field is a ring in which every non-zero element has a multiplicative
inverse. The theory of fields is (apparently) not algebraic, because the axiom

x ̸= 0 ⇒ ∃y(x · y = 1)

is not simply an equation. But in principle there could be an equivalent algebraic formula-
tion of the theory which would somehow circumvent this problem. We can show that this
is not the case by proving that the category Field of fields and field homomorphisms is not
algebraic.

First observe that a category of models Mod(A) always has a terminal object because
Set has a terminal object 1, and the constant functor ∆1 : A→ Set which maps everything
to 1 is a model. The functor ∆1 is the terminal object in Mod(A) because it is the terminal
functor in the functor category SetA. In order to see that Field is not algebraic it thus
suffices to show that there is no terminal field.

[DRAFT: September 15, 2024]

42 Algebraic Theories

Exercise 1.2.25. Show that the category Field does not have a terminal object. (Hint:
suppose that T is the terminal field and use the unique homomorphism Z2 → T to see that
1 + 1 = 0 in T , then reason similarly using the unique homomorphism Z3 → T .)

1.2.4 Algebraic functors

Now that we know by Theorem 1.2.19 what the algebraic categories are, we would like to
know what the “algebraic functors” between them are. These will be the functors induced
by “syntactic translations” between theories, in the following sense. Classically, a syntactic
translation of one algebraic theory into another may be defined as an assignment of types
to types and terms to terms, respecting the tupling operations and substitutions of terms
for variables. Such a translation can of course be described abstractly as a finite product
preserving functor,

T : A→ B

between the associated (Lawvere) algebraic theories. Every such translation then induces
a functor on the semantics, just by precomposition:

T ∗(M) =M ◦ T.

Mod(A) Mod(B)T ∗
oo

A

T ∗(M)
%%

T // B

M

��
Set

(1.29)

Such a functor may be regarded as being “definable” by the translation.

For instance, let A0 = (Setfin)
op be (the classifying category of) the trivial theory T0 of

an object (so A0 ≃ CT0), so that Mod(A0) ≃ Set. Then for any Lawvere algebraic theory
A, the generating object A ∈ A has a classifying functor

A : A0 → A

[DRAFT: September 15, 2024]

1.2 Lawvere duality 43

which induces the forgetful functor by precomposition:

Set ≃ Mod(A0) Mod(A)A∗
oo

A0

A∗M
&&

A // A

M

��
Set

More generally, by the universal property of A, a translation T : A→ B corresponds to a
“model of A in the syntax of B”:

T : A→ B

T̂ ∈ Mod(A,B)

For instance, since every ring R has an underlying group |R|Grp, the universal ring UR in
the theory of rings R also has one |UR|Grp, which is therefore classified by an essentially
unique functor from the theory of groups,

|UR|♯Grp : G −→ R,

which is essentially determined by taking the universal group UG to |UR|Grp:

|UR|♯Grp(UG) = |UR|Grp .

This translation induces a functor in the opposite direction on the corresponding categories
of models,

(|UR|♯Grp)
∗ : Ring −→ Group, (1.30)

taking a ring R : R→ Set to the group,

(|UR|♯Grp)
∗(R) = R ◦ (|UR|♯Grp) : G −→ Set

which takes the universal group UG to :

(R ◦ (|UR|♯Grp))UG = R(|UR|Grp) = |R|Grp ,

This is of course just the underlying group functor | − |Grp : Ring→ Group.

[DRAFT: September 15, 2024]

44 Algebraic Theories

More simply put, the underlying group functor | − |Grp : Ring → Group is represented
by the translation induced by the “universal underlying group of a ring” |UR|Grp,

Ring

≃
��

| − |Grp // Group

≃
��

Mod(R)

≃
��

Mod(G)

≃
��

HomFP(R, Set) |UR|∗Grp
// HomFP(G, Set)

R

R

��

G
|UR|Grpoo

|R|
tt

Set

(1.31)

We can now ask: Which functors f : Mod(B) → Mod(A) between algebraic categories
are of the form f = T ∗ for a translation T : A→ B of theories? Let us call these algebraic
functors. We consider first the case where A and B are Lawvere algebraic and T takes the
generator A of A to the generator B of B,

T (A) ∼= B

as in the foregoing example. Then T ∗ commutes with the forgetful functors, which, recall,
are evaluation at the generators, UA(M) =M(A):

Mod(B)

UB
##

T ∗
//Mod(A)

UA
{{

Set

This is simply because

(UA ◦ T ∗)(M) = UA(M ◦ T) = (M ◦ T)(A) ∼= M(T (A)) ∼= M(B) = UB(M).

We shall see that this condition is in fact already sufficient! We first require the following.

Lemma 1.2.26. Let A be Lawvere algebraic. The forgetful functor U : A → Set not only
preserves, but also creates all small limits, filtered colimits, and regular epimorphisms.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 45

Proof. This is a standard fact, and not difficult to prove; the reader can either prove it as
an exercise, or look it up in [ALR03].

Proposition 1.2.27. For Lawvere algebraic theories A and B, every functor f : Mod(B)→
Mod(A) with

UB ∼= UA ◦ f,

is of the form f ∼= T ∗ for a unique (up to iso) FP-functor T : A→ B.

Proof 1. Consider the diagram

Mod(B)

UB

##

f //Mod(A)

UA

{{
Set

FB

cc

FA

;;

where, in each pair, we have an adjunction F ⊣ U by Theorem 1.2.19, and the central
triangle commutes up to iso. We seek an FP-functor T : A→ B such that f ∼= T ∗.

Since by Lemma 1.2.26, UA creates limits, and UA ◦ f ∼= UB preserves them, it follows
that f also preserves them. In more detail, given a diagram D : J → Mod(B) with limit
limj Dj, we have f limj Dj

∼= limj fDj just if UAf limj Dj
∼= limj UAfDj, since UA creates

limits. But

UAf lim
j
Dj
∼= UB lim

j
Dj
∼= lim

j
UBDj

∼= lim
j
UAfDj

since UAf ∼= UB and UB preserves limits. The same argument applies to filtered colimits
(and regular epis).

Now both Mod(A) and Mod(B) are locally finitely presentable (LFP): a cocomplete
category C is LFP if it has a small subcategory K of finitely presentable objects k such
that every object c in C is a filtered colimit of all the maps k → c.1 A category of algebras
like Mod(A) is LFP because it is a reflective subcategory of a functor category SetA, with
a filtered-colimit preserving inclusion (cf. [AR94]). Thus, since f : Mod(B) → Mod(A)
preserves (small) limits and filtered colimits, it therefore has a left adjoint

f! : Mod(A)→ Mod(B)

by the Adjoint Functor Theorem. Indeed, one can check the solution set condition directly
(see [Lan71, AR94]). From UB ∼= UA ◦ f , it then follows that FB ∼= f! ◦ FA. In particular,
for the generators A = FA(1) and B = FB(1) we have f!(A) = f!FA(1) ∼= FB(1) = B, and
then f!(

∐
nA) =

∐
nB since f! preserves coproducts.

Since we know by Theorem 1.2.15 that A ≃ mod(A)op, the dual of the subcategory of
finitely generated free models, and the same holds for B, the left adjoint f! : Mod(A) →

1An object k is called finitely presentable if Hom(k,−) preserves filtered colimits, see [AR94]

[DRAFT: September 15, 2024]

46 Algebraic Theories

Mod(B) restricts and dualizes to an FP “translation of theories” T : A→ B as in,

A� _

yop

��

T // B� _

yop

��
Mod(A)op

f!
op

//Mod(B)op

such that
T (An) = T (FA(n)) = f!

op(FA(n)) ∼= FB(n) = Bn. (1.32)

It remains to see that f ∼= T ∗ : Mod(B) → Mod(A). Indeed, for any model M : B → Set,
we have

f(M)(A) ∼= SetA(yA, f(M)) Yoneda

∼= Mod(A)(yA, f(M)) Mod(A) ↪→ SetA

∼= Mod(B)(f!(yA),M) f! ⊣ f
∼= Mod(B)(y(TA),M) (1.32)

∼= SetB(y(TA),M) Mod(A) ↪→ SetA

∼= M(TA) Yoneda
∼= T ∗(M)(A),

naturally in M . The case of an arbitrary object An ∈ A follows, since the models f(M)
and T ∗(M) preserve products.

Corollary 1.2.28. For a functor f : Mod(B) → Mod(A) between Lawvere algebraic cate-
gories, the following are equivalent.

1. f commutes with the forgetful functors, UA ◦ f ∼= UB.

2. f is algebraic: f = T ∗, for an FP functor T : A → B that preserves the generator,
T (A) ∼= B.

The corollary tells us that functors between the (semantic) categories of algebraic struc-
tures that respect the underlying sets correspond to translations of their syntactic presen-
tations. In fact, even more is true: there is a biequivalence of categories

LAlgCat/Set ≃
(
Setopfin/LAlgTh

)op ≃ (
LAlgTh•

)op
, (1.33)

where on the left we have the category of Lawvere algebraic categories A, equipped with
their canonical forgetful functors UA : A → Set, and algebraic functors between them
that commute up to natural isomorphism over the base, and on the right (the dual of)
the category of Lawvere algebraic theories and FP functors that preserve the generator.

[DRAFT: September 15, 2024]

1.2 Lawvere duality 47

A “biequivalence” is like an equivalence, but only up to equivalence! Observe that the
left-hand side of (1.33) is not even locally small, while the entire category on the right
is small. (See e.g. [ARV10] for details.) This “global” Syntax-Semantics duality can be
extended even further, as sketched in the following exercises.

Exercise 1.2.29. Show that for any Lawvere algebraic theory A, the full inclusionMod(A) ↪→
SetA has a left adjoint. (Hint: use the Adjoint Functor Theorem.)

Exercise 1.2.30. Assuming the result of the previous exercise, show that the precom-
position functor T ∗ : Mod(B) −→ Mod(A) induced by any translation T : A → B (not
necessarily preserving the generator) always has a left adjoint T! : Mod(A) −→ Mod(B).

Exercise 1.2.31. Assuming the results of the previous two exercises, show that an alge-
braic functor f : Mod(B) −→ Mod(A), induced by a translation T : A → B as f = T ∗,
satisfies the following conditions:

(i) f preserves limits.

(ii) f preserves filtered colimits.

(iii) f preserves regular epimorphisms.

Hint: Since f has a left adjoint f! : Mod(A) −→ Mod(B), we know that f!(A) ∼= Bn for
some 0 ≤ n. Now use B ≃ mod(B)op.

Remark 1.2.32. The converse of Exercise 1.2.31 holds as well, under a certain condition
on the syntactic categories, to be explained below. We then obtain a duality of the form

LAlgCat ≃ LAlgThop , (1.34)

generalizing (1.33) by eliminating the “base point”. This generalizes even further to “many-
sorted” algebraic theories A not assumed to be generated by a single object, and thus given
simply by small FP categories. The corresonding semantic category Mod(A) still consists
of all FP-functors A→ Set, and is still locally finitely presentable. The question, when is
a “semantic functor”

f : Mod(B) −→ Mod(A)

between such algebraic categories induced by a “syntactic translation” T : A→ B of such
algebraic theories can also be answered in this more general setting, determining a general
notion of an algebraic functor : it is again one that preserves all limits, filtered colimits,
and regular epimorphisms. The resulting duality

AlgCat ≃ AlgThop , (1.35)

requires a technical condition on the syntactic side, however; namely, that the algebraic
theories are closed under retracts—as does (1.34). See [ALR03] for details.

[DRAFT: September 15, 2024]

48 Algebraic Theories

1.2.5 Dualities for algebraic theories

Let us now summarize, and generalize, the different dualities for algebraic theories that
arose in this chapter. See the references [ALR03, ARV10] for details.

In Section 1.2.1, we had what we called the logical duality relating an individual alge-
braic theory T and its category of models Mod(T), given by an equivalence of categories

CTop ≃ mod(T) ↪→ Mod(T),

between the classifying category category CT – which can be constructed from the syntax
of T – and a full subcategory of the semantics mod(T) ↪→ Mod(T), consisting of the finitely
generated free models.

The “semantics” functorMod is represented by assigning to each modelM an essentially
unique FP functor M ♯ : CT → Set, providing an equivalence of categories,

Mod(T) ≃ HomFP(CT, Set). (1.36)

By (1.36), the assignment T 7→ Mod(T) is then contravariantly functorial in the the-
ory T when we regard theories abstractly as (small) finite product categories A, and syntac-
tic translations as FP functors T : A→ B. This provides a global semantic representation
of the syntax of algebraic theories,

Mod : AlgThop → Cat .

We can recognize the essential image of the semantics functor Mod as consisting of cer-
tain locally finitely presentable categories A = Mod(A), which may be called algebraic
categories.2

An algebraic theory A can then be recovered functorially from its algebraic category of
models A = Mod(A) as the finitely generated free models. As remarked earlier, these can
now also be determined “intrinsically”, by considering the category of all algebraic functors

f : A → Set ,

defined as functors preserving limits, filtered colimits, and regular epimorphisms. Indeed,
this follows from the duality

AlgThop ≃ AlgCat , (1.37)

by taking Set = Mod(A0), where A0 = Setopfin is the free FP category on one object (which
we recognized in Example 1.2.4 as the classifying category CT0 of the trivial theory T0), so
that we have a sequence of equivalences :

A −→ Set AlgCat

Mod(A) −→ Mod(A0) AlgCat

A0 −→ A AlgTh

A
2These can be characterized as cocomplete categories A having a set G of objects such that every A ∈ A

is a sifted colimit of objects G ∈ G, for each of which Hom(G,−) preserves sifted colimits. See [ARV10].

[DRAFT: September 15, 2024]

1.2 Lawvere duality 49

In this way, the category Set serves as a “dualizing object”, representing both the
semantics Mod and the syntax Thy as contrvariant functors,

AlgThop
Mod

++
AlgCat

Thy

kk (1.38)

using the two different structures on Set,

Mod(A) ≃ HomAlgTh(A, Set),
Thy(A) ≃ HomAlgCat(A, Set).

The functors in (1.38) do not yet form a biequivalence, however, but only an adjunction.
The syntax-semantics duality of (1.37) results by cutting down the syntax side AlgTh to
those theories in the image of the Thy functor. These can be described as those A for
which the unit of the adjunction

η : A −→ Thy(Mod(A))

is an equivalence. One can show that this holds just if the finite product category A is
closed under retracts, and that this is always the case for Thy(Mod(A)), which is then the
so-called Cauchy completion of A. See [ARV10].

1.2.6 Definability∗

Suppose we have a (conventional, single-sorted) algebraic theory T. Then a term in context
(x1, ..., xn | t) determines, for each T-algebra A (in Set), an operation

tA : An → A ,

that commutes with every homomorphism h : A→ B,

An

tA

��

hn // Bn

tB

��
A

h
// B.

(1.39)

Suppose we are just given a family of operations (fA : An → A)A∈Mod(T) commuting with
all homomorphisms, in the sense of (1.39). Are they necessarily the interpretations of some
term t built up from the signature ΣT? The answer is yes, and it’s now easy to show.

[DRAFT: September 15, 2024]

50 Algebraic Theories

Proposition 1.2.33. Given a family (fA : An → A)A∈Mod(T) of operations on T-algebras
commuting with all homomorphisms h : A→ B,

An

fA

��

hn // Bn

fB

��
A

h
// B

(1.40)

there is a term in context (x1, ..., xn | t) such that fA = tA for each algebra A. Moreover,
t is unique up to T-provable equality.

Proof. Such a family is exactly a natural transformation f : Un → U for the underlying
set functor U : Mod(T)→ Set. But both U and its n-fold power Un are representable, by
finitely generated free algebras, namely U ∼= Mod(T)(F (1),−) and Un ∼= Mod(T)(F (n),−),
and these finitely generated free algebras are objects of the classifying category CT ≃
mod(T)op. Since the composite functor

mod(T)op ↪→ Mod(T)op ↪→ SetMod(T)

is full and faithful, the natural transformation f : Un → U comes from a unique arrow
F (n)→ F (1) in mod(T)op, which therefore corresponds to (the equivalence class of) a term

(x1, ..., xn | t) : [x1, ..., xn]→ [x1]

in the syntax of T, which is unique up to T-provable equality.

A more difficult question to answer, but one to which our machinery also applies, is the
following. Suppose we extend T to a new theory T′ by adding a single function symbol f ,
together with some new equations between terms of T′ (but not so many that new equations
are implied between terms of T). Consider the resulting FP-functor e : CT → CT′ classifying
the underlying T-model of the universal T′-model. Precomposition with e determines a
(relative) forgetful functor E = e∗ : Mod(T′) → Mod(T). Under what conditions on the
“syntactic extension” e : CT → CT′ is this functor E : Mod(T′) → Mod(T) full? faithful?
essentially surjective? By the foregoing proposition it is all three—i.e. an equivalence of
categories of models—if the new operation f is already definable by a term t in T, in the
sense that T′ ⊢ f(x1, ..., xn) = t(x1, ..., xn). The individual questions are good ones for
further study. (See [Mak93] for related results.)

[DRAFT: September 15, 2024]

Chapter 2

Propositional Logic

Propositional logic is the logic of propositional connectives like p ∧ q and p ⇒ q. As
was the case for algebraic theories, the general approach will be to determine suitable
categorical structures to model the logical operations, and then use categories with such
structure to represent (abstract) propositional theories. Adjoints will play a special role, as
we will describe the basic logical operations as such. We again show that the semantics is
“functorial”, meaning that the models of a theory are functors that preserve the categorical
structure. We will show that there are classifying categories for all propositional theories,
as was the case for the algebraic theories that we have already met.

A more abstract, algebraic perspective will then relate the propositional case of syntax-
semantics duality with classical Stone duality for Boolean algebras, and related results from
lattice theory will provide an algebraic treatment of Kripke semantics for intuitionistic (and
modal) propositional logic.

2.1 Propositional calculus

Before going into the details of the categorical approach, we first briefly review the proposi-
tional calculus from a conventional point of view, as we did for algebraic theories. We focus
first on classical propositional logic, before considering the intuitionistic case in Section
2.9.

In the style of Section B.1, we have the following (abstract) syntax for (propositional)
formulas:

Propositional variable p ::= p1 | p2 | p3 | · · ·
Propositional formula ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2

An example of a formula is therefore
(
p3 ⇔ ((((¬p1) ∨ (p2 ∧ ⊥)) ∨ p1) ⇒ p3)

)
. We will

make use of the usual conventions for parenthesis, with binding order ¬,∧,∨,⇒,⇔. Thus
e.g. the foregoing may also be written unambiguously as p3 ⇔ ¬p1 ∨ p2 ∧ ⊥ ∨ p1 ⇒ p3.

[DRAFT: September 15, 2024]

52 Propositional Logic

Natural deduction

The system of natural deduction for propositional logic has one form of judgement

p1, . . . , pn | ϕ1, . . . , ϕm ⊢ ϕ

where p1, . . . , pn is a context consisting of distinct propositional variables, the formulas
ϕ1, . . . , ϕm are the hypotheses and ϕ is the conclusion. The variables in the hypotheses and
the conclusion must occur among those listed in the context. The hypotheses are regarded
as a (finite) set; so they are unordered, have no repetitions, and may be empty. We may
abbreviate the context of variables by Γ, and we often omit it.

Deductive entailment (or derivability) Φ ⊢ ϕ is thus a relation between finite sets of
formulas Φ and single formulas ϕ. It is defined as the smallest such relation satisfying the
following rules:

1. Hypothesis:

Φ ⊢ ϕ
if ϕ occurs in Φ

2. Truth:

Φ ⊢ ⊤

3. Falsehood:
Φ ⊢ ⊥
Φ ⊢ ϕ

4. Conjunction:
Φ ⊢ ϕ Φ ⊢ ψ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ψ

5. Disjunction:

Φ ⊢ ϕ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ψ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ϕ ∨ ψ Φ, ϕ ⊢ θ Φ, ψ ⊢ θ
Φ ⊢ θ

6. Implication:
Φ, ϕ ⊢ ψ

Φ ⊢ ϕ⇒ ψ

Φ ⊢ ϕ⇒ ψ Φ ⊢ ϕ
Φ ⊢ ψ

For the purpose of deduction, we define ¬ϕ := ϕ⇒ ⊥ and ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).
To obtain classical logic we need only include one of the following additional rules.

7. Classical logic:

Φ ⊢ ϕ ∨ ¬ϕ
Φ ⊢ ¬¬ϕ
Φ ⊢ ϕ

[DRAFT: September 15, 2024]

2.1 Propositional calculus 53

A proof of a judgement Φ ⊢ ϕ is a finite tree built from the above inference rules whose
root is Φ ⊢ ϕ. For example, here is a proof of ϕ ∨ ψ ⊢ ψ ∨ ϕ using the disjunction rules:

ϕ ∨ ψ ⊢ ϕ ∨ ψ
ϕ ∨ ψ, ϕ ⊢ ϕ

ϕ ∨ ψ, ϕ ⊢ ψ ∨ ϕ
ϕ ∨ ψ, ψ ⊢ ψ

ϕ ∨ ψ, ψ ⊢ ψ ∨ ϕ
ϕ ∨ ψ ⊢ ψ ∨ ϕ

A judgment Φ ⊢ ϕ is provable if there exists a proof of it. Observe that every proof has
at its leaves either the rule for ⊤ or an instance of the rule of hypothesis (or the Excluded
Middle rule for classical logic).

Remark 2.1.1. An alternate form of presentation for proofs in natural deduction that is
more, well, natural uses trees of formulas, rather than of judgements, with leaves labelled by
assumptions ϑ that may also occur in cancelled form [ϑ]. Thus for example the introduction
and elimination rules for conjunction would be written in the form:

Φ
...
ϕ

Φ
...
ψ

ϕ ∧ ψ

Φ
...

ϕ ∧ ψ
ϕ

Φ
...

ϕ ∧ ψ
ψ

An example of a proof tree with cancelled assumptions is the one for disjunction elimina-
tion:

Φ
...

ϕ ∨ ψ

Φ, [ϕ]

...
ϑ

Φ, [ψ]

...
ϑ

ϑ

And the above rule of implication introduction takes the form:

Φ, [ϕ]

...
ψ

ϕ⇒ ψ

In these examples, the cancellation occurred at the last step. In order to continue such a
proof, we need a device to indicate when a cancellation occurs, i.e. at which step of the
proof. This can be done as follows:

Φ, [α]2

...
ϕ ∨ ψ

Φ, [ϕ]1

...
ϑ

Φ, [ψ]1

...
ϑ

(1)
ϑ

(2)
α⇒ ϑ

[DRAFT: September 15, 2024]

54 Propositional Logic

This proof tree represents a derivation of the judgement Φ ⊢ α⇒ ϑ. A proof tree in
which all the assumptions have been cancelled represents a derivation of an unconditional
judgement such as ⊢ ϕ.

We will have a better way to record such proofs in Section ??.

Exercise 2.1.2. Derive each of the two classical rules (2.1), called Excluded Middle and
Double Negation, from the other.

2.2 Truth values

The idea of an axiomatic system of deductive, logical reasoning goes to back to Frege, who
gave the first such system for propositional calculus (and more) in his Begriffsschrift of
1879. The question soon arose whether Frege’s rules (or rather, their derivable consequences
— it was clear that one could chose the primitive basis in different but equivalent ways)
were correct, and if so, whether they were all the correct ones. An ingenious solution was
proposed by Russell’s student Wittgenstein, who came up with an entirely different way of
singling out a set of “valid” propositional formulas in terms of assignments of truth values
to the variables occurring in them. He interpreted this as showing that logical validity
was really a matter of the logical structure of a proposition, rather than depending any
particular system of derivations. The same idea seems to have been had independently by
Post, who proved that the valid propositional formulas coincide with the ones derivable
in Whitehead and Russell’s Principia Mathematica (which is propositionally equivalent
to Frege’s system), a fact that we now refer to as the soundness and completeness of
propositional logic.

In more detail, let a valuation v be an assignment of a “truth-value” 0, 1 to each
propositional variable, v(pn) ∈ {0, 1}. We can then extend the valuation to all propositional
formulas [[ϕ]]v by the following recursion.

[[pn]]
v = v(pn)

[[⊤]]v = 1

[[⊥]]v = 0

[[¬ϕ]]v = 1− [[ϕ]]v

[[ϕ ∧ ψ]]v = min([[ϕ]]v, [[ψ]]v)

[[ϕ ∨ ψ]]v = max([[ϕ]]v, [[ψ]]v)

[[ϕ⇒ ψ]]v = 1 iff [[ϕ]]v ≤ [[ψ]]v

[[ϕ⇔ ψ]]v = 1 iff [[ϕ]]v = [[ψ]]v

This is sometimes expressed using the “semantic consequence” notation v ⊨ ϕ to mean that
[[ϕ]]v = 1. The above specification then takes the following form, in which the condition

[DRAFT: September 15, 2024]

2.2 Truth values 55

for the truth of a formula is given in terms of its informal “meaning”:

v ⊨ ⊤ always

v ⊨ ⊥ never

v ⊨ ¬ϕ iff not v ⊨ ϕ

v ⊨ ϕ ∧ ψ iff v ⊨ ϕ and v ⊨ ψ

v ⊨ ϕ ∨ ψ iff v ⊨ ϕ or v ⊨ ψ

v ⊨ ϕ⇒ ψ iff v ⊨ ϕ implies v ⊨ ψ

v ⊨ ϕ⇔ ψ iff v ⊨ ϕ iff v ⊨ ψ

Finally, ϕ is valid, written ⊨ ϕ, is defined by,

⊨ ϕ iff v ⊨ ϕ for all v

iff [[ϕ]]v = 1 for all v .

And, more generally, we define ϕ1, ..., ϕn semantically entails ϕ, written

ϕ1, ..., ϕn ⊨ ϕ, (2.1)

to mean that for all valuations v such that v ⊨ ϕk for all k, also v ⊨ ϕ.
Given a formula in context Γ | ϕ and a valuation v for the variables in Γ, one can check

whether v ⊨ ϕ using a truth table, which is a systematic way of calculating the value of
[[ϕ]]v. For example, under the assignment v(p1) = 1, v(p2) = 0, v(p3) = 1 we can calculate
[[ϕ]]v for ϕ =

(
p3 ⇔ ((((¬p1) ∨ (p2 ∧ ⊥)) ∨ p1)⇒ p3)

)
as follows.

p1 p2 p3 p3 ⇔ ¬ p1 ∨ p2 ∧ ⊥ ∨ p1 ⇒ p3
1 0 1 1 1 0 1 0 0 0 0 1 1 1 1

The value of the formula ϕ under the valuation v is then the value in the column under
the main connective, in this case ⇔, and thus [[ϕ]]v = 1.

Displaying all 23 valuations for the context Γ = p1, p2, p3, therefore results in a table
that checks for validity of ϕ,

p1 p2 p3 p3 ⇔ ¬ p1 ∨ p2 ∧ ⊥ ∨ p1 ⇒ p3
1 1 1 . 1 . . .
1 1 0 . 1 . . .
1 0 1 1 1 0 1 0 0 0 0 1 1 1 1
1 0 0 . 1 . . .
0 1 1 . 1 . . .
0 1 0 . 1 . . .
0 0 1 . 1 . . .
0 0 0 . 1 . . .

In this case, working out the other rows shows that ϕ is indeed valid, thus ⊨ ϕ.

[DRAFT: September 15, 2024]

56 Propositional Logic

Theorem 2.2.1 (Soundness and Completeness of Propositional Calculus). Let Φ be any
set of formulas and ϕ any formula, then

Φ ⊢ ϕ ⇐⇒ Φ ⊨ ϕ.

In particular, for any propositional formula ϕ we have

⊢ ϕ ⇐⇒ ⊨ ϕ.

Thus derivability and validity coincide.

Proof. Let us sketch the usual proof, for later reference.
(Soundness :) First assume Φ ⊢ ϕ is provable, meaning there is a finite derivation of

Φ ⊢ ϕ by the rules of inference. We show by induction on the set of derivations that Φ ⊨ ϕ,
meaning that for any valuation v such that v ⊨ Φ also v ⊨ ϕ. For this, observe that in each
individual rule of inference, if Ψ ⊨ ψ for all the premisses of the rule, then Φ ⊨ ϕ for the
conclusion (the set of premisses may change from the premisses to the conclusion if the
rule involves a cancellation).

(Competeness :) Suppose that Φ ⊬ ϕ, then Φ,¬ϕ ⊬ ⊥ (using double negation elimi-
nation). By Lemma 2.2.2 below, there is a valuation v such that v ⊨ {Φ,¬ϕ}. Thus in
particular v ⊨ Φ and v ⊭ ϕ, therefore Φ ⊭ ϕ.

The key lemma is this:

Lemma 2.2.2 (Model Existence). If a set Φ of formulas is consistent, in the sense that
Φ ⊬ ⊥, then it has a model, i.e. a valuation v such that v ⊨ Φ.

Proof. Let Φ be any consistent set of formulas. We extend Φ ⊆ Ψ to one that is maximally
consistent, meaning Ψ is consistent, and if Ψ ⊆ Ψ′ and Ψ′ is consistent, then Ψ = Ψ′.
Enumerate the formulas ϕ0, ϕ1, ..., and let,

Φ0 = Φ,

Φn+1 = Φn ∪ ϕn if consistent, else Φn,

Ψ =
⋃
nΦn.

One can then show that Ψ is indeed maximally consistent, and for every formula ψ, either
ψ ∈ Ψ or ¬ψ ∈ Ψ and not both (exercise!). Now for each propositional variable p, define
vΨ(p) = 1 just if p ∈ Ψ. Finally, one shows that [[ϕ]]vΨ = 1 just if ϕ ∈ Ψ, and therefore
vΨ ⊨ Ψ ⊇ Φ.

Exercise 2.2.3. Show that for any maximally consistent set Ψ of formulas, either ψ ∈ Ψ or
¬ψ ∈ Ψ and not both. Conclude from this that for the valuation vΨ defined by vΨ(p) = 1
just if p ∈ Ψ, we indeed have [[ϕ]]vΨ = 1 just if ϕ ∈ Ψ, as claimed in the proof of the Model
Existence Lemma 2.2.2.

[DRAFT: September 15, 2024]

2.3 Boolean algebra 57

2.3 Boolean algebra

There is of course another approach to propositional logic, which also goes back to the
19th century, namely Boolean algebra. It draws on the analogy between the propositional
operations ¬,∨,∧ and the arithmetical ones −,+,×.

Definition 2.3.1. A Boolean algebra is a set B equipped with the operations:

0, 1 : 1→ B

¬ : B → B

∧,∨ : B ×B → B

satisfying the following equations, for all x, y, z ∈ B:

x ∨ x = x x ∧ x = x

x ∨ y = y ∨ x x ∧ y = y ∧ x
x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
0 ∨ x = x 1 ∧ x = x

1 ∨ x = 1 0 ∧ x = 0

¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∧ y) = ¬x ∨ ¬y
x ∨ ¬x = 1 x ∧ ¬x = 0

Familiar examples of Boolean algebras are 2 = {0, 1} with the usual operations on
“truth-values”, and more generally, any powerset PX, with the set-theoretic operations
A ∨ B = A ∪ B, A ∧ B = A ∩ B, ¬A = X \ A (indeed, 2 ∼= P1 is a special case).
This is of course an algebraic theory, like those considered in the previous chapter. The
Lawvere algebraic theory B of Boolean algebras is then, as we know, the opposite of the
full subcategory BAfgf ↪→ BA of finitely generated free algebras B(n). We shall consider
this aspect later, and in fact we shall see that B is equivalent to the category of finite
powersets P [n] and arbitrary functions between them.

One can use equational reasoning in Boolean algebra as an alternative to the deductive
propositional calculus as follows. For a propositional formula in context Γ | ϕ, let us say
that ϕ is equationally provable if we can prove ϕ = 1 by the usual equational reasoning
(Section B.5), using the laws of Boolean algebras above. More generally, for a set of
formulas Φ and a formula ψ let us define the (ad hoc) relation of equational provability,

Φ ⊢eq ψ (2.2)

to mean that ψ = 1 can be proven equationally from (the Boolean equations and) the set
of all equations ϕ = 1, for ϕ ∈ Φ. Since we don’t have any laws for the propositional
connectives ⇒ or ⇔, let us replace them with their Boolean equivalents, by adding to the

[DRAFT: September 15, 2024]

58 Propositional Logic

equations we are allowed to use the following two:

ϕ⇒ ψ = ¬ϕ ∨ ψ ,
ϕ⇔ ψ = (¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ) .

Here for example is an equational proof of (ϕ⇒ ψ) ∨ (ψ ⇒ ϕ).

(ϕ⇒ ψ) ∨ (ψ ⇒ ϕ) = (¬ϕ ∨ ψ) ∨ (¬ψ ∨ ϕ)
= ¬ϕ ∨ (ψ ∨ (¬ψ ∨ ϕ))
= ¬ϕ ∨ ((ψ ∨ ¬ψ) ∨ ϕ)
= ¬ϕ ∨ (1 ∨ ϕ)
= ¬ϕ ∨ 1

= 1 ∨ ¬ϕ
= 1

This shows that
⊢eq (ϕ⇒ ψ) ∨ (ψ ⇒ ϕ) .

We may now ask: How is equational provability Φ ⊢eq ψ related to deductive derivability
Φ ⊢ ψ and semantic entailment Φ ⊨ ψ?

Exercise 2.3.2. Show by equational reasoning that an equation ϕ = ψ is provable from
the laws of Boolean algebra if and only if ⊢eq (ϕ⇔ ψ).

Exercise 2.3.3. Using equational reasoning, show that every propositional formula ϕ has
both a conjunctive ϕ∧ and a disjunctive ϕ∨ Boolean normal form such that:

1. The formula ϕ∨ is an n-fold disjunction of m-fold conjunctions of positive pi or
negative ¬pj propositional variables,

ϕ∨ = (q11 ∧ ... ∧ q1m1) ∨ ... ∨ (qn1 ∧ ... ∧ qnmn) , qij ∈ {pij,¬pij} ,

and ϕ∧ is the same, but with the roles of ∨ and ∧ reversed.

2. Both
⊢eq ϕ⇔ ϕ∨ and ⊢eq ϕ⇔ ϕ∧ .

(Hint: Rewrite the formula in terms of just conjunction, disjunction, and negation, and
then prove by structural induction on the formula that it has both normal forms.)

Exercise 2.3.4. Show that the free Boolean algebra B(n) on n-many generators has 22
n

many elements. Hint : Show first that every element b ∈ B(n) can be written in a unique
(disjunctive) normal form (as in the previous exercise):

b = b1 ∨ ... ∨ bn,
bi = a1 ∧ ... ∧ am, 1 ≤ i ≤ n,

where each aj is an element of the finite set [n] = {x1, ..., xn}, written in either positive x
or negative ¬x form (and not both). Then count these normal forms.

[DRAFT: September 15, 2024]

2.4 Lawvere duality for Boolean algebras 59

Remark 2.3.5. We can use Exercise 2.3.3 to show that equational provability is equivalent
to semantic validity,

⊢eq ϕ ⇐⇒ ⊨ ϕ .

To show this, we first use equational reasoning to put the formula ϕ into conjunctive normal
form, and then read off a truth valuation that falsifies it, just if there is one. Indeed, the
CNF is valued as 1 just if each conjunct is, and that evidently holds just if each conjunct
contains a propositional letter p in both positive p and negative ¬p form. In that case, the
CNF clearly reduces to 1 by an equational calculation. Conversely, if the CNF does not
so reduce, it must have a conjunct that does not satisfy the condition just stated; then we
can read off from it a valuation that makes all of the (positive and negative) propositional
letters in that conjunct 0.

Corollary 2.3.6 (Soundness and completeness of equational inference). For any set of
formulas Φ and formula ψ, we have an equivalence

Φ ⊢eq ψ ⇐⇒ Φ ⊨ ψ .

Exercise 2.3.7. Prove this, using Remark 2.3.5 for the case where Φ is empty.

Before showing that equational provability Φ ⊢eq ψ is also equivalent to deductive
derivability Φ ⊢ ψ we shall consider what can be said about Boolean algebra just from the
fact that it is a Lawvere algebraic theory, using what we already know about such theories.

2.4 Lawvere duality for Boolean algebras

Let us apply the machinery of algebraic theories from Chapter 1 to the algebraic theory
of Boolean algebras and see what we get. The algebraic theory B of Boolean algebras
is a finite product (FP) category with objects 1, B,B2, ..., containing a Boolean algebra
UB, with underlying object |UB| = B. By Theorem 1.1.21, B has the universal property
that finite product preserving (FP) functors from B into any FP-category C correspond
(pseudo-)naturally to Boolean algebras in C,

HomFP(B, C) ≃ BA(C) . (2.3)

The correspondence is mediated by evaluating an FP functor F : B→ C at (the underlying
structure of) the Boolean algebra UB to get a Boolean algebra F (UB) in C:

F : B −→ C FP

F (UB) BA(C)

We call UB the universal Boolean algebra. Given a Boolean algebra B in C, we write

B♯ : B −→ C

[DRAFT: September 15, 2024]

60 Propositional Logic

for the associated classifying functor. By the equivalence of categories (2.3), we have isos,

B♯(UB) ∼= B, F (UB)
♯ ∼= F .

And in particular, U♯B
∼= 1B : B→ B.

By Lawvere duality, Corollary 1.2.3, we know that Bop can be identified with a full
subcategory mod(B) of B-models in Set (i.e. Boolean algebras),

Bop = mod(B) ↪→ Mod(B) = BA(Set) , (2.4)

namely, that consisting of the finitely generated free Boolean algebras F (n). In Exercise
2.3.4, we determined F (n) as having the underlying set PP [n] for an n-element set [n],
with the Boolean operation of ∨ coming from the (outer) powerset, and the ∧ coming from
the inner one, with the generators {{xi}} for xi ∈ [n]. Composing (2.4) and (2.3), we have
an embedding of Bop into the functor category,

Bop ↪→ BA(Set) ≃ HomFP(B, Set) ↪→ SetB , (2.5)

which, up to isomorphism, is just the (contravariant) Yoneda embedding, taking Bn ∈ B
to the covariant representable functor yB(Bn) = HomB(B

n,−) (cf. Theorem 1.2.15).
Now let us consider provability of equations between terms ϕ : Bn → B in the theory B,

which are essentially the same as propositional formulas in context (p1, ..., pn | ϕ) modulo
B-provable equality. The universal Boolean algebra UB is logically generic, in the sense that
for any such formulas ϕ, ψ, we have UB ⊨ ϕ = ψ just if B ⊢ ϕ = ψ (Proposition 1.1.17).
The latter condition is equational provability from the axioms for Boolean algebras, which
was used in the definition of ⊢eq ϕ (cf. 2.2). So we have:

⊢eq ϕ ⇐⇒ B ⊢ ϕ = 1 ⇐⇒ UB ⊨ ϕ = 1 .

As we showed in Proposition ??, the image of the universal model UB under the (FP)
covariant Yoneda embedding,

yB : B→ SetB
op

is also a logically generic model, with underlying object |yB(UB)| = HomB(−, B). By
Proposition 1.1.28 we can use that fact to restrict attention to Boolean algebras in Set,
and in particular, to the finitely generated free ones F (n), when testing for equational
provability. Specifically, using the (FP) evaluation functors evalBn : SetB

op → Set for all
objects Bn ∈ B, we can continue the above reasoning as follows:

⊢eq ϕ ⇐⇒ B ⊢ ϕ = 1

⇐⇒ UB ⊨ ϕ = 1

⇐⇒ yB(UB) ⊨ ϕ = 1

⇐⇒ evalBnyB(UB) ⊨ ϕ = 1 for all Bn ∈ B
⇐⇒ F (n) ⊨ ϕ = 1 for all n.

[DRAFT: September 15, 2024]

2.4 Lawvere duality for Boolean algebras 61

The last step holds because the image of yB(UB) under evalBn is exactly the free Boolean
algebra evalBnyB(UB) = F (n) (cf. Exercise 1.1.26). Indeed, for the underlying objects we
have

evalBnyB(UB) ∼= HomB(B
n, B) ∼= HomBAop(F (n), F (1)) ∼= HomBA(F (1), F (n)) ∼= |F (n)| .

Thus to test for equational provability it suffices to check the equations in the free algebras
F (n) (which makes sense, since F (n) is usually defined in terms of equational provability).
We have therefore shown:

Lemma 2.4.1. A formula in context p1, ..., pk | ϕ is equationally provable ⊢eq ϕ just in case
it holds in every finitely generated free Boolean algebra F (n), i.e. F (n) ⊨ ϕ = 1.

Recall that the condition F (n) ⊨ ϕ = 1 means that the equation ϕ = 1 holds generally
in F (n), i.e. for any elements f1, ..., fk ∈ F (n), we have ϕ[f1/p1, ..., fk/pk] = 1, where the
expression ϕ[f1/p1, ..., fk/pk] denotes the element of F (n) resulting from interpreting the
propositional variables pi as the elements fi and evaluating the resulting expression using
the Boolean operations of F (n). But now observe that the recipe:

for any elements f1, ..., fk ∈ F (n), let the expression

ϕ[f1/p1, ..., fk/pk] (2.6)

denote the element of F (n) resulting from interpreting the propositional vari-
ables pi as the elements fi and evaluating the resulting expression using the
Boolean operations of F (n)

just describes the unique Boolean homomorphism

F (1)
ϕ // F (k)

(f1, ..., fk) // F (n) ,

where (f1, ..., fk) : F (k) → F (n) is determined by the elements f1, ..., fk ∈ F (n), and
ϕ : F (1) → F (k) by the corresponding element (p1, ..., pk | ϕ) ∈ F (k). It is therefore
equivalent to check the case k = n and fi = pi, i.e. the “universal case”

(p1, ..., pk | ϕ) = 1 in F (k) . (2.7)

Finally, then, we have:

Proposition 2.4.2 (Boolean-valued completeness of the equational propositional calcu-
lus). Equational propositional calculus is sound and complete with respect to boolean-valued
models in Set, in the sense that a propositional formula ϕ is equationally provable from the
laws of Boolean algebra,

⊢eq ϕ ,
just if it holds generally in any Boolean algebra (in Set), which we may denote

⊨BA ϕ .

[DRAFT: September 15, 2024]

62 Propositional Logic

Proof. By “holding generally” is meant that it holds for all elements of the Boolean algebra
B, in the sense displayed after the Lemma. But, as above, this is equivalent to the condition
that for all b1, ..., bk ∈ B, for (b1, ..., bk) : F (k) → B we have (b1, ..., bk)(ϕ) = 1 in B, which
in turn is clearly equivalent to the previously determined “universal” condition (2.7) that
ϕ = 1 in F (k).

We leave the analogous statement for equational entailment Φ ⊢eq ϕ and Boolean-valued
entailment Φ ⊨BA ϕ as an exercise.

Corollary 2.4.3. Show that a propositional formula p1, ..., pk | ϕ is equationally provable
⊢eq ϕ , just if it holds in the free Boolean algebra F (ω) on countably many generators
ω = {p1, p2, ...}, with the variables p1, ..., pk interpreted as the corresponding generators
of F (ω).

Exercise 2.4.4. Prove this as an easy corollary of Proposition 2.4.2.

Let us summarize what we know so far. By Exercise ??, we already knew that equa-
tional provability in Boolean algebra is equivalent to semantic validity,

⊢eq ϕ ⇐⇒ ⊨ ϕ .

This was based on a certain decision procedure for validity in classical propositional logic,
originally due to Bernays [?], restated in terms of Boolean algebra. Like the classical proof
of the Completeness Theorem 2.2.1,

⊢ ϕ ⇐⇒ ⊨ ϕ ,

we would like to analyze this result, too, in general categorical terms, in order to be able
to extend and generalize it to other systems of logic.

Our algebraic approach via Lawvere duality resulted in Proposition 2.4.2, which says
that equational provability is equivalent to what we have called Boolean-valued validity,

⊢eq ϕ ⇐⇒ ⊨BA ϕ ⇐⇒ B ⊨ ϕ for all B . (2.8)

This is essentially the Boolean algebra case of our Proposition 1.1.28, the completeness of
equational reasoning with respect to algebras in Set, originally proved by Birkhoff.

It still remains to relate equational provability ⊢eq ϕ with deduction ⊢ ϕ, and Boolean-
valued validity ⊨BA ϕ with semantic validity ⊨ ϕ, which is just the special case 2 ⊨BA ϕ.
We shall consider deduction ⊢ ϕ via a different approach in the following section, one that
regards Boolean algebras as special finite product categories, rather than as algebras for a
special Lawvere algebraic theory.

Exercise 2.4.5. For a formula in context p1, ..., pk | ϑ and a Boolean algebra B, let
the expression ϑ[b1/p1, ..., bk/pk] denote the element of B resulting from interpreting the
propositional variables pi in the context as the elements bi of B, and evaluating the resulting
expression using the Boolean operations of B. For any finite set of propositional formulas

[DRAFT: September 15, 2024]

2.5 Functorial semantics for propositional logic 63

Φ and any formula ψ, let Γ = p1, ..., pk be a context for (the formulas in) Φ∪{ψ}. Finally,
recall that Φ ⊢eq ψ means that ψ = 1 is equationally provable from the set of equations
{ϕ = 1 | ϕ ∈ Φ}. Show that Φ ⊢eq ψ just if for all finitely generated free Boolean algebras
F (n), the following condition holds:

For any elements f1, ..., fk ∈ F (n), if ϕ[f1/p1, ..., fk/pk] = 1 for all ϕ ∈ Φ, then
ψ[f1/p1, ..., fk/pk] = 1.

Is it sufficient to just take F (k) and its generators p1, ..., pk as the f1, ..., fk? Is it equivalent
to take all Boolean algebras B, rather than the finitely generated free ones F (n)? Determine
a condition that is equivalent to Φ ⊢eq ψ for not necessarily finite sets Φ.

Exercise 2.4.6. A Boolean algebra can be partially ordered by defining x ≤ y as

x ≤ y ⇐⇒ x ∨ y = y or equivalently x ≤ y ⇐⇒ x ∧ y = x .

Thus a Boolean algebra is a (poset) category. Show that as a category, a Boolean algebra
has all finite limits and colimits and is cartesian closed, with x ⇒ y := ¬x ∨ y as the
exponential of x and y. Moreover, a finitely complete and cocomplete cartesian closed
poset is a Boolean algebra just if it satisfies x = (x ⇒ 0) ⇒ 0. Finally, show that
homomorphisms of Boolean algebras f : B → B′ are exactly the same thing as functors
(i.e. monotone maps) that preserve all finite limits and colimits.

2.5 Functorial semantics for propositional logic

Considering the algebraic theory of Boolean algebras suggested the idea of a Boolean
valuation of propositional logic, generalizing the truth valuations of section 2.2. This
can be seen as applying the framework of functorial semantics to a different system of
logic than that of equational theories, represented as finite product categories, namely
that represented categorically by poset categories with finite products ∧ and coproducts ∨
(each of these cases could, of course, also be considered separately, relating ∧-semilattices
and categories with finite products ×, and ∨-semilattices with categories with coproducts
+, respectively). Thus we are moving from the top right corner to the bottom center

[DRAFT: September 15, 2024]

64 Propositional Logic

position in the following Hasse diagram of structured categories:

+ × Cat

+ ,×

∨ ∧ Pos

∨ ,∧

In Chapter ?? we shall see how first-order logic results categorically from these two cases
by “indexing the lower one over the upper one”, in a certain sense, and in Chapters ??
and ?? we shall consider simple and dependent type theory as “categorified” versions of
propositional and first-order logic. It is for this reason (rather than a dogmatic commitment
to categorical methods!) that we next continue our reformulation of the basic results of
classical propositional logic in functorial terms.

Exercise 2.5.1. Review the results of Chapter 1 on (Lawvere) algebraic theories in the
case of posets. First, show that a posetal Lawvere algebraic theory is always trivial (why?),
but that a (general) posetal algebraic theory is a ∧-semilattice. What are the Set-valued
models of such a theory? What do the duality theories of Chapter 1 mean in this setting?

Definition 2.5.2. A propositional theory T consists of a set VT of propositional variables,
called the basic or atomic propositions, and a set AT of propositional formulas (over VT),
called the axioms. The (deductive) consequences Φ ⊢T ϕ are those judgements that are
derivable by natural deduction (as in Section 2.1), from the axioms AT, where we define
Φ ⊢T ϕ to mean Φ ∪ AT ⊢ ϕ for (sets of) formulas Φ, ϕ over VT.

Definition 2.5.3. Let T = (VT, AT) be a propositional theory and B a Boolean algebra.
A model of T in B, also called a Boolean valuation of T is an interpretation function
v : VT → |B| such that, for every α ∈ AT, we have [[α]]v = 1B in B, where the extension

[DRAFT: September 15, 2024]

2.5 Functorial semantics for propositional logic 65

[[−]]v of v from VT to all formulas (over VT) is defined in the expected way, namely:

[[p]]v = v(p), p ∈ VT
[[⊤]]v = 1B

[[⊥]]v = 0B

[[¬ϕ]]v = ¬B[[ϕ]]v

[[ϕ ∧ ψ]]v = [[ϕ]]v ∧B [[ψ]]v

[[ϕ ∨ ψ]]v = [[ϕ]]v ∨B [[ψ]]v

[[ϕ⇒ ψ]]v = ¬B[[ϕ]]v ∨B [[ψ]]v

Finally, let Mod(T,B) be the set of all T-models in B. Given a Boolean homomorphism
f : B → B′, there is an induced mapping Mod(T, f) : Mod(T,B)→ Mod(T,B′), determined
by setting Mod(T, f)(v) = f ◦ v, which is clearly functorial.

Theorem 2.5.4. The functor Mod(T) : BA → Set is representable, with representing
Boolean algebra BT, the classifying Boolean algebra of T. Thus there is a natural iso,

HomBA(BT,B) ∼= Mod(T,B) . (2.9)

Proof. We construct BT from the “syntax of T” in two steps:
Step 1: Suppose first that AT is empty, so T is just a set V of propositional variables.

Then define the classifying Boolean algebra B[V] by

B[V] = {ϕ | ϕ is a formula in context V }/∼

where the equivalence relation ∼ is (deductively) provable bi-implication,

ϕ ∼ ψ ⇐⇒ ⊢ ϕ⇔ ψ.

The operations are (well-)defined on equivalence classes by setting,

[ϕ] ∧ [ψ] = [ϕ ∧ ψ],

and so on. (The reader who has not seen this construction before should fill in the details!)
Step 2: In the general case T = (VT, AT), let

BT = B[VT]/∼T ,

where the equivalence relation ∼T is now AT-provable bi-implication,

ϕ ∼T ψ ⇐⇒ AT ⊢ ϕ⇔ ψ.

The operations are defined as before, but now on equivalence classes [ϕ] modulo AT.
Observe that the construction of BT is a variation on that of the syntactic category

construction CT = Syn(T) of the classifying category of an algebraic theory T, in the sense

[DRAFT: September 15, 2024]

66 Propositional Logic

of the previous chapter. Indeed, the statement of the theorem (2.9) is exactly the universal
property of BT as the classifying category of T-models. (Since Mod(T,B) is now a set
rather than a category, we can classify it up to isomorphism rather than equivalence of
categories.) The proof of this fact is a variation on the proof of the corresponding theorem
1.1.21 from Chapter 1. Further details are given in the following Remark 2.5.6 for the
interested reader.

Remark 2.5.5. The Lindenbaum-Tarski algebra of a propositional theory is usually de-
fined in semantic terms using (truth) valuations. Our definition of BT in terms of provability
is more useful in the present setting, as it parallels that of the syntactic category CT of an
algebraic theory, and will allow us to prove Theorem 2.2.1 by analogy to Theorem ?? for
algebraic theories.

Remark 2.5.6 (Adjoint Rules for Propositional Calculus). For the construction of the
classifying algebra BT, it is convenient to reformulate the rules of inference for the propo-
sitional calculus in the following equivalent adjoint form: Contexts Γ may be omitted,
since the rules leave them unchanged (there is no variable binding). We may also omit
assumptions that remain unchanged. Thus e.g. the hypothesis rule may be written in any
of the following equivalent ways.

Γ | ϕ1, . . . , ϕm ⊢ ϕi ϕ1, . . . , ϕm ⊢ ϕi ϕ ⊢ ϕ

The structural rules can then be stated as follows:

ϕ ⊢ ϕ
ϕ ⊢ ψ ψ ⊢ ϑ

ϕ ⊢ ϑ

ϕ ⊢ ϑ
ψ, ϕ ⊢ ϑ

ϕ, ϕ ⊢ ϑ
ϕ ⊢ ϑ

ϕ, ψ ⊢ ϑ
ψ, ϕ ⊢ ϑ

The rules for the propositional connectives can be given in the following adjoint form,
where the double line indicates a two-way rule (with the obvious two instances when there
are two conclusions, in going from bottom to top).

ϕ ⊢ ⊤ ⊥ ⊢ ϕ

ϑ ⊢ ϕ ϑ ⊢ ψ
ϑ ⊢ ϕ ∧ ψ

ϕ ⊢ ϑ ψ ⊢ ϑ
ϕ ∨ ψ ⊢ ϑ

ϑ, ϕ ⊢ ψ
ϑ ⊢ ϕ⇒ ψ

For the purpose of deduction, negation ¬ϕ is again treated as defined by ϕ ⇒ ⊥ and
bi-implication ϕ⇔ ψ by (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

For classical logic we also include the rule of double negation:

¬¬ϕ ⊢ ϕ
(2.10)

[DRAFT: September 15, 2024]

2.5 Functorial semantics for propositional logic 67

It is now obvious that the set of formulas is preordered by ϕ ⊢ ψ, and that the poset
reflection agrees with the deducibility equivalence relation,

ϕ ⊣⊢ ψ ⇐⇒ ϕ ∼ ψ .

Moreover, BT clearly has all finite limits ⊤,∧ and colimits ⊥,∨, is cartesian closed ∧ ⊣ ⇒,
and is therefore a Heyting algebra (see Section ?? below). The rule of double negation
then makes it a Boolean algebra.

The proof of the universal property of BT is essentially the same as that for CT.

Exercise 2.5.7. Fill in the details of the proof that BT is a well-defined Boolean algebra,
with the universal property stated in (2.9). (Hint: The well-definedness of the operations
[ϕ] ∧ [ψ], etc., just requires a few deductions, but the well-definedness of the Boolean
homomorphism v♯ : BT → B classifying a model v : VT → |B| requires the soundness of
deduction with respect to Boolean-valued semantics. Just state this precisely and sketch
a proof of it.)

Just as for the case of algebraic theories and FP categories, we now have the follow-
ing corollary of the classifying theorem 2.5.4, which again follows from the fact that the
classifying Boolean algebra BT is logically generic, in virtue of its syntactic construction.

Corollary 2.5.8. For any formula ϕ, derivability from the axioms AT ⊢ ϕ is equivalent to
validity under all Boolean-valued models of T,

AT ⊢ ϕ ⇐⇒ AT ⊨BA ϕ .

where, recall, AT ⊨BA ϕ means that for all Boolean algebras B and valuations v : VT → |B|
such that [[α]]v = 1 in B for all α ∈ AT, we also have [[ϕ]]v = 1 in B.

Proof. We have

AT ⊢ ϕ ⇐⇒ BT ⊨BA ϕ ,

essentially by definition, where on the righthand side it suffices to check the canonical
model u : VT → |BT| associated to the identity BT → BT. But if u ⊨BA ϕ, then also v ⊨BA ϕ
for any v : VT → |B|, since v = v♯u, and the homomorphism v♯ : BT → B preserves models.
Thus BT ⊨BA ϕ ⇒ AT ⊨BA ϕ. The converse is immediate.

Now note that the recipe displayed at (2.6) for a Boolean valuation in F (n) of a formula
in context p1, ..., pk | ϕ is exactly the (canonical) model in F (n), with underlying valuation
η : {p1, ..., pk} → |F (n)|, of the theory T = {p1, ..., pk}. So

F (n) ⊨BA ϕ ⇐⇒ [[ϕ]] = 1 in F (n) .

Inspecting the universal property (2.9) of BT for the case T = {p1, ..., pn}, we also obtain:

[DRAFT: September 15, 2024]

68 Propositional Logic

Corollary 2.5.9. The classifying Boolean algebra for the theory {p1, ..., pn} is the finitely
generated, free Boolean algebra,

B[p1, ..., pn] ∼= F (n) .

And generally, B[V] is the free Boolean algebra on the set V , for any set V .

Indeed, for any valuation (= arbitrary function) v : {p1, ..., pn} → |B| we have a unique
extension [[−]]v : B[p1, ..., pn] → B, which upon inspection of Definition 2.5.3 we recognize
as exactly a Boolean homomorphism.

B[p1, ..., pn]
[[−]]v

// B

{p1, ..., pn}

η
OO

v

66

The isomorphism B[p1, ..., pn] ∼= F (n) of Corollary 2.5.8 expresses the fact that the relations
of derivability by natural deduction Φ ⊢ ϕ and equational provability Φ ⊢eq ϕ agree,

Φ ⊢ ϕ ⇐⇒ Φ ⊢eq ϕ , (2.11)

answering one of the two questions from the end of Section 2.4.

Toward answering the other question of the relation between Boolean-valued validity
Φ ⊨BA ϕ and truth-valued validity Φ ⊨ ϕ, consider the finitely presented Boolean algebras,
which can be described as those of the form

BT = B[p1, ..., pn]/α ,

for a finite theory T = (p1, ..., pn;α1, ..., αm), where the slice category of a Boolean algebra
B over an element β ∈ B is the downset (or principal ideal)

B/β = ↓(β) = {b ∈ B
∣∣ b ≤ β} .

To see this, given T = (VT, AT), if AT is finite, then let

αT :=
∧
α∈AT

α ,

so we clearly have
BT = B[VT]/αT .

If VT = {p1, ..., pn} is also finite, then we have

BT ∼= B[p1, ..., pn]/αT .

Using this, it is now easy to show that the finitely presented objects in the category
of Boolean algebras are exactly those of the form B[p1, ..., pn]/αT, using the fact that a
(Boolean) algebra A is finitely presented if and only if it has a presentation (by n-many
generators and m-many equations) as a coequalizer of finitely generated free algebras,

F (m) //// F (n) // A . (2.12)

[DRAFT: September 15, 2024]

2.5 Functorial semantics for propositional logic 69

Exercise 2.5.10. Show that the classifying Boolean algebras BT, for finite sets VT of
variables and AT of formulas, are exactly the finitely presented ones in the sense stated in
(2.12) (Hint: Recall that for elements ϕ, ψ in any Boolean algebra, ϕ = ψ iff (ϕ⇔ ψ) = 1).
In general algebraic categories A such coequalizers of finitely generated free algebras are
exactly those for which the representable functor Hom(A,−) : A → Set preserves all filtered
colimits. Show that the finitely presented Boolean algebras in the sense of (2.12) do indeed
have this property. (You need not show the converse, but think about it!)

The following is a special case of the universal property of the slice category

X∗ : C→ C/X ,

for any C with finite limits. The reader not already familiar with this fact should definitely
do the exercise!

Exercise 2.5.11. For any Boolean algebra B and any β ∈ B, consider the map

β∗ : B → B/β ,

with β∗(x) = β ∧ x.

(i) Show that B/β ∼= ↓(β) is a Boolean algebra, and that β∗ is a Boolean homomorphism
with β∗(β) = 1 ∈ B/β.

(ii) If h : B → B′ is any homomorphism, then h(β) = 1 ∈ B′ if and only if there is a
factorization

B
β∗
��

h // B′

B/β
h

== (2.13)

of h through β∗, and then h is unique with h ◦ β∗ = h.

(iii) Show that if BT = B[p1, ..., pn]/α classifies (models of) the theory T = (p1...pn, α) and
p1, ..., pn | β, then BT/β classifies models of the extended theory T′ = (p1...pn, α, β).

Lemma 2.5.12. Let B[p1, ..., pn]/α be a finitely presented Boolean algebra which is non-
trivial, in the sense that 0 ̸= 1. Then there is a Boolean homomorphism

h : B[p1, ..., pn]/α→ 2 .

Proof. By Exercise 2.5.10, we can assume that B[p1, ..., pn]/α = BT classifies (models of)
the theory T = (p1, ..., pn;α). By the assumption that 0 ̸= 1 in B[p1, ..., pn]/α, we must
have α ̸= 0 in the free Boolean algebra B[p1, ..., pn] (why?). It then suffices to give a

[DRAFT: September 15, 2024]

70 Propositional Logic

valuation v : {p1, ..., pn} → 2 such that [[α]]v = 1, for then (by Exercise 2.5.11) we will have
a factorization,

B[p1, ..., pn]

α∗

��

mv // 2

B[p1, ..., pn]/α

mv

;; (2.14)

where mv = [[−]]v is the “model” associated to the valuation v : {p1, ..., pn} → 2, and
α∗ = α ∧ − : B[p1, ..., pn] −→ B[p1, ..., pn]/α is the canonical Boolean projection to the
“quotient” Boolean algebra given by the slice category, and mv is the extension of mv along
α∗ resulting from the universal property of slicing a category with finite products.

Informally, α has a truth table with 2n rows, corresponding to the valuations v :
{p1, ..., pn} → 2, and we know that the main column for α is not all 0’s, so we can
find a row in which it is 1 and read off the corresponding valuation. More formally, as in
Remark 2.3.5, we can put α into a disjunctive normal form α = α1∨ ...∨αk and one of the
disjuncts αi must then also be non-zero. Since αi = q1∧ ...∧qm with each qj either positive
p or negative ¬p, if both p and ¬p occur, then αi = 0, so the p in each qj must occur only
once in αi. We can then define v accordingly, with v(p) = 1 iff p occurs positively in αi,
and we will have [[αi]]

v = 1. This valuation v : {p1, ..., pn} → 2 then determines a Boolean
homomorphism [[−]]v : B[p1, ..., pn]→ 2 with [[α]]v = 1, as required for a homomorphism

B[p1, ..., pn]/α −→ 2 .

Proposition 2.5.13. For any formula ϕ, Boolean-valued validity and truth-valued validity
are equivalent,

⊨BA ϕ ⇐⇒ ⊨ ϕ . (2.15)

Proof. Since ⊨BA ϕ means that B ⊨BA ϕ for all Boolean algebras B, and ⊨ ϕ means the
same for valuations in 2, the implication from left to right is trivial. For the converse, let
(p1, ..., pn |ϕ), and consider ϕ ∈ B[p1, ..., pn].

Suppose h(ϕ) = 1 for all homomorphisms h : B[p1, ..., pn] → 2. Then B[p1, ..., pn]/¬ϕ
can have no homomorphism h : B[p1, ..., pn]/¬ϕ → 2, for otherwise h(1) = 1 would give
h(¬ϕ) = 1, and so h(ϕ) = 0. Therefore, by Lemma 2.5.12, 0 = 1 in B[p1, ..., pn]/¬ϕ. So in
B[p1, ..., pn] we have 0 = ¬ϕ∧ 1 = ¬ϕ whence 1 = ¬0 = ¬¬ϕ = ϕ, and so h(ϕ) = 1 ∈ B for
all h : B[p1, ..., pn]→ B.

Exercise 2.5.14. Extend Proposition 2.5.15 to entailment, for any finite set Φ,

Φ ⊨BA ϕ ⇐⇒ Φ ⊨ ϕ .

Combining this last result (2.15) with the previous one (2.11) and (2.8) from the last
section, we arrive finally at our desired reconstruction of the classical completeness theorem:

[DRAFT: September 15, 2024]

2.6 Stone representation 71

Proposition 2.5.15. For any formula ϕ, provability by deduction and truth-valued validity
are equivalent,

⊢ ϕ ⇐⇒ ⊨ ϕ . (2.16)

And the same holds relative to a set Φ of assumptions.

Let us unwind the foregoing “reproof” into a direct argument, from the present point
of view: A formula ϕ in context p1, ..., pn | ϕ determines an element in the free Boolean
algebra B[p1, ..., pn]. If ⊢ ϕ then ϕ = 1 in B[p1, ..., pn], so clearly h(ϕ) = 1 for every
h : B[p1, ..., pn] → 2, which means exactly ⊨ ϕ. Conversely, if ⊨ ϕ then h(ϕ) = 1 for
every h : B[p1, ..., pn] → 2, so ¬ϕ can have no model in 2. Thus B[p1, ..., pn]/¬ϕ must be
degenerate, with 0 = 1. So in B[p1, ..., pn] we have [⊥] = [¬ϕ], and therefore ¬ϕ ⊢ ⊥, so
⊢ ¬¬ϕ, so ⊢ ϕ.

The main fact used here is that the finitely generated, free Boolean algebras B(n) =
B[p1, ..., pn] have enough Boolean homomorphisms h : B(n)→ 2 to separate any non-zero
element ϕ ̸= 0 from 0, in the sense that if h(ϕ) = 0 for all such h then ϕ = 0. In other
words, the canonical homomorphism

B(n) −→ Πh∈BA(B(n),2)2 , (2.17)

is injective. This is analogous to the proof of completeness of equational deduction for an
algebraic theory T, which used an embedding of the syntactic category CT into a power of
Set (rather than 2),

CT ↪→ Setmod(T)

for a “sufficient set” of models mod(T) ⊂ FP(CT, Set), namely all those of the form
CT(−, Un) : CTop = mod(T) → Set. For Boolean algebras, the embedding (2.17) will
be a step toward the Stone Representation Theorem.

2.6 Stone representation

Regarding a Boolean algebra B as a category with finite products, consider its Yoneda
embedding y : B ↪→ SetB

op

. Since the hom-set B(x, y) is always 2-valued, we have a
factorization,

y : B ↪→ 2
Bop

↪→ SetB
op

(2.18)

in which each factor still preserves the finite products (note that the products in 2 are
preserved by the inclusion 2 ↪→ Set, and the products in the functor categories 2Bop

and
SetB

op

are taken pointwise). Indeed, this is an instance of a general fact. In the category
Cat× of finite product categories (and ×-preserving functors), the inclusion of the full
subcategory of posets with ∧ (the ∧-semilattices) has a right adjoint R, in addition to the
left adjoint L of poset reflection.

Cat×

L

R
~~

Pos∧
?�
i

OO

[DRAFT: September 15, 2024]

72 Propositional Logic

For a finite product category C, the poset RC is the subcategory Sub(1) ↪→ C of subobjects
of the terminal object 1 (equivalently, the category of monos m : M ↣ 1). The reason
for this is that a ×-preserving functor f : A → C from a poset A with meets takes every
object a ∈ A to a mono f(a) ↣ 1 in C, since a = a ∧ a implies the following is a product
diagram in A.

a // 1

a

OO

// a

OO

Exercise 2.6.1. Prove this, and use it to verify that R = Sub(1) is indeed a right adjoint
to the inclusion of ∧-semilattices into finite-product categories.

Now the functor category 2
Bop

= Pos(Bop,2) occurring in (2.18), consists of all con-
travariant, monotone maps Bop → 2 (which indeed is Sub(1) ↪→ SetB

op

), and is easily seen
to be isomorphic to the poset Down(B) of all downsets (or “sieves”) in B: subsets S ⊆ B
that are downward closed, x ≤ y ∈ S ⇒ x ∈ S, ordered by subset inclusion S ⊆ T .
Explicitly, the isomorphism

Pos(Bop,2) ∼= Down(B) (2.19)

is given by taking f : Bop → 2 to f−1(1) and S ⊆ B to the function fS : Bop → 2 with
fS(b) = 1 ⇔ b ∈ S. Under this isomorphism, the Yoneda embedding takes an element
b ∈ B covariantly to the principal downset ↓b ⊆ B of all x ≤ b.

Exercise 2.6.2. Show that (2.19) is indeed an isomorphism of posets, and that it sends
the Yoneda embedding to the principal sieve mapping, as claimed.

For algebraic theories A, we used the Yoneda embedding to give a completeness theorem
for equational logic with respect to Set-valued models, by composing the (faithful) functor
y : A ↪→ SetA

op

with the (jointly faithful) evaluation functors evalA : SetA
op → Set, for

all objects A ∈ A. This amounts to considering all covariant representables evalA ◦ y =
A(A,−) : A → Set, and observing that these are then (both ×-preserving and) jointly
faithful.

We can do exactly the same thing for a Boolean algebra B (which is, after all, a
finite product category) to get a jointly faithful family of ×-preserving, monotone maps
B(b,−) : B → 2, i.e. ∧-semilattice homomorphisms. By taking the preimages of 1 ∈ 2,
such homomorphisms correspond to filters in B: (non-empty) “upsets” that are also closed
under ∧ .

Pos∧(B,2) ∼= Filters(B) (2.20)

The representables B(b,−) now correspond to the principal filters ↑b ⊆ B.
The problem with using this approach for a completeness theorem for propositional

logic, however, is that such ∧-homomorphisms B → 2 are not models, because they need
not preserve the joins ϕ ∨ ψ (nor the complements ¬ϕ).
Lemma 2.6.3. Let B,B′ be Boolean algebras and f : B → B′ a distributive lattice homo-
morphism. Then f preserves negation, and so is Boolean. The category BA of Boolean
algebras is thus a full subcategory of the category DLat of distributive lattices.

[DRAFT: September 15, 2024]

2.6 Stone representation 73

Proof. The complement ¬b is the unique element of B such that both b ∨ ¬b = 1 and
b ∧ ¬b = 0.

This suggests representing a Boolean algebra B, not by its filters, but by its prime
filters, which correspond bijectively to distributive lattice homomorphisms B → 2.

Definition 2.6.4. A filter F ⊆ D in a distributive lattice D is prime if it is proper (0 /∈ F)
and b∨b′ ∈ F implies b ∈ F or b′ ∈ F . Equivalently, just if the corresponding ∧-semilattice
homomorphism fF : B → 2 is a lattice homomorphism.

Now if B is Boolean, it follows from Lemma 2.6.3 that prime filters F ⊆ B are in
bijection with Boolean homomorphisms B → 2, via the assignment F 7→ fF : B → 2 with
fF (b) = 1⇔ b ∈ F and (f : B → 2) 7→ Ff := f−1(1) ⊆ B,

BA(B,2) ∼= PrFilters(B) . (2.21)

The homomorphism fF : B → 2may be called the classifying map of the prime filter F ⊆ B.
The prime filter Ff may be called the (filter)-kernel (or 1-kernel) of the homomorphism
f : B → 2.

Proposition 2.6.5. In a Boolean algebra B, the following conditions on a filter F ⊆ B
are equivalent.

1. F is prime,

2. the complement B\F is a prime ideal (defined as a prime filter in Bop),

3. the complement B\F is an ideal (defined as a filter in Bop),

4. for each b ∈ B, either b ∈ F or ¬b ∈ F and not both,

5. F is maximal: if F ⊆ G and G is a filter, then F = G (also called an ultrafilter),

6. the map fF : B → 2 given by fF (b) = 1 ⇔ b ∈ F (as in (2.19)) is a Boolean
homomorphism.

Proof. Exercise!

The following lemma is sometimes referred to as the (Boolean) prime ideal theorem.

Lemma 2.6.6. Let B be a Boolean algebra, I ⊆ B an ideal, and F ⊆ B a filter, with
I ∩ F = ∅. There is a prime filter P ⊇ F with I ∩ P = ∅.

[DRAFT: September 15, 2024]

74 Propositional Logic

Proof. Suppose first that I = {0} is the trivial ideal, and that B is countable, with b0, b1, ...
an enumeration of its elements. As in the proof of the Model Existence Lemma, we build
an increasing sequence of filters F0 ⊆ F1 ⊆ . . . as follows:

F0 = F

Fn+1 =

{
Fn if ¬bn ∈ Fn
{f ∧ b | f ∈ Fn, bn ≤ b} otherwise

P =
⋃
n

Fn

One then shows that each Fn is a filter, that I ∩ Fn = ∅ for all n and so I ∩ P = ∅, and
that for each bn, either bn ∈ P or ¬bn ∈ P , whence P is prime.

For I ⊆ B a nontrivial ideal we take the quotient Boolean algebra B ↠ B/I, defined
as the algebra of equivalence classes [b] where a ∼I b ⇔ a ∨ i = b ∨ j for some i, j ∈ I.
One shows that this is indeed a Boolean algebra and that the projection onto equivalence
classes πI : B ↠ B/I is a Boolean homomorphism with (ideal) kernel π−1([0]) = I. Now
apply the foregoing argument to obtain a prime filter P : B/I → 2. The composite
pI = P ◦ πI : B → 2 is then a Boolean homomorphism with (filter) kernel p−1

I (1) which is
prime, contains F and is disjoint from I.

The case where B is uncountable is left as an exercise.

Exercise 2.6.7. Finish the proof of Lemma 2.6.6 by (i) verifying the construction of the
quotient Boolean algebra B ↠ B/I, and (ii) considering the case where B is uncountable
(Hint : either use Zorn’s lemma, or well-order B.)

Theorem 2.6.8 (Stone representation theorem). Let B be a Boolean algebra. There is an
injective Boolean homomorphism B↣ PXB into a powerset.

Proof. We take XB = PrFilters(B), the set of prime filters in B, and consider the map
h : B → PXB given by h(b) = {F | b ∈ F}. Clearly h(0) = ∅ and h(1) = X. Moreover, for
any filter F , we have b ∈ F and b′ ∈ F if and only if b∧ b′ ∈ F , so h(b∧ b′) = h(b)∩ h(b′).
If F is prime, then b ∈ F or b′ ∈ F if and only if b∨ b′ ∈ F , so h(b∨ b′) = h(b)∪h(b′). Thus
h is a Boolean homomorphism. Let a ̸= b ∈ B, and we want to show that h(a) ̸= h(b).
It suffices to assume that a < b (otherwise, consider a ∧ b, for which we cannot have both
a ∧ b = a and a ∧ b = b). We seek a prime filter P ⊆ B with b ∈ P but a /∈ P . Apply
Lemma 2.6.6 to the ideal ↓a and the filter ↑b.

2.7 Stone duality

Note that in the Stone representation B ↣ P(XB) with XB the set of prime filters in B,
the powerset Boolean algebra

P(XB) ∼= Set
(
BA(B,2), 2

)
[DRAFT: September 15, 2024]

2.7 Stone duality 75

is evidently (covariantly) functorial in B, and has an apparent “double-dual” form B∗∗,
where (−)∗ = Hom(−, 2), in the respective category. This suggests a possible duality
between the categories BA and Set,

BAop

∗
**
Set

∗
jj (2.22)

with contravariant functors
B∗ = BA(B,2),

the set of prime filters of the Boolean algebra B, and

S∗ = Set(S, 2),

the powerset Boolean algebra PS of the set S. This indeed gives a contravariant adjunction
“on the right”,

B → PS BA

S → XB Set
(2.23)

by applying the corresponding contravariant functors

PS = Set(S, 2),

XB = BA(B,2),

and then precomposing with the respective “evaluation” natural transformations,

ηB : B −→ P(XB) ∼= Set
(
BA(B,2), 2

)
,

εS : S −→ XPS ∼= BA
(
Set(S, 2),2

)
.

The homomorphism ηB takes an element b ∈ B to (the characteristic function of) the set
of (characteristic functions of) prime filters that contain it, and the function εS takes an
element s ∈ S to (the characteristic function of) the principal filter ↑{s} ⊆ PS, which is
prime since the singleton set {s} is an atom in PS, i.e., a minimal, non-zero element.

Exercise 2.7.1. Verify the adjunction (2.22).

The adjunction (2.22) is not an equivalence of categories, however, because neither of
the units ηB nor εS is in general an isomorphism. (Recall that a right adjoint is full and
faithful just if the counit is an iso, and an equivalence if both the unit and the counit are
isos.) We can improve the adjunction (2.22) by topologizing the set XB of prime filters,
in order to be able to cut down the powerset P(XB) ∼= Set(XB, 2) from all functions to
just the continuous functions into the discrete space 2, which will then correspond to the
clopen sets in XB.

To do this, we take as basic open sets of XB all those subsets of the form:

Bb = ηB(b) = {P ∈ XB | b ∈ P}, b ∈ B. (2.24)

[DRAFT: September 15, 2024]

76 Propositional Logic

These sets are closed under finite intersections, because Ba ∩ Bb = Ba∧b. Indeed, if P ∈
Ba∩Bb then a ∈ P and b ∈ P , whence a∧ b ∈ P , and conversely (after all, ηB is a Boolean
homomorphism!). Thus the family (Bb)b∈B is a basis of open sets for a topology on XB.

Definition 2.7.2. For any Boolean algebra B, the prime spectrum of B is a topological
space XB with the prime filters P ⊆ B as points, and the sets Bb of (2.24), for all b ∈ B,
as basic open sets. The prime spectrum XB is also called the Stone space of B.

Proposition 2.7.3. The open sets O(XB) of the Stone space are in order-preserving,
bijective correspondence with the ideals I ⊆ B of the Boolean algebra, whereby the principal
ideals ↓b correspond exactly to the clopen sets Bb.

Proof. Exercise!

We now have an improved adjunction

BAop

Spec
**
Top

Clop

jj (2.25)

Spec(B) = (XB,O(XB))

Clop(X) = Top(X, 2),

for which, up to isomorphism, the space Spec(B) has the underlying set BA(B,2) given
by “homming” into the Boolean algebra 2, and the Boolean algebra Clop(X) = Top(X, 2)
is similarly determined by mapping into the “topological Boolean algebra” given by the
discrete space 2. Such an adjunction is said to be induced by a dualizing object : an object
that can be regarded as “living in two different categories”. Here the dualizing object 2 is
acting both as a space and as a Boolean algebra. In the Lawvere duality of Chapter 1, the
role of dualizing object was played by the category Set of all sets!

Now if ηB : B ∼= ClopSpec(B), it would follow that the functor Spec : BAop → Top is full
and faithful. So if we then cut down the improved adjunction (2.25) to just the spaces in
the image of Spec, we will obtain a “duality” (a contraviant equivalence). Toward that end,
observe first that the Stone space XB of a Boolean algebra B is a subspace of a product of
finite discrete spaces,

XB ∼= BA(B,2) ↪→
∏
|B|

2,

and is therefore a compact Hausdorff space, by Tychonoff’s theorem. Indeed, the basis
(2.24) is just the subspace topology on XB with respect to the product topology on

∏
|B| 2.

The latter space is moreover totally disconnected, meaning that it has a subbasis of clopen
subsets, namely all those of the form f−1(δ) ⊆ |B| for f : |B| → 2 and δ = 0, 1.

[DRAFT: September 15, 2024]

2.7 Stone duality 77

Lemma 2.7.4. The prime spectrum XB of a Boolean algebra B is a totally disconnected,
compact, Hausdorff space.

Proof. Since
∏

|B| 2 has just been shown to be a totally disconnected, compact Hausdorff
space, we need only see that the subspace XB is closed. Consider the subspaces

2
|B|
∧ , 2

|B|
∨ , 2

|B|
1 , 2

|B|
0 ⊆ 2|B|

consisting of the functions f : |B| → 2 that preserve ∧,∨, 1, 0 respectively. Since each of
these is closed, so is their intersection XB. In more detail, the set of maps f : |B| → 2 that
preserve e.g. ∧ can be described as an equalizer

2
|B|
∧ // // 2|B|

t
//

s //
2|B|×|B|

where the maps s, t take an arrow f : |B| → 2 to the two different composites around the
square

|B| × |B| ∧ //

f × f
��

|B|
f
��

2× 2 ∧
// 2.

But the equalizer 2
|B|
∧ ↣ 2|B| is the pullback of the diagonal on 2|B|×|B|, which is closed

since 2|B|×|B| is Hausdorff. The other cases are analogous.

Definition 2.7.5. A topological space is called Stone if it is totally disconnected, compact,
and Hausdorff. Let Stone ↪→ Top be the full subcategory of topological spaces consisting
of Stone spaces and continuous functions between them.

Now in order to cut down the adjunction (2.25) to a duality, we can restrict it on the
topological side to just the Stone spaces, since we know this subcategory will contain the
image of the functor Spec. In fact, up to isomorphism, this is exactly the image:

Theorem 2.7.6. There is a contravariant equivalence of categories between BA and Stone,

BAop

∗
++
Stone ,

∗
jj

with contravariant functors B∗ = XB the Stone space of a Boolean algebra B, as in Def-
inition 2.7.2, and X∗ = clopen(X), the Boolean algebra of all clopen sets in the Stone
space X.

Proof. We just need to show that the two units of the adjunction

ηB : B → Top
(
BA(B,2), 2

)
,

εS : S → BA
(
Top(S, 2),2

)
.

[DRAFT: September 15, 2024]

78 Propositional Logic

are isomorphisms, the second assuming S is a Stone space.
We know by the Stone representation theorem 2.6.8 that ηB is an injective Boolean

homomorphism, so its image, say

B′ ⊆ Top
(
BA(B,2), 2

) ∼= Clop(XB) ,

is a sub-Boolean algebra of the clopen sets of XB. It suffices to show that every clopen set
of XB is in B′. Thus let K ⊆ XB be clopen, and take K =

⋃
iBi a cover by basic opens

Bi, all of which, note, are of the form (2.24), and so are in B′. Since K is closed and XB
compact, K is also compact, so there is a finite subcover, each element of which is in B′.
Thus their finite union K is also in B′.

Now let S be a Stone space and consider the continuous function

εS : S → BA
(
Top(S, 2),2

) ∼= XClop(S)

which takes s ∈ S to the prime filter Fs = {K ∈ Clop(S) | s ∈ K} of all clopen sets
containing it. Since S is Hausdorff, εS is a bijection on points, and it is continuous by
construction. To see that it is open, let K ⊆ S be a basic clopen set. The complement
S\K is therefore closed, and thus compact, and so is its image εS(S\K), which is therefore
closed. But since εS is a bijection, εS(S\K) is the complement of εS(K), which is therefore
open.

Remark 2.7.7. Another way to cut down the adjunction (2.22),

BAop

∗
**
Set

∗
jj

to an equivalence is to restrict the Boolean algebra side to the complete, atomic Boolean
algebras BAca and continuous (i.e.

∨
-preserving) homomorphisms between them. One then

obtains a duality
BAop

ca ≃ Set,

between complete, atomic Boolean algebras and sets (see Johnstone [Joh82]).

Remark 2.7.8. See Johnstone [Joh82] for a more detailed presentation of the material in
this section (and much more). Also see [MR95] for a generalization to distributive lattices
and Heyting algebras, as well as to “Boolean algebras with operators”, i.e. algebraic models
of modal logic. For more on logical duality see [Awo21]

2.8 Cartesian closed posets

We can relax the Boolean condition ¬¬b = b in order to generalize some of our results to
other systems of propositional logic, represented by structured poset categories. This will
be useful when we consider the “proof-relevant” versions of these as proper (i.e. non-poset)
categories arising from systems of type theory. We begin with a basic system without the
coproducts ⊥ or ϕ ∨ ψ, and thus also without negation ¬ϕ, which we shall therefore call
the positive propositional calculus (a non-standard designation).

[DRAFT: September 15, 2024]

2.8 Cartesian closed posets 79

Positive propositional calculus Classically, implication ϕ ⇒ ψ can be defined by
¬ϕ ∨ ψ, but in categorical logic we prefer to consider ϕ ⇒ ψ as an exponential, of ψ by
ϕ, defined as right adjoint to the conjunction (−) ∧ ϕ. Since this makes sense without
negation ¬ϕ or joins ϕ∨ψ, we can study just the cartesian closed fragment separately, and
then add those other operations later. The same approach will be used for type theory in
Chapter ??.

Definition 2.8.1. The positive propositional calculus PPC is the subsystem of the proposi-
tional calculus of Section 2.1 containing just (finite) conjunction and implication. So PPC is
the set of all propositional formulas ϕ constructed from propositional variables p1, p2, ..., a
constant ⊤ for truth, and binary connectives for conjunction ϕ∧ψ, and implication ϕ⇒ ψ.

As a category, PPC is a preorder under the relation ϕ ⊢ ψ of logical entailment, deter-
mined, say, by the natural deduction system of section 2.1 . As usual, it will be convenient
to pass to the poset reflection of the preorder, which we shall denote by

CPPC

by identifying ϕ and ψ when ϕ ⊣⊢ ψ. (This is the (syntactic) Lindenbaum-Tarski algebra
of the system PPC of positive propositional logic, as in Section 2.5.)

The conjunction ϕ∧ψ is a greatest lower bound of ϕ and ψ in CPPC, because ϕ∧ψ ⊢ ϕ
and ϕ ∧ ψ ⊢ ψ, and for all ϑ, if ϑ ⊢ ϕ and ϑ ⊢ ψ then ϑ ⊢ ϕ ∧ ψ. Since binary products
in a poset are the same thing as greatest lower bounds, we see that CPPC has all binary
products; and of course ⊤ is a terminal object, so CPPC is a ∧-semilattice.

We have already remarked that implication is right adjoint to conjunction in the sense
that for any ϕ,

(−) ∧ ϕ ⊣ ϕ⇒ (−) . (2.26)

Therefore ϕ⇒ ψ is an exponential in CPPC. The counit of the adjunction (the “evaluation”
arrow) is the entailment

(ϕ⇒ ψ) ∧ ϕ ⊢ ψ ,

i.e. the familiar logical rule of modus ponens.
We therefore have the following:

Proposition 2.8.2. The poset CPPC of positive propositional calculus is cartesian closed.

We can use this fact to show that the positive propositional calculus is deductively
complete with respect to the following notion of Kripke semantics [?].

Definition 2.8.3 (Kripke semantics). 1. A Kripke model is a poset K (the worlds)
equipped with a relation

k ⊩ p

between elements k ∈ K and propositional variables p, such that for all j ∈ K,

j ≤ k, k ⊩ p implies j ⊩ p . (2.27)

[DRAFT: September 15, 2024]

80 Propositional Logic

2. Given a Kripke model (K,⊩), extend the relation ⊩ to all formulas ϕ in PPC by
defining the relation of holding in a world k ∈ K inductively by the following condi-
tions:

k ⊩ ⊤ always,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (2.28)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

3. Finally, say that ϕ holds in the Kripke model (K,⊩), written

K ⊩ ϕ

if k ⊩ ϕ for all k ∈ K. (One sometimes also says that ϕ holds on the poset K if
K ⊩ ϕ for all such Kripke relations ⊩ on K.)

Theorem 2.8.4 (Kripke completeness for PPC). A propositional formula ϕ is provable
from the rules of deduction for PPC if, and only if, K ⊩ ϕ for all Kripke models (K,⊩),

PPC ⊢ ϕ iff K ⊩ ϕ for all (K,⊩).

For the proof, we first require the following, which generalizes the discussion around
(2.19) in Section 2.6.

Lemma 2.8.5. For any poset P , the poset Down(P) of all downsets in P , ordered by
inclusion, is cartesian closed. Moreover, the downset embedding,

↓(−) : P −→ Down(P)

preserves any CCC structure that exists in P .

Proof. The total downset P is obviously terminal, and for any downsets S, T ∈ Down(P),
the intersection S ∩ T is also closed down, so we have the products S ∧ T = S ∩ T . For
the exponential, set

S ⇒ T = {p ∈ P | ↓(p) ∩ S ⊆ T}. (2.29)

Then for any downset Q we have

Q ⊆ S ⇒ T iff for all q ∈ Q, q ∈ S ⇒ T ,

iff for all q ∈ Q, ↓(q) ∩ S ⊆ T ,

iff
⋃
q∈Q(↓(q) ∩ S) ⊆ T ,

iff (
⋃
q∈Q ↓(q)) ∩ S ⊆ T ,

iff Q ∩ S ⊆ T .

[DRAFT: September 15, 2024]

2.8 Cartesian closed posets 81

The preservation of CCC structure by ↓ (−) : P −→ Down(P) follows from its preser-
vation by the Yoneda embedding, of which we know ↓(−) to be a factor,

SetP
op

P Down(P)

y

↓(−)

Indeed, we can identify Down(P) with the subcategory Sub(1) of subobjects of 1 in SetP
op

and the result follows by using the left adjoint left inverse sup of the inclusion

sup ⊣ i : Sub(1) ↪→ SetP
op

,

to be considered later (cf. Lemma 4.7.1).
But it is also easy enough to check it directly: Preservation of any limits 1, p ∧ q that

exist in P are clear, since these are pointwise. Then suppose p ⇒ q is an exponential; so
for any downset D we have:

D ⊆↓(p⇒ q) iff d ∈↓(p⇒ q) , for all d ∈ D
iff d ≤ p⇒ q , for all d ∈ D
iff d ∧ p ≤ q , for all d ∈ D
iff ↓(d ∧ p) ⊆↓(q) , for all d ∈ D
iff ↓(d) ∩ ↓(p) ⊆↓(q) , for all d ∈ D
iff D ⊆↓(p)⇒↓(q)

where the last line is by (2.29). Now take D to be ↓(p⇒ q) and ↓(p)⇒↓(q) respectively
(or just apply Yoneda!). (Note that in line (3) we assumed that d ∧ p exists for all d ∈ D;
this can be avoided by a slightly more complicated argument.)

Proof. (of Theorem 2.8.4) The proof follows a now-familiar pattern, which we only sketch:

1. The syntactic category CPPC is a CCC, with ⊤ = 1, ϕ×ψ = ϕ∧ψ, and ψϕ = ϕ⇒ ψ.
In fact, it is the free cartesian closed poset on the generating set Var = {p1, p2, . . . }
of propositional variables.

2. A (Kripke) model (K,⊩) is the same thing as a CCC functor CPPC → Down(K),
which by Step 1 is just an arbitrary map Var → Down(K), as in (2.27). To see
this, observe that we have a bijective correspondence between CCC functors [[−]] and
Kripke relations ⊩ ; indeed, by the exponential adjunction in the cartesian closed
category Pos, there is a natural bijection,

⊩ : Kop × CPPC −→ 2

[[−]] : CPPC −→ 2
Kop ∼= Down(K)

[DRAFT: September 15, 2024]

82 Propositional Logic

where we use the poset 2 to classify downsets in a poset K via upsets in Kop,

2
P op ∼= Pos(Kop,2) ∼= Down(K) ,

by taking the 1-kernel f−1(1) ⊆ K of a monotone map f : Kop → 2. (The con-
travariance will be convenient in Step 3). Note that the monotonicity of ⊩ yields the
conditions

j ≤ k , k ⊩ ϕ =⇒ j ⊩ ϕ

and

k ⊩ ϕ , ϕ ⊢ ψ =⇒ k ⊩ ψ .

And the CCC preservation of the transpose [[−]] yields the Kripke forcing conditions
(2.28) (exercise!).

3. For any model (K,⊩), by the adjunction in (2) we then have

K ⊩ ϕ ⇐⇒ [[ϕ]] = K ,

with K ⊆ K the maximal downset.

4. Because the downset/Yoneda embedding ↓ preserves the CCC structure (by Lemma
2.8.5), CPPC has a canonical model, namely the special case of (2) with K = CPPC and
⊩ resulting from the trasposition:

↓(−) : CPPC −→ Down(CPPC) ∼= 2
Cop
PPC

⊩ : CopPPC × CPPC −→ 2

5. Now note that for the Kripke relation ⊩ in (4), we have ⊩ = ⊢ since it’s just the
transpose of the Yoneda embedding, and the poset CPPC is ordered by ϕ ⊢ ψ. So the
canonical model is logically generic, in the sense that

ϕ ⊩ ψ ⇐⇒ ϕ ⊢ ψ ,

and so in particular,

CPPC ⊩ ϕ ⇐⇒ PPC ⊢ ϕ .

Exercise 2.8.6. Verify the claim in (2) that CCC preservation of the transpose [[−]] of ⊩
yields the Kripke forcing conditions (2.28).

Exercise 2.8.7. Give a Kripke countermodel to show that PPC ⊬ (ϕ⇒ ψ)⇒ ϕ.

[DRAFT: September 15, 2024]

2.9 Heyting algebras 83

2.9 Heyting algebras

Let us now extend the positive propositional calculus to the full intuitionistic propositional
calculus. This involves adding the finite coproducts 0 and p∨ q to the notion of a cartesian
closed poset, to arrive at the general notion of a Heyting algebra. Heyting algebras are to
intuitionistic logic as Boolean algebras are to classical logic: each is an algebraic description
of the corresponding logical calculus. We shall review both the algebraic and the logical
points of view; as we shall see, many aspects of the theory of Boolean algebras carry over
to Heyting algebras. For instance, in order to prove the Kripke completeness of the full
system of intuitionistic propositional calculus, we will need an alternative to Lemma 2.8.5,
because the Yoneda embedding does not in general preserve coproducts. For that we will
again use a version of the Stone representation theorem, this time in a generalized form
due to Joyal.

Distributive lattices

Recall first that a (bounded) lattice is a poset that has finite limits and colimits. In other
words, a lattice (L,≤,∧,∨, 1, 0) is a poset (L,≤) with distinguished elements 1, 0 ∈ L, and
binary operations of meet ∧ and join ∨, satisfying for all x, y, z ∈ L,

0 ≤ x ≤ 1
z ≤ x z ≤ y

z ≤ x ∧ y
x ≤ z y ≤ z

x ∨ y ≤ z

A lattice homomorphism is a function f : L → K between lattices which preserves finite
limits and colimits, i.e., f0 = 0, f1 = 1, f(x∧ y) = fx∧ fy, and f(x∨ y) = fx∨ fy. The
category of lattices and lattice homomorphisms is denoted by Lat.

Lattices are an algebraic theory, and can be axiomatized equationally in a signature
with two distinguished elements 0 and 1 and two binary operations ∧ and ∨, satisfying the
following equations:

(x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,
x ∧ y = y ∧ x , x ∨ y = y ∨ x ,
x ∧ x = x , x ∨ x = x ,

1 ∧ x = x , 0 ∨ x = x ,

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x .

(2.30)

The partial order on L is then determined by

x ≤ y ⇐⇒ x = x ∧ y .

Exercise 2.9.1. Show that in a lattice we also have x ≤ y if and only if x ∨ y = y.

[DRAFT: September 15, 2024]

84 Propositional Logic

A lattice is distributive if the following distributive laws hold:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) ,
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) .

(2.31)

It turns out that if one distributive law holds then so does the other [Joh82, I.1.5].

Definition 2.9.2. A Heyting algebra is a cartesian closed lattice. This means that a
Heyting algebra H has a binary operation of implication x ⇒ y, satisfying the following
condition, for all x, y, z ∈ H:

z ≤ x⇒ y

z ∧ x ≤ y

A Heyting algebra homomorphism is a lattice homomorphism f : K → H between
Heyting algebras that preserves implication, i.e., f(x⇒ y) = (fx⇒ fy). The category of
Heyting algebras and their homomorphisms is denoted by Heyt. (Caution: unlike Boolean
algebras, the subcategory of lattices consisting of Heyting algebras and their homomor-
phisms is not full.)

Heyting algebras can be axiomatized equationally as a set H with two distinguished
elements 0 and 1 and three binary operations ∧, ∨ and ⇒. The equations for a Heyting
algebra are the ones listed in (2.30), as well as the following ones for ⇒.

(x⇒ x) = 1 ,

x ∧ (x⇒ y) = x ∧ y ,
y ∧ (x⇒ y) = y ,

(x⇒ (y ∧ z)) = (x⇒ y) ∧ (x⇒ z) .

(2.32)

For a proof, see [Joh82, I.1], where one can also find a proof that every Heyting algebra is
distributive (exercise!).

Exercise 2.9.3. Show that every Heyting algebra is indeed a distributive lattice.

Example 2.9.4. We know from Lemma 2.8.5 that for any poset P , the poset Down(P) of
all downsets in P , ordered by inclusion, is cartesian closed. Moreover, we know that

Down(P) ∼= 2
P op ∼= Pos(P op,2) ,

the latter regarded as a poset with the pointwise ordering on the monotone maps P op → 2

(i.e. the natural transformations). The assignment takes a map f : P op → 2 to the
filter-kernel f−1(1) ⊆ P op, which is therefore a downset in P . Indeed, if f ≤ g then
p ∈ f−1(1) ⇐⇒ fp = 1 which implies gp = 1 ⇐⇒ p ∈ g−1(1), so f−1(1) ⊆ g−1(1), and
these upsets in P op are downsets in P .

Since 2 is a lattice, we can take joins f ∨ g in Pos(P op,2) pointwise, in order to get
joins in Down(P) ∼= Pos(P op,2), which then correspond to (set theoretic) unions of the
corresponding downsets f−1(1) ∪ g−1(1). Thus for any poset P , the lattice Down(P) is a

[DRAFT: September 15, 2024]

2.9 Heyting algebras 85

Heyting algebra, with the downsets ordered by inclusion, and the (contravariant) classifying
maps P op → 2 ordered pointwise.

Of course, one can compose the classifying maps with the negation iso ¬ : 2
∼→ 2 to get

Down(P) ∼= Pos(P,2), with covariant classifying maps P → 2 for the downsets, using the
ideal-kernels f−1(0) ⊆ P instead; but then the ordering on Pos(P,2) will be the reverse
pointwise ordering of maps f : P → 2.

Intuitionistic propositional calculus

There is an obvious forgetful functor U : Heyt → Set mapping a Heyting algebra to
its underlying set, and a homomorphism of Heyting algebras to the underlying function.
Because Heyting algebras are also models of an equational theory, there is a left adjoint
H ⊣ U , which is the usual “free” construction for algebras, mapping a set S to the free
Heyting algebra H(S) generated by it. As for all algebraic structures, the construction
of H(S) can be performed in two steps: first, define a set H[S] of formal expressions in the
signature, and then quotient it by an equivalence relation generated by the equations.

In more detail, let H[S] be the set of formal expressions generated inductively by the
following rules:

1. Generators: if x ∈ S then x ∈ H[S].

2. Constants: ⊥,⊤ ∈ H[S].

3. Connectives: if ϕ, ψ ∈ H[S] then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ) ∈ H[S].

We then impose an equivalence relation ∼ on H[S], defined as the smallest equivalence
relation containing all instances of the axioms (2.30) and (2.32) and closed under substi-
tution of equals for equals (sometimes called the smallest congruence). This then forces
the quotient

H(S) = H[S]/∼

to be a Heyting algebra, as is easily checked.
We define the action of the functor H on morphisms as usual: a function f : S → T is

mapped to the Heyting algebra homomorphism H(f) : H(S) → H(T) (well-)defined (on
equivalence classes) by

H(f)⊥ = ⊥ , H(f)⊥ = ⊥ , H(f)x = fx ,

H(f)(ϕ ∗ ψ) = (H(f)ϕ) ∗ (H(f)ψ) ,

where ∗ stands for ∧, ∨ or ⇒.
The inclusion of generators ηS : S → UH(S) into the underlying set of the free Heyting

algebra H(S) is then the component at S of a natural transformation η : 1Set =⇒ U ◦H,
which is of course the unit of the adjunction H ⊣ U . To see this, consider a Heyting alge-
bra K and an arbitrary function f : S → UK. Then the Heyting algebra homomorphism

[DRAFT: September 15, 2024]

86 Propositional Logic

f : H(S)→ K is defined in the evident way, by

f⊥ = ⊥ , f⊥ = ⊥ , fx = fx ,

f(ϕ ∗ ψ) = (fϕ) ∗ (fψ) ,

where, again, ∗ stands for ∧, ∨ or ⇒. The map f then makes the following triangle in Set
commute:

S
ηS //

f
""

UH(S)

Uf

��
UK

The homomorphism f : H(S)→ K is the unique one with this property, because any two
homomorphisms from H(S) that agree on generators must clearly be equal (formally, this
can be proved by induction on the structure of the expressions in H[S]).

We can now define the intuitionistic propositional calculus IPC to be the free Heyting
algebraH(p0, p1, . . .) on countably many generators {p0, p1, . . . }, called atomic propositions
or propositional variables. This is a somewhat unorthodox definition from a logical point of
view—normally we would start from a deductive calculus consisting of a formal language,
entailment judgements, and rules of inference. But of course, by now, we realize that the
two approaches are essentially equivalent.

Having said that, let us also briefly describe IPC in the conventional way: The formulas
are all those given in Section 2.1, and the rules of inference are those of the system of
natural deduction from Section 2.1, but without the classical rules.

Then let CIPC be the poset reflection of the formulas of IPC, preordered by entailment
ϕ ⊢ ψ. The elements of CIPC are thus equivalence classes [ϕ] of formulas, where two
formulas ϕ and ψ are equivalent if both ϕ ⊢ ψ and ψ ⊢ ϕ are provable in natural deduction,
without the classical rules,

[ϕ] = [ψ] ⇐⇒ ϕ ⊣⊢ ψ .
This syntactic category CIPC is then easily seen to be the free Heyting algebra on countably
many generators {p0, p1, . . . },

CIPC ∼= H(p0, p1, . . .) ,

just as the corresponding “Lindenbaum-Tarski” Boolean algebra B[p0, p1, . . .] was seen to
be the free Boolean algebra on the propositional variables as generators.

Classical propositional calculus redux

Let us have another look back at the theory of classical propositional logic from the current
point of view, i.e. as a special kind of Heyting algebra. An element x ∈ L of a lattice L is
said to be complemented when there exists y ∈ L such that

x ∧ y = 0 , x ∨ y = 1 .

[DRAFT: September 15, 2024]

2.9 Heyting algebras 87

We say that y is the complement of x. In a distributive lattice, the complement of x is
unique if it exists. Indeed, if both y and z are complements of x then

y ∧ z = (y ∧ z) ∨ 0 = (y ∧ z) ∨ (y ∧ x) = y ∧ (z ∨ x) = y ∧ 1 = y ,

hence y ≤ z. A symmetric argument shows that z ≤ y, therefore y = z. The complement
of x, if it exists, is denoted by ¬x.

A Boolean algebra can be defined as a distributive lattice in which every element is
complemented. In other words, a Boolean algebra B has a complementation operation
¬ : B → B which satisfies, for all x ∈ B,

x ∧ ¬x = 0 , x ∨ ¬x = 1 . (2.33)

The full subcategory of Lat consisting of Boolean algebras is denoted by BA.

Exercise 2.9.5. Prove that every Boolean algebra is a Heyting algebra. (Hint : how is
implication encoded in terms of negation and disjunction in classical logic?)

In a Heyting algebra, not every element is complemented. However, we can still define
a pseudo complement or negation operation ¬ by

¬x = (x⇒ 0) ,

Then ¬x is the largest element for which x∧¬x = 0. While in a Boolean algebra ¬¬x = x,
in a Heyting algebra we only have x ≤ ¬¬x in general. An element x of a Heyting algebra
for which x = ¬¬x is called regular.

Exercise 2.9.6. Derive the following properties of negation in a Heyting algebra:

x ≤ ¬¬x ,
¬x = ¬¬¬x ,

x ≤ y ⇒ ¬y ≤ ¬x ,
¬¬(x ∧ y) = ¬¬x ∧ ¬¬y .

Exercise 2.9.7. Prove that the topology OX of any topological space X is a Heyting
algebra. Describe in topological language the implication U ⇒ V , the negation ¬U , and
the regular elements U = ¬¬U in OX.

Exercise 2.9.8. Show that for a Heyting algebra H, the regular elements of H form a
Boolean algebra H¬¬ =

{
x ∈ H

∣∣ x = ¬¬x
}
. Here H¬¬ is viewed as a subposet of H. Hint:

negation ¬′, conjunction ∧′, and disjunction ∨′ in H¬¬ are expressed as follows in terms of
negation, conjunction and disjunction in H, for x, y ∈ H¬¬:

¬′x = ¬x , x ∧′ y = ¬¬(x ∧ y) , x ∨′ y = ¬¬(x ∨ y) .

[DRAFT: September 15, 2024]

88 Propositional Logic

From logical point of view, the classical propositional calculus CPC is obtained from
the intuitionistic propositional calculus by the addition of the logical law known as tertium
non datur, or the law of excluded middle:

Γ ⊢ ϕ ∨ ¬ϕ
Alternatively, we could add the rule of reductio ad absurdum, or proof by contradiction:

Γ ⊢ ¬¬ϕ
Γ ⊢ ϕ .

Identifying logically equivalent formulas of CPC, we obtain a poset CCPC ordered by logical
entailment. This poset is, of course, the free Boolean algebra on the countably many
generators {p0, p1, . . . }. The free Boolean algebra can be constructed just as the free
Heyting algebra above, either equationally, or in terms of deduction. The equational axioms
for a Boolean algebra are the axioms for a lattice (2.30), the distributive laws (2.31), and
the complement laws (2.33).

Exercise∗ 2.9.9. Is CCPC isomorphic to the Boolean algebra CIPC¬¬ of the regular elements
of CIPC?

Exercise 2.9.10. Show that in a Heyting algebra H, one has ¬¬x = x for all x ∈ H
if, and only if, y ∨ ¬y = 1 for all y ∈ H. Hint : half of the equivalence is easy. For the
other half, observe that the assumption ¬¬x = x means that negation is an order-reversing
bijection H → H. It therefore transforms joins into meets and vice versa, and so the De
Morgan laws hold:

¬(x ∧ y) = ¬x ∨ ¬y , ¬(x ∨ y) = ¬x ∧ ¬y .

Together with y∧¬y = 0, the De Morgan laws easily imply y∨¬y = 1. See [Joh82, I.1.11].

Kripke semantics for IPC

Let us now prove the Kripke completeness of IPC, extending Theorem 2.8.4, namely:

Theorem 2.9.11 (Kripke completeness for IPC). Let (K,⊩) be a Kripke model, i.e. a
poset K equipped with a forcing relation k ⊩ p between elements k ∈ K and propositional
variables p, satisfying

j ≤ k, k ⊩ p implies j ⊩ p. (2.34)

Extend ⊩ to all formulas ϕ in IPC by defining

k ⊩ ⊤ always,

k ⊩ ⊥ never,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (2.35)

k ⊩ ϕ ∨ ψ iff k ⊩ ϕ or k ⊩ ψ , (2.36)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

[DRAFT: September 15, 2024]

2.9 Heyting algebras 89

Finally, write K ⊩ ϕ if k ⊩ ϕ for all k ∈ K.
A propositional formula ϕ is then provable from the rules of deduction for IPC if, and

only if, K ⊩ ϕ for all Kripke models (K,⊩). Briefly:

IPC ⊢ ϕ iff K ⊩ ϕ for all (K,⊩).

Let us first see that we cannot simply reuse the proof from Theorem 2.8.4 for the
positive fragment PPC, because the downset (Yoneda) embedding that we used there

↓ : CPPC ↪→ Down(CPPC) (2.37)

would not preserve the coproducts ⊥ and ϕ ∨ ψ. Indeed, ↓ (⊥) ̸= ∅, because it contains
⊥ itself! And in general ↓ (ϕ ∨ ψ) ̸= ↓ (ϕ) ∪ ↓ (ψ), because the righthand side need not
contain, e.g., ϕ ∨ ψ.

Instead, we will generalize the Stone Representation theorem 2.6.8 from Boolean alge-
bras to Heyting algebras, using a theorem due to A. Joyal (cf. [MR95, MH92]). First, recall
that the Stone representation provided, for any Boolean algebra B, an injective Boolean
homomorphism into a powerset,

B↣ PX .

For X we took the set of prime filters, which we identified with the homset of Boolean
homomorphisms BA(B,2) by taking the filter-kernel f−1(1) ⊆ B of a homomorphism f :
B → 2. The injective homomorphism η : B↣ P(BA(B,2)) was then given by:

η(b) = {F | b ∈ F} = {f : B → 2 | f(b) = 1} .

Now, the set BA(B,2) can be regarded as a (discrete) poset, and since the inclusion
Set ↪→ Pos as discrete posets is left adjoint to the forgetful functor |−| : Pos→ Set, for the
powerset P(BA(B,2)) we have

P(BA(B,2)) ∼= Set(BA(B,2), 2) ∼= Pos(BA(B,2),2) ∼= 2
BA(B,2)

where the latter is the exponential in the cartesian closed category Pos. Transposing the
composite of this iso with the Stone representation η : B↣ PX in Pos,

η : B↣ P(BA(B,2)) ∼= 2
BA(B,2)

η̃ : BA(B,2)× B → 2

we arrive at the (monotone) evaluation map

η̃ = eval : BA(B,2)× B → 2. (2.38)

Finally, recall that the category of Boolean algebras is full in the category DLat of distribu-
tive lattices, so that

BA(B,2) = DLat(B,2) .

[DRAFT: September 15, 2024]

90 Propositional Logic

Now for anyHeyting algebra H (or indeed any distributive lattice), the homset DLat(H,2),
ordered pointwise, is isomorphic to the poset of all prime filters in H ordered by inclusion,
again by taking h : H → 2 to its (filter) kernel h−1{1} ⊆ H. In particular, when H is not
Boolean, the poset DLat(H,2) is no longer discrete, since prime filters in a Heyting algebra
need not be maximal. Indeed, recall that Proposition 2.6.5 described the prime filters in
a Boolean algebra B as those with a classifying map f : B → 2 that is a lattice homo-
morphism and therefore those with a complement f−1(0) ⊆ B that is a (prime) ideal. In
the Boolean case, these were also the maximal filters, because the preservation of Boolean
negation ¬b allowed us to deduce that for every b ∈ B, exactly one of b or ¬b must be in
such a filter F . In a Heyting algebra, however, the last condition need not obtain; and
indeed prime filters in a Heyting algebra need not be maximal.

The transpose in Pos of the evaluation map,

eval : DLat(H,2)×H → 2. (2.39)

is again a monotone map
η : H −→ 2

DLat(H,2), (2.40)

which takes p ∈ H to the “evaluation at p” map f 7→ f(p) ∈ 2, i.e.,

ηp(f) = f(p) for p ∈ H and f : H → 2 .

As before (cf. Example 2.9.4), the poset 2DLat(H,2) (ordered pointwise) may be identified
with the downsets in the poset DLat(H,2)op, ordered by inclusion, which recall from Ex-
ample 2.9.4 is always a Heyting algebra. Thus, in sum, for any Heyting algebra H, we
have a monotone map,

η : H −→ Down(DLat(H,2)op) , (2.41)

generalizing the Stone representation from Boolean to Heyting algebras.

Theorem 2.9.12 (Joyal). LetH be a Heyting algebra. There is an injective homomorphism
of Heyting algebras

H ↣ Down(J)

into the Heyting algebra of downsets in a poset J .

Note that in this form, the theorem literally generalizes the Stone representation the-
orem: when H is Boolean we can take J to be discrete, and then Down(J) ∼= Pos(J,2) ∼=
Set(J, 2) ∼= P(J) is Boolean, whence the Heyting embedding is also Boolean.

The proof will again use the transposed evaluation map,

η : H −→ 2
DLat(H,2) ∼= Down(DLat(H,2)op)

which, as before, is injective, by the Prime Ideal Theorem (see Lemma 2.6.6). We will use
it in the following form due to Birkhoff.

Lemma 2.9.13 (Prime Ideal Theorem). Let D be a distributive lattice, I ⊆ D an ideal,
and x ∈ D with x ̸∈ I. There is a prime ideal I ⊆ P ⊂ D with x ̸∈ P .

[DRAFT: September 15, 2024]

2.9 Heyting algebras 91

Proof. As in the proof of Lemma 2.6.6, it suffices to prove it for the case I = (0). This
time, we use Zorn’s Lemma: a poset in which every chain has an upper bound has maximal
elements. Consider the poset I\x of “ideals I without x”, x ̸∈ I, ordered by inclusion.
The union of any chain I0 ⊆ I1 ⊆ ... in I\x is clearly also in I\x, so we have (at least
one) maximal element M ∈ I\x. We claim that M ⊆ D is prime. To that end, take
a, b ∈ D with a ∧ b ∈ M . If a, b ̸∈ M , let M [a] = {n ≤ m ∨ a | m ∈ M}, the ideal join
of M and ↓(a), and similarly for M [b]. Since M is maximal without x, we therefore have
x ∈ M [a] and x ∈ M [b]. Thus let x ≤ m ∨ a and x ≤ m′ ∨ b for some m,m′ ∈ M . Then
x ∨m′ ≤ m ∨m′ ∨ a and x ∨m ≤ m ∨m′ ∨ b, so taking meets on both sides gives

(x ∨m′) ∧ (x ∨m) ≤ (m ∨m′ ∨ a) ∧ (m ∨m′ ∨ b) = (m ∨m′) ∨ (a ∧ b).

Since the righthand side is in the ideal M , so is the left. But then x ≤ x∨ (m∧m′) is also
in M , contrary to our assumption that M ∈ I\x.

Proof of Theorem 2.9.12. As in (2.41), let Jop = DLat(H,2) be the poset of prime filters
in H, and consider the transposed evaluation map (2.41),

η : H −→ Down(DLat(H,2)op) ∼= 2
DLat(H,2)

given by η(p) = {F | p ∈ F prime} ∼= {f : H → 2 | f(p) = 1}.
Clearly η(0) = ∅ and η(1) = DLat(H,2), and similarly for the other meets and joins,

so η is a lattice homomorphism. Moreover, if p ̸= q ∈ H then, as in the proof of 2.6.8, we
have that η(p) ̸= η(q), by the Prime Ideal Theorem (Lemma 2.9.13). Thus it only remains
to show that

η(p⇒ q) = η(p)⇒η(q) .

Unwinding the definitions, this means that, for all f ∈ DLat(H,2),

f(p⇒ q) = 1 iff for all g ≥ f , g(p) = 1 implies g(q) = 1. (2.42)

Equivalently, for all prime filters F ⊆ H,

p⇒ q ∈ F iff for all prime G ⊇ F , p ∈ G implies q ∈ G. (2.43)

Now if p ⇒ q ∈ F , then for all (prime) filters G ⊇ F , also p ⇒ q ∈ G, and so p ∈ G
implies q ∈ G, since (p⇒ q) ∧ p ≤ q.

Conversely, suppose p ⇒ q ̸∈ F , and we seek a prime filter G ⊇ F with p ∈ G but
q ̸∈ G. Consider the filter

F [p] = {x ∧ p ≤ h ∈ H | x ∈ F} ,

which is the join of F and ↑(p) in the poset of filters. If q ∈ F [p], then x∧ p ≤ q for some
x ∈ F , whence x ≤ p ⇒ q, and so p ⇒ q ∈ F , contrary to assumption; thus q ̸∈ F [p]. By
the Prime Ideal Theorem again (applied to the distributive lattice Hop) there is a prime
filter G ⊇ F [p] with q ̸∈ G.

Exercise 2.9.14. Give a Kripke countermodel to show that the Law of Excluded Middle
ϕ ∨ ¬ϕ is not provable in IPC.

[DRAFT: September 15, 2024]

92 Propositional Logic

2.10 Frames and locales

Recall that a supremum (least upper bound) of S ⊆ P in a poset P is an element
∨
S ∈ P

such that, for all y ∈ S, ∨
S ≤ y ⇐⇒ ∀x : S . x ≤ y .

In particular,
∨
∅ is a least element of P and

∨
P is a greatest element of P , if they exist.

A poset (P,≤) is said to be complete if it has suprema of all subsets. Viewed as a
category, P is both complete and cocomplete when it is complete as a poset. This is so,
first, because coequalizers in a poset always exist, and coproducts are exactly suprema, so
a complete poset has all colimits. And moreover, it then also has infima (greatest lower
bounds) of arbitrary subsets, and so it is also complete as a category. Indeed, an infimum
of S ⊆ P is an element

∧
S ∈ P such that, for all y ∈ S,

y ≤
∧
S ⇐⇒ ∀x : S . y ≤ x .

Proposition 2.10.1. A poset is complete if, and only if, it has infima
∧
S for all subsets

S ⊆ P .

Proof. Infima and suprema are expressed in terms of each other as follows:∧
S =

∨{
x ∈ P

∣∣ ∀ y : S . x ≤ y
}
,∨

S =
∧{

y ∈ P
∣∣ ∀x : S . x ≤ y

}
.

The basic examples of complete posets are the powersets PX, and these are Boolean
algebras, and therefore also Heyting. Similarly, the posets of the form Down(P) of downsets
in a poset P are also evidently complete, and we know that these are also Heyting algebras,
although not Boolean. This leads us to ask: when is a complete poset P cartesian closed,
and therefore a Heyting algebra? Being complete, P has the terminal object, namely the
greatest element

∨
P = 1 ∈ P , and it has binary products which are binary infima. If P

is cartesian closed then for all x, y ∈ P there exists an exponential (x ⇒ y) ∈ P , which
satisfies, for all z ∈ P ,

z ∧ x ≤ y

z ≤ x⇒ y
.

First, observe that with the help of this adjunction, we can derive the infinite distributive
law :

x ∧
∨
i∈I yi =

∨
i∈I(x ∧ yi) (2.44)

[DRAFT: September 15, 2024]

2.10 Frames and locales 93

for any family of elements
{
yi ∈ P

∣∣ i ∈ I}, as follows:
x ∧

∨
i∈I yi ≤ z∨

i∈I yi ≤ (x⇒ z)

∀ i : I . (yi ≤ (x⇒ z))

∀ i : I . (x ∧ yi ≤ z)∨
i∈I(x ∧ yi) ≤ z

Now since x ∧
∨
i∈I yi and

∨
i∈I(x ∧ yi) have the same upper bounds they must be equal

(why?). Conversely, suppose the distributive law (2.44) holds, and let us define x⇒ y to
be

(x⇒ y) =
∨{

z ∈ P
∣∣ x ∧ z ≤ y

}
. (2.45)

Now we can check that this element x ⇒ y has the universal property of an exponential
(in a poset): for all x, y ∈ P ,

x ∧ (x⇒ y) ≤ y , (2.46)

and for z ∈ P ,
x ∧ z ≤ y implies z ≤ x⇒ y .

The implication follows directly from (2.45), and (2.46) follows from the distributive law:

x ∧ (x⇒ y) = x ∧
∨{

z ∈ P
∣∣ x ∧ z ≤ y

}
=

∨{
x ∧ z

∣∣ x ∧ z ≤ y
}
≤ y .

Such complete, cartesian closed posets are called frames.

Definition 2.10.2. A frame is a complete poset satisfying the (infinite) distributive law.

x ∧
∨
i∈I yi =

∨
i∈I(x ∧ yi) .

Equivalently, we have just shown that a frame is a complete Heyting algebra. We will
distinguish the two, however, by their maps:

A frame morphism is a function f : L→M between frames that preserves finite infima
x ∧ y and arbitrary suprema

∨
i∈I yi. The category of frames and frame morphisms is

denoted by Frame.

Warning: just as we need to require the preservation of meets x ∧ y although they are
determined by the joins

∨
i∈I yi, a frame morphism need not preserve exponentials x⇒ y!

Example 2.10.3. Given a poset P , the downsets ↓P form a complete lattice under the
inclusion order S ⊆ T , and with the set theoretic operations

⋃
and

⋂
as

∨
and

∧
. Since

Down(P) is already known to be a Heyting algebra (Example 2.9.4), it is therefore also a
frame. (Alternately, we can show that it is a frame by noting that the operations

⋃
and

∩ satisfy the infinite distributive law.)

[DRAFT: September 15, 2024]

94 Propositional Logic

Any monotone map f : P → Q between posets then gives rise to a frame map

Down(f) : Down(Q) −→ Down(P) .

(Note the direction!) This is easily seen by recalling that Down(P) ∼= Pos(P,2) as posets.
Note, moreover, that Pos(f,2) : Pos(Q,2) −→ Pos(P,2) is a (co)limit preserving func-

tor on complete posets, since the (co)limits are just set-theoretic unions and intersections.
So Pos(f,2) therefore has both left and right adjoints. These functors are usually written

f! ⊣ f ∗ ⊣ f∗ : Pos(Q,2) −→ Pos(P,2) .

Although it does not in general preserve Heyting implications S ⇒ T , the monotone
map f ∗ : Down(Q) −→ Down(P) is indeed a morphism of frames. We therefore have a
contravariant functor

Down(−) : Pos→ Frameop. (2.47)

Example 2.10.4. The topology OX of a topological space X, ordered by inclusion, is
a frame, because finite intersections and arbitrary unions of open sets are open. The
distributive law holds because intersections distribute over unions. If f : X → Y is a
continuous map between topological spaces, the inverse image map f−1 : OY → OX is a
frame homomorphism. Thus, there is a functor

O : Top→ Frameop

which maps a space X to its topology OX and a continuous map f : X → Y to the inverse
image map f−1 : OY → OX.

Motivated by the previous examples, we introduce the category of locales as the opposite
of the category of frames:

Loc = Frameop .

We can think of a locale as a “generalized space”.

Example 2.10.5. Let P be a poset and define a topology on the elements of P by defining
the opens to be the downsets,

O(P) = Down(P) ∼= Pos(P,2).

These open sets are not only closed under arbitrary unions and finite intersections, but also
under arbitrary intersections. Such a topological space, in which the opens are closed under
all intersections, is said to be an Alexandroff space (note that the opens could equivalently
be defined to be the upsets). The associated locale is the one in Example 2.10.4, and the
associated frame is the one in Example 2.10.3.

Exercise∗ 2.10.6. This exercise is meant for students with some knowledge of topology.
For a topological space X and a point x ∈ X, let N(x) be the neighborhood filter of x,

N(x) =
{
U ∈ OX

∣∣ x ∈ U} .

[DRAFT: September 15, 2024]

2.10 Frames and locales 95

Recall that a T0-space is a topological space X in which points are determined by their
neighborhood filters,

N(x) = N(y)⇒ x = y . (x, y ∈ X)

Let Top0 be the full subcategory of Top on T0-spaces. The functor O : Top→ Loc restricts
to a functor O : Top0 → Loc. Prove that O : Top0 → Loc is a faithful functor. Is it full?

Topological semantics for IPC

It should now be clear how to interpret IPC into a topological space X: each formula ϕ is
assigned to an open set [[ϕ]] ∈ OX in such a way that [[−]] is a homomorphism of Heyting
algebras.

Definition 2.10.7. A topological model of IPC consists of a space X and a function

[[−]] : Var→ O(X)

from the propositional variables Var = {p0, p1, . . . } to open sets of X. The interpretation
is then extended to all formulas,

[[−]] : IPC→ O(X) ,

by setting:

[[⊤]] = X

[[⊥]] = ∅
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[ϕ⇒ ψ]] = [[ϕ]]⇒ [[ψ]] .

The Heyting implication [[ϕ]]⇒ [[ψ]] in OX, is defined as in (2.45) as

[[ϕ]]⇒ [[ψ]] =
⋃{

U ∈ OX
∣∣ U ∧ [[ϕ]] ≤ [[ψ]]

}
.

Joyal’s representation theorem 2.9.12 then easily implies that IPC is sound and complete
with respect to topological semantics.

Corollary 2.10.8. A formula ϕ is provable in IPC if, and only if, it holds in every topo-
logical interpretation [[−]] into a space X, briefly:

IPC ⊢ ϕ iff [[ϕ]] = X for all spaces X .

Proof. Put the Alexandroff topology on the downsets of prime filters in the Heyting alge-
bra IPC.

Exercise 2.10.9. Give a topological countermodel to show that the Law of Double Nega-
tion ¬¬ϕ⇒ ϕ is not provable in IPC.

Modal logic

[DRAFT: September 15, 2024]

96 Propositional Logic

[DRAFT: September 15, 2024]

Chapter 3

First-Order Logic

Having considered equational and propositional logic, we now move on to first-order logic,
which is the usual predicate logic with propositional connectives like ∧ and ⇒ and the
quantifiers ∀ and ∃. This logic can be seen as propositional logic indexed over an equational
theory, in a sense that will become clear; quantification will then be seen to result from
completeness with respect to the indexing.

We pursue the same general approach to studying logic via category theory as in the
previous chapters, determining categorical structures that model the logical operations,
and regarding (certain) categories with these structures as theories, and functors that
preserve them as models. We again construct the classifying category for a theory from
the syntax of a deductive system and establish its universal property, leading again to
functorial semantics. We then establish basic completeness theorems by embedding such
classifying categories in particular semantic categories of interest, such as presheaves.

3.1 Predicate logic

Let us first demonstrate our general approach informally with an example. In Chapter ??
we considered models of algebraic theories in categories with finite products. Recall that
e.g. a group is a structure of the form:

m : G×G→ G , i : G→ G , e : 1→ G ,

for which, moreover, certain diagrams built from these basic arrows must commute. We can
express some properties of groups in terms of further equations, for example commutativity

x · y = y · x ,
which is expressed by the diagram

G×G

m

��

∼ // G×G

m

��
G G

[DRAFT: September 15, 2024]

98 First-Order Logic

where the iso on top is the familiar “twist” map permuting the factors.
As we saw, such equations can be interpreted in any category with finite products,

providing a large scope for categorical semantics of algebraic theories. However, there are
also many significant properties of algebraic structures which cannot be expressed merely
with equations. Consider the statement that a group (G,m, i, e) has no non-trivial square
roots of unity,

∀x : G . (x · x = e ⇒ x = e) . (3.1)

This is a simple first-order logical statement which cannot be rewritten as a system of
equations (how would one prove that?). To see what its categorical interpretation ought
to be, let us look at its usual set-theoretic interpretation. Each of subformulas x · x = e
and x = e determines a subset of G,{

x ∈ G
∣∣ x · x = e

}
� _

i
��

� � //
{
x ∈ G

∣∣ x = e
}

� _

j
��

G G.

The implication x · x = e ⇒ x = e holds just when
{
x ∈ G

∣∣ x · x = e
}
is contained in{

x ∈ G
∣∣ x = e

}
. In categorical language, the inclusion i factors through the inclusion j.

Observe that such a factorization is unique, if it exists. The defining formulas of the subsets{
x ∈ G

∣∣ x · x = e
}
and

{
x ∈ G

∣∣ x = e
}
are equations, and so the subsets themselves can

be constructed as equalizers (interpreting · as m as above):

{
x ∈ G

∣∣ x · x = e
}
� � // G

⟨1G, 1G⟩ //

e !G
//G×G

m //
G

{
x ∈ G

∣∣ x = e
}
� � // G

1G //

e !G
// G

In sum, we can interpret condition (3.1) in any category with products and equalizers,
i.e. in any category with all finite limits.1 This allows us to define the notion of a group
without square roots of unity in any category C with finite limits as an object G with
morphisms m : G×G→ G and i : G→ G and e : 1→ G, such that (G,m, i, e) is a group
in C, and the equalizer of m ◦ ⟨1G, 1G⟩ and e !G factors through that of 1G and e !G.

The aim of this chapter is to analyze how such examples can be treated systematically.
We will relate (various fragments of) first-order logic to categorical structures that are
suitable for the interpretation of the logic. The general outline will be as follows:

1We are not saying that finite limits suffice to interpret arbitrary formulas built from universal quanti-
fiers and implications. The formula at hand has the special form ∀x . (φ(x) =⇒ ψ(x)), where φ(x) and ψ(x)
do not contain any further ∀ or =⇒.

[DRAFT: September 15, 2024]

3.1 Predicate logic 99

1. A language L for a first-order theory consists, as usual, of some basic relation, func-
tion, and constant symbols, say L = (R, f, c).

2. An L-structure in a category C with finite limits is an interpretation of L in C
as an object M equipped with corresponding relations (subobjects) and operations
(morphisms) of appropriate arities,

RM ↣M × · · · ×M
fM :M × · · · ×M −→M

cM : 1→M.

3. Formulas φ in first-order logic will be interpreted as subobjects,

[[φ]] ↣M × · · · ×M.

The interpretation makes use of categorical operations in C corresponding to the
logical ones appearing in the formula φ.

4. A theory T in first-order logic consists of a set of (binary) sequents,

φ ⊢ ψ.

5. A model of T is then an interpretation M in which the corresponding subobjects
“satisfy” all the sequents of T, in the sense that

[[φ]] ≤ [[ψ]] in Sub(Mn).

6. We shall give a deductive calculus for such sequents φ ⊢ ψ, prove that it is sound with
respect to categorical models, and then use it to construct a classifying category CT
with the expected universal property: models of T in any suitably-structured category
C correspond uniquely to structure-preserving functors CT → C.

7. Completeness of the calculus with respect to general models follows from classifica-
tion, while completeness with respect to special models, such as “Kripke-models”
SetK , follows from embedding CT in such special categories.

Not only does having such categorical semantics permit us to prove things about differ-
ent systems of logic (such as consistency of formal systems and independence of axioms),
it also allows us to use the systems of logic to reason formally about logical structures in
categories of various kinds.

[DRAFT: September 15, 2024]

100 First-Order Logic

3.1.1 Theories

A first-order theory T consists of an underlying type theory and a set of formulas in a
fragment of first-order logic. Anticipating Chapter 5, the type theory is given by a set of
basic types, a set of basic constants together with their types, rules for forming types, and
rules and axioms for deriving typing judgments,

x1 : A1, . . . , xn : An | t : B ,

expressing that term t has type B in typing context x1 : A1, . . . , xn : An. There is also a
set of axioms and rules of inference which tell us which equations between terms,

x1 : A1, . . . , xn : An | t = u : B ,

are assumed to hold. This part of the theory T may be regarded as providing the under-
lying structure, on top of which the logical formulas are defined. For first-order logic, the
underlying type theory is essentially the same as the equational logic that we already met
in Chapter ??.

A fragment of first-order logic is then given by a set of basic relation symbols, together
with a specification of which first-order operations are to be used in building formulas.
Each basic relation symbol has a signature (A1, . . . , An), which specifies the types of its
arguments. The arity of a relation symbol is the number of arguments it takes. The
judgment2

x1 : A1, . . . , xn : An | ϕ pred

states that ϕ is a well-formed formula in typing context x1 : A1, . . . , xn : An. For each
basic relation symbol R with signature (A1, . . . , An) there is an inference rule

Γ | t1 : A1 · · · Γ | tn : An
Γ | R(t1, . . . , tn) pred

which says that the atomic formula R(t1, . . . , tn) is well formed in context Γ. Depending on
what fragment of first-order logic is involved, there may be other rules for forming logical
formulas. For example, if equality is present as a formula, then for each type A there is a
rule:

Γ | t : A Γ | u : A

Γ | t =A u pred

And if conjunction is present, then there is a rule:

Γ | φ pred Γ | ψ pred

Γ | φ ∧ ψ pred

Other such rules will be given when we come to the study of particular logical operations.

2We follow type-theoretic practice here by adding the tag pred to turn what would otherwise be an
exhibited formula in context into a judgement concerning the formula.

[DRAFT: September 15, 2024]

3.1 Predicate logic 101

The basic logical judgment of a first-order theory is entailment between formulas,

x1 : A1, . . . , xn : An | φ1, . . . , φm ⊢ ψ ,

which states that in the typing context x1 : A1, . . . , xn : An, the assumptions φ1, . . . , φm
entail ψ. It is understood that the terms appearing in the formulas are well-typed in the
typing context, and that the formulas φ1, . . . , φm, ψ are part of the fragment of the logic
of T. When the fragment contains conjunction ∧ it is convenient to restrict attention to
binary sequents,

x1 : A1, . . . , xn : An | φ ⊢ ψ,

by replacing φ1, . . . , φm with φ1 ∧ . . .∧φm. When the fragment contains equality, we may
replace the type-theoretic equality judgments

x1 : A1, . . . , xn : An | t = u : B

with the entailments
x1 : A1, . . . , xn : An | · ⊢ t =B u .

The subscript at the equality sign indicates the type at which the equality is taken. In a
theory T there are basic entailments, or axioms, which together with the inference rules
for the opertations involved can be used for deriving judgments, as usual.

We shall consider several standard fragments of first-order logic, determined by selecting
a subset of logical connectives and quantifiers. These are as follows:

1. Full first-order logic consists of formulas built from the logical operations

= ⊤ ⊥ ¬ ∧ ∨ ⇒ ∀ ∃ .

2. Cartesian logic is the fragment
= ⊤ ∧ .

3. Regular logic is the fragment
= ⊤ ∧ ∃ .

4. Coherent logic is the fragment built from

= ⊤ ∧ ∃ ⊥ ∨ .

5. Geometric logic consists of formulas of the form

∀x : A . (φ⇒ ψ) ,

where φ and ψ are coherent formulas.3

3There is also infinitary geometric logic, in which φ and ψ may contain disjunctions
∨

i ϑi of infinitely
many formulas ϑi.

[DRAFT: September 15, 2024]

102 First-Order Logic

The names for these fragments come from the names of the various kinds of categories in
which they are interpreted. We shall also consider both Heyting and Boolean theories in
full first-order logic, which differ according to their assumed rules of inference and their
intended interpretations.

The well-formed terms and formulas of a first-order theory T constitute its language. It
may seem that we are doing things backwards, because we should have spoken of first-order
languages before we spoke of first-order theories. While this is possible for simple theories,
it becomes difficult to do when we consider more complicated theories in which types and
logical formulas are intertwined. In such cases the typing judgments and entailments may
be given by a mutual recursive definition. In order to find out whether a given term is
well-formed, we might have to prove a logical statement. In everyday mathematics this
occurs all the time, for example, to show that the term

∫∞
0
f denotes a real number, it may

be necessary to prove that f : R→ R is an integrable function and that the integral has a
finite value. This is why it does not always make sense to strictly differentiate a language
from a theory.4

In order to focus on the logical part of first-order theories, we will limit attention to
only two very simple kinds of type theory. A single-sorted first-order theory has as its
underlying type theory a single type A, and for each k ∈ N a set of basic k-ary function
symbols. The rules for typing judgments are:

1. Variables in contexts:

x1 : A, . . . , xn : A | xi : A

2. For each basic function symbol f of arity k, there is an inference rule

Γ | t1 : A · · · Γ | tn : A

Γ | f(t1, . . . , tn) : A

This much is essentially an algebraic theory. In addition, however, a single-sorted first-
order theory may contain relation symbols, formulas, axioms, and rules of inference which
an algebraic theory does not.

A slight generalization of a single-sorted theory is a many-sorted one. Its underlying
type theory is given by a set of types, and a set of basic function symbols. Each function
symbol f has a signature (A1, . . . , An;B), where n is the arity of f and A1, . . . , An, B are
types. The rules for typing judgments are:

1. Variables in contexts:

x1 : A1, . . . , xn : An | xi : Ai
2. For each basic function symbol f with signature (A1, . . . , An;B), there is an inference

rule
Γ | t1 : A1 · · · Γ | tn : An

Γ | f(t1, . . . , tn) : B
4However, it does make sense to distinguish syntax from theories. Rules of substitution and the be-

haviour of free and bound variables are syntactic considerations, for example.

[DRAFT: September 15, 2024]

3.1 Predicate logic 103

We may write suggestively f : A1 × · · · × An → B to indicate that (A1, . . . , An;B) is the
signature of f . However, this does not mean that A1 × · · · × An → B is a type! A many-
sorted first-order theory does not have any type forming operations, such as × and→. We
shall consider type theories with such operations in Chapter 5.

3.1.2 Subobjects

Formulas of first-order logic will be interpreted as “generalized subsets”, i.e. subobjects.
We therefore need to review some of the basic theory of these.

Let A be an object in a category C. If i : I ↣ A and j : J ↣ A are monos into A, we
say that i is smaller than j, and write i ≤ j, when there exists a morphism k : I → J such
that the following diagram commutes:

I
k //

��

i ��

J
��

j��
A

If such a k exists then it, too, is monic, since i is, and it is unique, since j is monic. The
class Mono(A) of all monos into A is thus preordered by the relation ≤. It is the same as
the slice category Mono(C)/A consisting of all monos with codomain A and commutative
triangles between them. Let Sub(A) be the poset reflection of the preorder Mono(A). Thus
the elements of Sub(A) are equivalence classes of monos into A, where i : I ↣ A and
j : J ↣ A are equivalent when i ≤ j and j ≤ i (note that then I ∼= J). The induced
relation ≤ on Sub(A) is then a partial order.

We have to be a bit careful with the formation of Sub(A), since it is defined as a quotient
of a class Mono(A). In many particular cases the general construction by quotients can be
avoided. If we can demonstrate that the preorder Mono(A) is equivalent, as a category, to a
poset P then we can simply take Sub(A) = P . We will usually simply require that Sub(A)
is small.

Definition 3.1.1. A category C is well-powered when, for all A ∈ C, there is at most a
set of subobjects of A, so that the category Mono(A) is equivalent to a (small) poset. In
other words, Sub(A) is a small category for every A ∈ C.

We shall often speak of subobjects as if they were monos rather than equivalence classes
of monos. It is then understood that we mean the subobjects represented by monos and
not the monos themselves. Sometimes we refer to a mono i : I ↣ A by its domain I only,
even though the object I itself does not determine the morphism i. Hopefully this will not
cause confusion, as it is always going to be clear which mono is meant to go along with
the object I.

In a category C with finite limits the assignment A 7→ Sub(A) is the object part of the
contravariant subobject functor,

Sub : Cop → Poset .

[DRAFT: September 15, 2024]

104 First-Order Logic

The morphism part of Sub is given by pullback; in detail, given any f : A→ B, let Sub(f) =
f ∗ : Sub(B) → Sub(A) be the monotone map that takes the subobject (represented by)
i : I ↣ B to the subobject (represented by) f ∗i : f ∗I ↣ A, where f ∗i : f ∗I ↣ A is a
pullback of i along f :

f ∗I //
��

f ∗i

��

I
��

i

��
A

f
// B

Recall that a pullback of a mono is again mono, so this definition makes sense. We need to
verify (1) that if two monos i : I ↣ A and j : J ↣ A are equivalent, then their pullbacks
are so as well; and (2) that Sub(1A) = 1Sub(A) and Sub(g ◦ f) = Sub(f) ◦ Sub(g). These all
follow easily from the fact that pullback is a functor C/B → C/A, which reduces to the
familiar “2-pullbacks” lemma:

Lemma 3.1.2. Suppose both squares in the following diagram are pullbacks:

·

��

// ·

��

// ·

��
· // · // ·

Then the outer rectangle is a pullback diagram as well. Moreover, if the outer rectangle
and the right square are pullbacks, then so is the left square.

Proof. This is left as an exercise in diagram chasing.

Of course, pullbacks are really only determined up to isomorphism, but this does not cause
any problems because isomorphic monos represent the same subobject.

In the semantics to be given below, a formula

x : A | φ pred

will be interpreted as a subobject

[[x : A | φ]] // // [[A]].

Thus Sub(A) can be regarded as the poset of “predicates” on A, generalizing the powerset
of a set A. Logical operations on formulas then correspond to operations on Sub(A). The
structure of Sub(A) therefore determines which logical connectives can be interpreted. If
Sub(A) is a Heyting algebra, then we can interpret the (propositional part of) the full intu-
itionistic propositional calculus (cf. Subsection 2.9), but if Sub(A) only has binary meets,
then all that can be interpreted are ⊤ and ∧. We will work out details of different oper-
ations in the following sections, but one common aspect that we require is the “stability”
of the interpretation of the logical operations, in a sense that we now make clear.

[DRAFT: September 15, 2024]

3.1 Predicate logic 105

Substitution and stability

Let us consider the interpretation of substitution of terms for variables. There are two kinds
of substitution, into a term, and into a formula. We may substitute a term x : A | t : B
for a variable y in a term y : B | u : C to obtain a new term x : A | u[t/y] : C. If t and u
are interpreted as morphisms

[[A]]
[[t]]

// [[B]]
[[u]]

// [[C]]

then u[t/y] is interpreted as their composition:

[[x : A | u[t/y] : C]] = [[y : B | u : C]] ◦ [[x : A | t : B]] .

Thus, substitution into a term is composition.
The second kind of substitution occurs when we substitute a term x : A | t : B for a

variable y in a formula y : B | φ to obtain a new formula x : A | φ[t/y]. If t is interpreted
as a morphism [[t]] : [[A]] → [[B]] and φ is interpreted as a subobject [[φ]] ↣ [[B]] then the
interpretation of φ[t/y] is the pullback of [[φ]] along [[t]]:

[[φ[t/y]]] = [[t]]∗[[φ]] //

��

��

[[φ]]
��

��
[[A]]

[[t]]
// [[B]]

Thus, substitution into a formula is pullback,

[[x : A | φ[t/y]]] = [[x : A | t : B]]∗[[y : B | φ]].

Now, because substitution respects the syntactical, logical operations, e.g.

(φ ∧ ψ)[t/x] = φ[t/x] ∧ ψ[t/x],

the categorical structures used to interpret the various logical operations such as ∧ must
also behave well with respect to the interpretation of substitution, i.e. pullback. We say
that a categorical property or structure is stable (under pullbacks) if it is preserved by
pullbacks, so that e.g.

[[t]]∗[[(φ ∧ ψ)]] = [[(φ ∧ ψ)[t/x]]] = [[φ[t/x] ∧ ψ[t/x]]]
= [[φ[t/x]]] ∧ [[ψ[t/x]]] = [[t]]∗[[φ]] ∧ [[t]]∗[[ψ]] .

In more detail, say that a category C has stable meets if each poset Sub(A) has binary
meets, and the pullback of a meet I ∧ J ↣ A along any map f : B → A is the meet
f ∗I ∧ f ∗J ↣ A of the respective pullbacks,

f ∗(I ∧ J) = f ∗I ∧ f ∗J.

[DRAFT: September 15, 2024]

106 First-Order Logic

This means that the meet operation,

∧ : Sub(A)× Sub(A) −→ Sub(A)

is natural in A, in the sense that for any map f : B → A the following diagram commutes.

Sub(A)× Sub(A)

f ∗ × f ∗

��

∧A // Sub(A)

f ∗

��
Sub(B)× Sub(B) ∧B

// Sub(B)

Exercise 3.1.3. Show that any category C with finite limits has stable meets in the
foregoing sense: each poset Sub(A) has all finite meets (i.e. including the “empty meet”
1), and these are stable under pullbacks. Conclude that for any finite limit category C,
the subobject functor Sub : Cop → Pos therefore factors through the subcategory of ∧-
semilattices.

Generalized elements

In any category, we can regard arbitrary arrows x : X → C as generalized elements of C,
thinking thereby of variable elements or parameters. With respect to a subobject S ↣ C,
such an element is said to be in the subobject, writtten

x ∈C S,

if it factors through (any mono representing) the subobject,

S
��

��
X

??

x
// C

which, observe, it then does uniquely. The following “generalized element semantics” can
be a useful technique for “externalizing” the operations on subobjects into statements
about generalized elements.

Proposition 3.1.4. Let C be any object in a category C with finite limits.

1. for the top element 1 ∈ Sub(C), and for all x : X → C,

x ∈C 1.

2. for any S, T ∈ Sub(C),

S ≤ T ⇐⇒ x ∈C S implies x ∈C T, for all x : X → C.

[DRAFT: September 15, 2024]

3.1 Predicate logic 107

3. for any S, T ∈ Sub(C), and for all x : X → C,

x ∈C S ∧ T ⇐⇒ x ∈C S and x ∈C T.

4. for the subobject ∆ = [⟨1C , 1C⟩] ∈ Sub(C × C), and for all x, y : X → C,

⟨x, y⟩ ∈ ∆ ⇐⇒ x = y.

5. for the equalizer E(f,g) ↣ A of a pair of arrows f, g : A⇒ B, and for all x : X → A,

x ∈A E(f,g) ⇐⇒ fx = gx.

6. for the pullback f ∗S ↣ A of a subobject S ↣ B along any arrow f : A → B, and
for all x : X → A,

x ∈A f ∗S ⇐⇒ fx ∈B S.

Exercise 3.1.5. Prove the proposition.

3.1.3 Cartesian logic

We begin with a basic system of logic for categories with finite limits, also called cartesian
categories, which we therefore call cartesian logic. This is a logic of formulas built from
the logical operations =, ⊤, and ∧, over a multi-sorted type theory with unit type 1.
(See section ?? for multi-sorted type theories and the axioms for the unit type. In a
dependently-typed formulation as in Chapter ?? one would also include equality types.).

Formation rules for cartesian logic

Given a basic language consisting of a stock of relation and function symbols (with arities),
the terms are built up as explained in Section 3.1.1 from the basic function symbols and
variables (we take “constants” to be 0-ary function symbols). The rules for constructing
formulas are as follows:

1. The 0-ary relation symbol ⊤ is a formula:

Γ | ⊤ pred

2. For each basic relation symbol R with signature (A1, . . . , An) there is a rule

Γ | t1 : A1 · · · Γ | tn : An
Γ | R(t1, . . . , tn) pred

3. For each type A, there is a rule

Γ | s : A Γ | t : A
Γ | s =A t pred

[DRAFT: September 15, 2024]

108 First-Order Logic

4. Conjunction:
Γ | φ pred Γ | ψ pred

Γ | φ ∧ ψ pred

5. Weakening:
Γ | φ pred

Γ, x : A | φ pred

Observe that, as usual, there is then a derived operation of substitution of terms for vari-
ables into formulas, defined by structural recursion on the above specification of formulas:

Substitution:
Γ | t : A Γ, x : A | φ pred

Γ | φ[t/x] pred

Inference rules for cartesian logic

Although we do not yet need them, we state the rules of inference here, too, for the
convenience of having the entire specification of cartesian logic in one place. As already
mentioned, we can conveniently state this deductive calculus using only binary sequents,

Γ | ψ ⊢ φ.

We omit mention of the context Γ when it is the same in the premisses and conclusion of
a rule.

1. Weakening:
Γ | ψ ⊢ φ

Γ, x : A | ψ ⊢ φ

2. Substitution:
Γ | t : A Γ, x : A | ψ ⊢ φ

Γ | ψ[t/x] ⊢ φ[t/x]

3. Identity:

φ ⊢ φ

4. Cut:
ψ ⊢ θ θ ⊢ φ

ψ ⊢ φ

5. Equality:

ψ ⊢ t =A t

ψ ⊢ t =A u ψ ⊢ φ[t/z]
ψ ⊢ φ[u/z]

6. Truth:

ψ ⊢ ⊤

[DRAFT: September 15, 2024]

3.1 Predicate logic 109

7. Conjunction:
ϑ ⊢ φ ϑ ⊢ ψ

ϑ ⊢ φ ∧ ψ
ϑ ⊢ φ ∧ ψ
ϑ ⊢ ψ

ϑ ⊢ φ ∧ ψ
ϑ ⊢ φ

Exercise 3.1.6. Derive symmetry and transitivity of equality:

Γ | ψ ⊢ t =A u

Γ | ψ ⊢ u =A t

Γ | ψ ⊢ t =A u Γ | ψ ⊢ u =A v

Γ | ψ ⊢ t =A v

Example 3.1.7. The theory of a poset is a cartesian theory. There is one basic sort P and
one binary relation symbol ≤ with signature (P, P). The axioms are the familiar axioms
for reflexivity, transitivity, and antisymmetry:

x : P | · ⊢ x ≤ x

x : P, y : P, z : P | x ≤ y ∧ y ≤ z ⊢ x ≤ z

x : P, y : P | x ≤ y ∧ y ≤ x ⊢ x =P y

There are also many examples, such as ordered groups, ordered fields, etc., that extend
the theory of posets with further algebraic operations and equations.

Example 3.1.8. An equivalence relation in a cartesian category is a model of the corre-
sponding theory with one basic sort A and one binary relation symbol ∼ with signature
(A, A). The axioms are the familiar axioms for reflexivity, symmetry, and transitivity:

x : A | · ⊢ x ∼ x

x : A, y : A | x ∼ y ⊢ y ∼ x

x : A, y : A, z : A | x ∼ y ∧ y ∼ z ⊢ x ∼ z

Semantics of cartesian logic

In order to give the semantics of cartesian logic, we require a couple of useful propositions
regarding cartesian categories.

Proposition 3.1.9. If a category C has pullbacks then, for every A ∈ C, the poset Sub(A)
has finite limits. Moreover, these are stable under pullback.

Proof. The poset Sub(A) has finite limits if it has a top object and binary meets. The top
object of Sub(A) is the subobject [1A : A → A]. The meet of subobjects i : I ↣ A and
j : J ↣ A is the subobject i ∧ j = i ◦ (i∗j) = j ◦ (j∗i) : I ∧ J ↣ A obtained by pullback,
as in the following diagram:

I ∧ J // j
∗i //

��

i∗j

��

J
��

j

��
I //

i
// A

It is easy to verify that I ∧ J is the infimum of I and J . Finally, stability follows from a
familiar diagram chase on a cube of pullbacks.

[DRAFT: September 15, 2024]

110 First-Order Logic

Proposition 3.1.10. A category has has all finite limits just if it has all finite products
and pullbacks of monos along monos.

Proof. It is sufficient to show that the category has equalizers. To construct the equalizer
of parallel arrows f : A→ B and g : A→ B, first observe that the arrows

A
⟨1A, f⟩ // A×B A

⟨1A, g⟩ // A×B

are monos because the projection π0 : A×B → A is their left inverse. Therefore, we may
construct the pullback

P // p //
��

q

��

A
��

⟨1A, f⟩
��

A //
⟨1A, g⟩

// A×B

The morphisms p and q coincide because ⟨1A, f⟩ and ⟨1A, g⟩ have a common left inverse π0:

p = 1A ◦ p = π0 ◦ ⟨1A, f⟩ ◦ p = π0 ◦ ⟨1A, f⟩ ◦ q = 1A ◦ q = q .

Let us show that p : P → A is the equalizer of f and g. First, p equalizes f and g,

f ◦ p = π1 ◦ ⟨1A, f⟩ ◦ p = π1 ◦ ⟨1A, g⟩ ◦ q = g ◦ q = g ◦ p .

If k : K → A also equalizes f and g then

⟨1A, f⟩ ◦ k = ⟨k, f ◦ k⟩ = ⟨k, g ◦ k⟩ = ⟨1A, g⟩ ◦ k ,

therefore by the universal property of the constructed pullback there exists a unique fac-
torization k : K → P such that k = p ◦ k, as required.

We now explain how cartesian logic is interpreted in a cartesian category C (i.e. C is
finitely complete). Let T be a multi-sorted cartesian theory. Recall that the type theory
of T is specified by a set of sorts (types) A, ... and a set of basic function symbols f, ...
together with their signatures, while the logic is given by a set of basic relation symbols
R, ... with their signatures, and a set of axioms in the form of logical entailments between
formulas in context,

Γ | ψ ⊢ φ.

Definition 3.1.11. An interpretation of T in C is given by the following data, where Γ
stands for a typing context x1 : A1, . . . , xn : An, and ψ and φ are formulas:

1. Each sort A is interpreted as an object [[A]], with the unit sort 1 being interpreted as
the terminal object 1.

[DRAFT: September 15, 2024]

3.1 Predicate logic 111

2. A typing context x1 : A1, . . . , xn : An is interpreted as the product [[A1]]× · · · × [[An]].
The empty context is interpreted as the terminal object 1.

3. A basic function symbol f with signature (A1, . . . , Am;B) is interpreted as a mor-
phism [[f]] : [[A1]]× · · · [[Am]]→ [[B]].

4. A basic relation symbol R with signature (A1, . . . , An) is interpreted as a subobject
[[R]] ∈ Sub([[A1]]× · · · × [[An]]).

We then extend the interpretation to all terms and formulas as follows:

1. A term in context Γ | t : B is interpreted as a morphism

[[Γ | t : B]] : [[Γ]]→ [[B]]

according to the following specification.

• A variable x0 : A1, . . . , xn : An | xi : Ai is interpreted as the i-th projection
πi : [[A1]]× · · · × [[An]]→ [[Ai]].

• The interpretation of Γ | ∗ : 1 is the unique morphism ![[Γ]] : [[Γ]]→ 1.

• A composite term Γ | f(t1, . . . , tm) : B, where f is a basic function symbol with
signature (A1, . . . , Am;B), is interpreted as the composition

[[Γ]]
⟨[[t1]], . . . , [[tm]]⟩ // [[A1]]× · · · × [[Am]]

[[f]]
// [[B]]

Here [[ti]] is shorthand for [[Γ | ti : Ai]].

2. A formula in a context Γ | φ is interpreted as a subobject [[Γ | φ]] ∈ Sub([[Γ]]) according
to the following specification.

• The logical constant ⊤ is interpreted as the maximal subobject, represented by
the identity arrow:

[[Γ | ⊤]] = [1[[Γ]] : [[Γ]]→ [[Γ]]]

• An atomic formula Γ | R(t1, . . . , tm), where R is a basic relation symbol with
signature (A1, . . . , Am) is interpreted as the left vertical arrow in the following
pullback square:

[[Γ | R(t1, . . . , tm)]] //

��

��

[[R]]
��

��
[[Γ]]

⟨[[t1]], . . . , [[tm]]⟩
// [[A1]]× · · · × [[Am]]

[DRAFT: September 15, 2024]

112 First-Order Logic

• An equation Γ | t =A u pred is interpreted as the subobject represented by the
equalizer of [[Γ | t : A]] and [[Γ | u : A]]:

[[Γ | t =A u]] // // [[Γ]]
[[t]]

//

[[u]]
// [[A]]

• By Proposition 3.1.9, each Sub(A) is a poset with binary meets. Thus we inter-
pret a conjunction Γ | φ ∧ ψ pred as the meet of subobjects

[[Γ | φ ∧ ψ]] = [[Γ | φ]] ∧ [[Γ | ψ]] .

• A formula formed by weakening is interpreted as pullback along a projection:

[[Γ, x : A | φ]] //

��

��

[[Γ | φ]]
��

i

��
[[Γ]]× [[A]] π

// [[Γ]]

Computing this pullback one sees that the interpretation of [[Γ, x : A | φ]] turns
out to be the subobject

[[Γ | φ]]× [[A]] //
i× 1A // [[Γ]]× [[A]]

This concludes the definition of an interpretation of a cartesian theory T in a cartesian
category C.

As was explained in the previous section, the operation of substitution of terms into
formulas is interpreted as pullback:

Lemma 3.1.12. Let the formula Γ, x : A | φ and the term Γ | t : A be given. Then
the substituted formula Γ | φ[t/x] is interpreted as the pullback indicated in the following
diagram:

[[Γ | φ[t/x]]] //

��

��

[[Γ, x : A | φ]]
��

��
[[Γ]]

⟨1[[Γ]], [[t]]⟩
// [[Γ]]× [[A]]

Proof. A simple induction on the structure of φ. We do the case where φ is an atomic
formula R(t1, . . . , tm). Let Γ = x1 : A1, . . . , xn : An and Γ, x : A | ti : Bi for i = 1, . . . ,m,

[DRAFT: September 15, 2024]

3.1 Predicate logic 113

where (B1, . . . , Bm) is the signature of R. For the interpretation of Γ, x : A | R(t1, . . . , tm),
by Definition 3.1.11 we have a pullback diagram:

[[Γ | R(t1, . . . , tm)]] //

��

��

[[R]]
��

��
[[Γ, x : A]]

⟨[[t1]], . . . , [[tm]]⟩
// [[B1]]× · · · × [[Bm]]

Now suppose Γ | t : A, and consider the substitution

Γ | R(t1, . . . , tm)[t/x] = Γ | R(t1[t/x], . . . , tm[t/x])

For the interpretations of the substituted terms ti[t/x] we have the composites

[[ti[t/x]]] = [[ti]] ◦ ⟨1[[Γ]], [[t]]⟩ : [[Γ]] −→ [[Γ, x : A]] −→ [[Bi]]

by (associativity of composition and) the definition of the interpretation of terms. Thus
for the interpretation of Γ | R(t1, . . . , tm)[t/x] we have the outer pullback rectangle below.

[[Γ | R(t1, . . . , tm)[t/x]]]
��

��

((// [[Γ, x : A | R(t1, . . . , tm)]] //

��

��

[[R]]
��

��
[[Γ]]

⟨1[[Γ]], [[t]]⟩
//

⟨[[t1[t/x]]], . . . , [[tm[t/x]]]⟩

55
[[Γ, x : A]]

⟨[[t1]], . . . , [[tm]]⟩
// [[B1]]× · · · × [[Bm]]

But since the righthand square is a pullback, there is a unique dotted arrow as indicated.
By the 2-pullbacks lemma, the lefthand square is then also a pullback, as required.

Exercise 3.1.13. Complete the proof.

When we deal with several different interpretations at once we may name them M , N ,
. . . , and superscript the semantic brackets accordingly, [[Γ]]M , [[Γ]]N , . . .

Definition 3.1.14. If Γ | ψ ⊢ ψ is one of the logical entailment axioms of T and

[[Γ | ψ]]M ≤ [[Γ | φ]]M

holds in an interpretation M , then we say that M satisfies or models Γ | ψ ⊢ φ, which we
may write as

M |= (Γ | ψ ⊢ φ) .
An interpretation M is a model of T if it satisfies all the axioms of T.

[DRAFT: September 15, 2024]

114 First-Order Logic

Theorem 3.1.15 (Soundness of cartesian logic). If a cartesian theory T proves an entail-
ment

Γ | ψ ⊢ φ

then every model M of T satisfies the entailment:

M |= (Γ | ψ ⊢ φ) .

Proof. The proof proceeds by induction on the proof of the entailment. In the following we
often omit the typing context Γ to simplify the notation, and all inequalities are interpreted
in Sub([[Γ]]). We consider all possible last steps in the proof of the entailment:

1. Weakening: if [[Γ | ψ]] ≤ [[Γ | φ]] in Sub([[Γ]]) then

[[Γ, x : A | ψ]] = [[Γ | ψ]]× A ≤ [[Γ | φ]]× A = [[Γ, x : A | φ]] in Sub([[Γ, x : A]]).

2. Substitution: by lemma 3.1.12, substitution is interpreted by pullback so that [[φ[t/x]]] =
⟨1[[ψ]], [[t]]⟩∗[[φ]] and [[ψ[t/x]]] = ⟨1[[ψ]], [[t]]⟩∗[[ψ]]. Because

⟨1[[ψ]], [[t]]⟩∗ : Sub([[ψ]])→ Sub([[ψ]]× [[A]])

is a functor it is a monotone map, therefore [[ψ]] ≤ [[φ]] implies

⟨1[[ψ]], [[t]]⟩∗[[ψ]] ≤ ⟨1[[ψ]], [[t]]⟩∗[[φ]] .

3. Identity: trivially

[[φ]] ≤ [[φ]] .

4. Cut: if [[ψ]] ≤ [[θ]] and [[θ]] ≤ [[φ]] then clearly [[ψ]] ≤ [[φ]], since Sub([[Γ, x : A]]) is a
poset.

5. Truth: trivially [[ψ]] ≤ [[⊤]].

6. The rules for conjunction clearly hold because by the definition of infimum [[ϑ]] ≤
[[φ ∧ ψ]] if, and only if, [[ϑ]] ≤ [[φ]] and [[ϑ]] ≤ [[ψ]].

7. Equality: the axiom t =A t is satisfied because an equalizer of [[t]] with itself is the
maximal subobject:

[[ψ]] ≤ [1[[Γ]] : [[Γ]]→ [[Γ]]] = [[t =A t]] .

For the other axiom, suppose [[ψ]] ≤ [[t =A u]] and [[ψ]] ≤ [[φ[t/z]]]. It suffices to show
[[t =A u]] ∧ [[φ[t/z]]] ≤ [[φ[u/z]]] for then

[[ψ]] ≤ [[t =A u]] ∧ [[φ[t/z]]] ≤ [[φ[u/z]]] .

[DRAFT: September 15, 2024]

3.1 Predicate logic 115

The interpretation of P = [[t =A u]]∧ [[φ[t/z]]] is obtained by two successive pullbacks,
as in the following diagram:

P //
��

��

[[φ[t/z]]] //

��

��

[[φ]]
��

��
[[t =A u]] // e

// [[Γ]]
⟨1Γ, [[t]]⟩

// [[Γ]]× [[A]]

Here e is the equalizer of [[u]] and [[t]]. Observe that e equalizes ⟨1[[Γ]], [[t]]⟩ and ⟨1[[Γ]], [[u]]⟩
as well:

⟨1[[Γ]], [[t]]⟩ ◦ e = ⟨e, [[t]] ◦ e⟩ = ⟨e, [[u]] ◦ e⟩ = ⟨1[[Γ]], [[u]]⟩ ◦ e .

Therefore, if we replace ⟨1[[Γ]], [[t]]⟩ with ⟨1[[Γ]], [[u]]⟩ in the above diagram, the outer
rectangle still commutes. By the universal property of the pullback

[[φ[u/z]]] //

��

��

[[φ]]
��

��
[[Γ]]

⟨1Γ, [[u]]⟩
// [[Γ]]× [[A]]

it follows that P also factors through [[φ[u/z]]], as required.

Example 3.1.16. Recall the cartesian theory of posets (example 3.1.7). There is one
basic sort P and one binary relation symbol ≤ with signature (P, P) and the axioms of
reflexivity, transitivity, and antisymmetry. A poset in a cartesian category C is thus given
by an object P , which is the interpretation of the sort P, and a subobject r : R ↣ P × P ,
which the interpretation of ≤, such that the axioms are satisfied. As an example we spell
out when the reflexivity axiom is satisfied. The interpretation of x : P | x ≤ x is obtained
by the following pullback:

[[x ≤ x]] //

��

��

R
��
r
��

P
∆

//
ρ

99

P × P

where ∆ = ⟨1P , 1P ⟩ is the diagonal. The first axiom is satisfied when [[x ≤ x]] = 1P , which
happens if, and only if, ∆ factors through r, as indicated. Therefore, reflexivity can be
expressed as follows: there exists a “reflexivity” morphism ρ : P → R such that r ◦ ρ = ∆.
Equivalently, the morphisms π0 ◦ r and π1 ◦ r have a common right inverse ρ.

As an example, of a poset in a cartesian category other than Set, observe that since
the definition is stated entirely in terms of finite limits, and these are computed pointwise

[DRAFT: September 15, 2024]

116 First-Order Logic

in functor categories SetC, it follows that a poset P in SetC is the same thing as a functor
P : C→ Poset. Indeed, as was the case for algebraic theories, we have an equivalence (an
isomorphism, actually) of categories,

Poset(SetC) ∼= Poset(Set)C ∼= PosetC.

Exercise 3.1.17. An ordered group is a group (G, ·, i, e) equipped with a partial ordering
x ≤ y that is compatible with the group multiplication, in the sense that x ≤ y implies
x · z ≤ y · z and z · x ≤ z · y. Is this the same thing as a group in the category of posets?
A poset in the category of groups?

Subtypes

Let us consider whether the theory of a category is a cartesian theory. We begin by express-
ing the definition of a category so that it can be interpreted in any cartesian category C.
An internal category in C consists of an object of morphisms C1, an object of objects C0,
and domain, codomain, and identity morphisms,

dom : C1 → C0 , cod : C1 → C0 , id : C0 → C1 .

There is also a composition morphism c : C2 → C1, where C2 is obtained by the pullback

C2

p0

��

p1 // C1

dom

��
C1

cod
// C0

The following equations must hold:

dom ◦ i = 1C0 = cod ◦ i ,
cod ◦ p1 = cod ◦ c , dom ◦ p0 = dom ◦ c .
c ◦ ⟨1C1 , i ◦ dom⟩ = 1C1 = c ◦ ⟨i ◦ cod, 1C1⟩ ,

The first two equations state that the domain and codomain of an identity morphism 1A
are both A. The second equation states that cod (f ◦ g) = cod f and the third one that
dom (f ◦ g) = dom g. The fourth equation states that f ◦ 1dom f = f = 1cod f ◦ f . It remains
to express associativity of composition. For this purpose we construct the pullback

C3

q01

��

q2 // C1

dom

��
C2

cod ◦ p1
// C0

[DRAFT: September 15, 2024]

3.1 Predicate logic 117

The object C3 can be thought of as the set of triples of morphisms (f, g, h) such that
cod f = dom g and cod g = domh. We denote q0 = p0 ◦ q01 and q1 = p1 ◦ q01. The
morphisms q0, q1, q2 : C3 → C1 are like three projections which select the first, second, and
third element of a triple, respectively. With this notation we can write q01 = ⟨q0, q1⟩C2

because q01 is the unique morphism such that p0 ◦ q01 = q0 and p1 ◦ q01 = q1. The
subscript C2 reminds us that the “pair” ⟨q0, q1⟩C2 is obtained by the universal property of
the pullback C2.

Morphisms c ◦ q01 : C3 → C1 and q2 : C3 → C1 factor through the pullback C2 because

cod ◦ c ◦ q01 = cod ◦ p1 ◦ q0 = dom ◦ q2 .

Thus let r : C3 → C2 be the unique factorization for which p0 ◦ r = c ◦ q01 and p1 ◦ r = q2.
Because p0 and p1 are like projections from C2 to C1, morphism r can be thought of as a
pair of morphisms, so we write r = ⟨c ◦ q01, q2⟩C2 . Morphism c ◦ ⟨c ◦ q01, q2⟩C2 : C3 → C1

corresponds to the operations ⟨f, g, h⟩ 7→ (f, g) ◦ h, whereas the morphism corresponding
to ⟨f, g, h⟩ 7→ f ◦ (g ◦ h) is obtained in a similar way and is equal to

c ◦ ⟨q0, c ◦ ⟨q1, q2⟩C2⟩C2 : C3 → C1 .

Thus associativity is expressed by the equation

c ◦ ⟨c ◦ ⟨q0, q1⟩C2 , q2⟩C2 = c ◦ ⟨q0, c ◦ ⟨q1, q2⟩C2⟩C2 .

Example 3.1.18. An internal category in Set is a small category.

Example 3.1.19. An internal category in SetC is a functor C → Cat. Indeed, as in
previous examples of cartesian theories we have an equivalence of categories,

Cat(SetC) ∼= Cat(Set)C ∼= CatC.

We have successfully formulated the theory of a category so that it makes sense in any
cartesian category. In fact, the definition of an internal category refers only to certain
pullbacks, hence the notion of an internal category makes sense in any category with
pullbacks. However, if we try to formulate it as a multi-sorted cartesian theory, there is
a problem. Obviously, there ought to be a basic sort of objects C0 and a basic sort of
morphisms C1. There are also basic function symbols with signatures

dom : (C1; C0) cod : (C1; C0) id : (C0, C1) .

However, it is not clear what the signature for composition should be. It is not (C1, C1; C1)
because composition is undefined for non-composable pairs of morphisms. We might be
tempted to postulate another basic sort C2 but then we would have no way of stating that
C2 is the pullback of dom and cod. And even if we somehow axiomatized the fact that C2
is a pullback, we would then still have to formalize the object C3 of composable triples, C4

[DRAFT: September 15, 2024]

118 First-Order Logic

of composable quadruples, and so on. What we lack is the ability to define the type C2 as
a subtype of C1 × C1.

One way to remedy the situation is to use a richer underlying type theory; in Chapter ??
we will consider the system of dependent type theory, which provides the means to capture
such notions as the theory of categories (and much more). Here we consider a small step
in that direction, namely simple subtypes. The formation rule for simple subtypes is

x : A | φ pred

{x : A |φ} type

We can think of {x : A |φ} as the subobject of all those x : A that satisfy φ. Note that
we did not allow an arbitrary context Γ to be present. This means that we cannot define
subtypes that depend on parameters, which why they are called “simple”.

Inference rules for subtypes are as follows:

Γ | t : {x : A |φ}

Γ | inφ t : A
Γ | t : {x : A |φ}

Γ | · ⊢ φ[inφ t/x]
Γ | t : A Γ | · ⊢ φ[t/x]
Γ | rsφ t : {x : A |φ}

Γ, x : A | φ, ψ ⊢ θ
Γ, y : {x : A |φ} | ψ[inφ y/x] ⊢ θ[inφ y/x]

The first rule states that a term t of subtype {x : A |φ} can be converted to a term inφ t
of type A. We can think of the constant inφ as the inclusion inφ : {x : A |φ}→ A. The
second rule states that every term of a subtype {x : A |φ} satisfies the defining predicate φ.
The third rule states that a term t of type A which satisfies φ can be converted to a term
rsφ t of type {x : A |φ}. A good way to think of the constant rsφ is as a partially defined
restriction, or a type-casting operations, rsφ : A ⇀ {x : A |φ}.5 The last rule tells us how
to replace a variable x of type A and an assumption φ about it with a variable y of type
{x : A |φ} and remove the assumption. Note that this is a two-way rule.

There are two more axioms that relate inclusions and restrictions:

Γ | t : {x : A |φ}

Γ | · ⊢ rsφ (inφ t) = t

Γ | t : A Γ | · ⊢ φ[t/x]
Γ | · ⊢ inφ (rsφ t) = t .

In an informal discussion it is customary for the inclusions and restrictions to be omitted,
or at least for the subscript φ to be missing.6

Exercise 3.1.20. Suppose x : A | ψ and x : A | φ are formulas. Show that

x : A | ψ ⊢ φ
5Inclusions and restrictions are like type-casting operations in some programming languages. For ex-

ample in Java, an inclusion corresponds to an (implicit) type cast from a class to its superclass, whereas
a restriction corresponds to a type cast from a class to a subclass. Must I write that Java is a registered
trademark of Sun Microsystems?

6Strictly speaking, even the notation inφ t is imprecise because it does not indiciate that ϕ stands in
the context x : A. The correct notation would be in(x:A|φ) t, where x is bound in the subscript. A similar
remark holds for rsφ t.

[DRAFT: September 15, 2024]

3.1 Predicate logic 119

is provable if, and only if, {x : A |ψ} factors through {x : A |φ}, which means that there
exists a term k,

y : {x : A |ψ} | k : {x : A |φ} ,

such that
y : {x : A |ψ} | · ⊢ inψ y =A inφ k

is provable. Show also that k is determined uniquely up to provable equality.

Example 3.1.21. We are now able to formulate the theory of a category as a cartesian
theory whose underlying type theory has product types and subset types. The basic types
are the type of objects C0 and the type of morphisms C1. We define the type C2 to be

C2 ≡ {p : C1 × C1 | cod(fst p) = dom(snd p)} .

The basic function symbols and their signatures are:

dom : C1 → C0 , cod : C1 → C0 , id : C0 → C1 , c : C2 → C1 .

The axioms are:

a : C0 | · ⊢ dom(id(a)) = a

a : C0 | · ⊢ cod(id(a)) = a

f : C1, g : C1 | cod(f) = dom(g) ⊢ dom(c(rs ⟨f, g⟩)) = f

f : C1, g : C1 | cod(f) = dom(g) ⊢ cod(c(rs ⟨f, g⟩)) = g

f : C1 | · ⊢ c(rs ⟨id(dom(f)), f⟩) = f

f : C1 | · ⊢ c(rs ⟨f, id(cod(f))⟩) = f

Lastly, the associativity axiom is

f : C1, g : C1, h : C1 | cod(f) = dom(g), cod(g) = dom(h) ⊢
c(rs ⟨c(rs ⟨f, g⟩), h⟩) = c(rs ⟨f, c(rs ⟨g, h⟩)⟩) .

This notation is quite unreadable. If we write g ◦ f instead of c(rs ⟨f, g⟩) then the axioms
take on a more familiar form. For example, associativity is just h ◦ (g ◦ f) = (h ◦ g) ◦ f .
However, we need to remember that we may form the term g ◦ f only if we first prove
dom(g) = cod(f).

A subtype {x : A |φ} is interpreted as the domain of a monomorphism representing
x : A | φ:

[[{x : A |φ}]] //
[[x : A | φ]]

// [[A]]

Some care must be taken here because monos representing a given subobject are only
determined up to isomorphism. We assume that a suitable canonical choice of monos can
be made.

[DRAFT: September 15, 2024]

120 First-Order Logic

An inclusion Γ | inφ t : A is interpreted as the composition

[[Γ]]
[[t]]

// [[{x : A |φ}]] //
[[x : A | φ]]

// [[A]]

A restriction Γ | rsφ t : {x : A |φ} is interpreted as the unique [[t]] which makes the
following diagram commute:

[[Γ]]
[[t]]

//

[[t]]
##

[[x : A | φ]]
��

��
[[A]]

Exercise 3.1.22. Formulate and prove a soundness theorem for subtypes. Pay attention
to the interpretation of restrictions, where you need to show unique existence of [[t]].

Remark 3.1.23. Another approach to the logic of cartesian categories that captures the
theory of categories and related notions involving partial operations is that of essentially
algebraic theories, due to P. Freyd; see [Fre72, PV07]. A third approach is that of dependent
type theory to be developed in 5.1 below. Finally, we will see in Section 3.2.3 that the theory
of categories can be formulated as a regular theory.

3.1.4 Quantifiers as adjoints

The categorical semantics of quantification is one of the central features of the subject, and
quite possibly one of the nicest contributions of categorical logic to the field of logic. You
might expect that the quantifiers ∀ and ∃ are “just a big conjunction and disjunction”,
respectively. In fact the Polish school of algebraic logic worked to realize this point of
view—but categorical logic shows how quantifiers can be treated algebraically as adjoint
functors, giving a more satisfactory theory that generalizes to categories in which the
subobject lattices are not (co)complete. The original treatment can be found in the classic
paper [?].

Let us first recall the rules of inference for quantifiers. The formation rules are:

Γ, x : A | φ pred

Γ | (∃x : A .φ) pred

Γ, x : A | φ pred

Γ | (∀x : A .φ) pred

The variable x is bound in ∀x : A .φ and ∃x : A .φ. If x and y are distinct variables and x
does not occur freely in the term t then substitution of t for y commutes with quantification
over x:

(∃x : A .φ)[t/y] = ∃x : A . (φ[t/y]) , (3.2)

(∀x : A .φ)[t/y] = ∀x : A . (φ[t/y]) .

[DRAFT: September 15, 2024]

3.1 Predicate logic 121

For each quantifier we have a two-way rule of inference:

Γ, x : A | φ ⊢ ϑ
Γ | (∃x : A .φ) ⊢ ϑ

Γ, x : A | ψ ⊢ φ
Γ | ψ ⊢ ∀x : A .φ

Note that these rules implicitly impose the usual condition that x must not occur freely
in ψ and ϑ, because ψ and ϑ are supposed to be well formed in context Γ, which does not
contain x.

Exercise 3.1.24. A common way of stating the inference rules for quantifiers is as follows.
For the universal quantifier, the introduction and elimination rules are

Γ, x : A | ψ ⊢ φ
Γ | ψ ⊢ ∀x : A .φ

Γ | t : A Γ | ψ ⊢ ∀x : A .φ

Γ | ψ ⊢ φ[t/x]

The introduction rule for existential quantifier is

Γ | t : A Γ | ψ ⊢ φ[t/x]
Γ | ψ ⊢ ∃x : A .φ

and the elimination rule is

Γ | ψ ⊢ ∃x : A .φ Γ, x : A | φ ⊢ ϑ
Γ | ψ ⊢ ϑ

Note that these rules implicitly impose a requirement that x does not occur in Γ and that
it does not occur freely in ψ because the context Γ, x : A must be well formed and the
hypotheses ψ must be well formed in context Γ. Show that these rules can be derived
from the ones above, and vice versa. Of course, you may also use the inference rules for
cartesian logic, cf. page 108.

In order to discover what the semantics of existential quantifier ought to be, we look
at the following instance of the two-way rule for quantifiers:

y : B, x : A | φ ⊢ ϑ
y : B | ∃x : A .φ ⊢ ϑ

(3.3)

First observe that this rule implicitly requires

y : B, x : A | φ pred y : B | ϑ pred y : B | (∃x : A .φ) pred

This is required for the entailments to be well-formed. The fourth judgement

y : B, x : A | ϑ pred

follows from the second one above by weakening,

y : B | ϑ pred

y : B, x : A | ϑ pred

[DRAFT: September 15, 2024]

122 First-Order Logic

The interpretations of φ, ϑ, and ∃x : A .φ are therefore subobjects

[[y : B, x : A | φ]] ∈ Sub([[B]]× [[A]]) ,

[[y : B | ϑ]] ∈ Sub([[B]]) ,

[[y : B | ∃x : A .φ]] ∈ Sub([[B]]) .

And the weakened instance of ϑ in the context y : B, x : A is interpreted by pullback along
a projection, cf. page 112, as in the following pullback diagram:

[[y : B, x : A | ϑ]] // //

��

[[B]]× [[A]]

π

��
[[y : B | ϑ]] // // [[B]]

Thus we have
[[y : B, x : A | ϑ]] = π∗[[y : B | ϑ]] ,

with weakening interpreted as the pullback functor

π∗ : Sub([[B]])→ Sub([[B]]× [[A]]) .

We will interpret existential quantification ∃x : A as a suitable functor

∃A : Sub([[B]]× [[A]])→ Sub([[B]])

so that
[[y : B | ∃x : A .φ]] = ∃A[[y : B, x : A | φ]] .

The interpretation of the two-way rule (3.3) then becomes a two-way inequality rule

[[y : B, x : A | φ]] ≤ π∗[[y : B | ϑ]]
∃A[[y : B, x : A | φ]] ≤ [[y : B | ϑ]]

Replacing the interpretations of φ and ϑ by general subobjects S ∈ Sub([[B]] × [[A]]) and
T ∈ Sub([[B]]), we obtain the more suggestive formulation

S ≤ π∗T

∃AS ≤ T
(3.4)

This is of course nothing but an adjunction between ∃A and π∗. Indeed, the operations
∃A and π∗ are functors on the posets of subjects Sub([[B]] × [[A]]) and Sub([[B]]), and the
bijection of hom-sets (3.4) is exactly the statement of an adjunction between them. Thus
existential quantification is left-adjoint to weakening :

∃A ⊣ π∗

[DRAFT: September 15, 2024]

3.1 Predicate logic 123

An exactly dual argument shows that universal quantification is right-adjoint to weak-
ening :

π∗ ⊣ ∀A
Thus, in sum, we have that the rules of inference require that the quantifiers be inter-
preted as operations adjoint to the interpretation of weakening, i.e. pullback π∗ along the
projection π : [[B]]× [[A]]→ [[B]].

Sub([[B]]× [[A]])

∃

∀

~~

⊣ ⊣

Sub([[B]])

π∗

OO

Note that the familiar side-conditions on the conventional rules for the quantifiers, to the
effect that “x cannot occur freely in ψ”, etc., which may seem like tiresome book-keeping,
are actually of the essence, since they actually express the weakening operation to which
the quantifiers themselves are adjoints.

Let us see how this works for the usual interpretation in Set. A predicate y : B, x : A | φ
corresponds to a subset Φ ⊆ B × A, and y : B | ϑ corresponds to a subset Θ ⊆ B.
Weakening of Θ is the subset π∗Θ = Θ× A ⊆ B × A. Then we have

∃AΦ =
{
y ∈ B

∣∣ ∃x : A . ⟨x, y⟩ ∈ Φ
}
⊆ B ,

∀AΦ =
{
y ∈ B

∣∣ ∀x : A . ⟨x, y⟩ ∈ Φ
}
⊆ B .

A moment’s thought convinces us that with this interpretation we do indeed have

Φ ⊆ Θ× A
∃AΦ ⊆ Θ

Θ× A ⊆ Φ

Θ ⊆ ∀AΦ

The unit of the adjunction ∃A ⊣ π∗ amounts to the inequality

Φ ⊆ (∃AΦ)× A , (3.5)

and the universal property of the unit says that ∃AΦ is the smallest set satisfying (3.5).
Similarly, the counit of the adjunction π∗ ⊣ ∀A is just the inequality

(∀AΦ)× A ⊆ Φ , (3.6)

and the universal property of the counit says that ∀AΦ is the largest set satisfying (3.6).
Figure 3.1 shows the geometric meaning of existential and universal quantification.

[DRAFT: September 15, 2024]

124 First-Order Logic

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

ϕ

∀ϕ∃ϕ
Figure 3.1: ∃φ and ∀φ

Exercise 3.1.25. What do the universal properties of the counit of ∃A ⊣ π∗ and the unit
of π∗ ⊣ ∀A say?

The weakening functor π∗ is a special case of a pullback functor f ∗ : Sub(B)→ Sub(A)
for a morphism f : B → A. This suggests that we may regard the left and the right
adjoint to f ∗ as a kind of generalized existential and universal quantifier. We may indeed
be tempted to simply define the quantifiers as left and right adjoints to general pullback
functors. However there is a bit more to quantifiers than that—we are still missing the
important Beck-Chevalley condition.

The Beck-Chevalley condition

Recall from (3.2) that quantification commutes with substitution, as long as no variables
are captured by the quantifier. Thus if Γ | t : B and Γ, y : B, x : A | φ pred then

(∃x : A .φ)[t/y] = ∃x : A . (φ[t/y]) ,

(∀x : A .φ)[t/y] = ∀x : A . (φ[t/y]) .

If the semantics of quantification is to be sound, the interpretation of these equations
must be valid. Because substitution of a term in a formula is interpreted as pullback,
this means exactly that quantifiers must be stable under pullbacks. This is known as the
Beck-Chevalley condition.

Definition 3.1.26. A family of functors Ff : Sub(A) → Sub(B) parametrized by mor-
phisms f : A→ B is said to satisfy the Beck-Chevalley condition when for every pullback

[DRAFT: September 15, 2024]

3.1 Predicate logic 125

as on the left-hand side, the right-hand square commutes:

C
h //

k

��

A

f

��
D g

// B

Sub(C)

Fk

��

Sub(A)h∗oo

Ff

��
Sub(D) Sub(B)

g∗
oo

To convince ourselves that Beck-Chevalley condition is what we want, we spell it out
explicitly in the case of a substitution into an existentially quantified formula. In order
to keep the notation simple we omit the semantic brackets [[−]]. Suppose we have a term
Γ | t : B and a formula Γ, y : B, x : A | φ pred. The diagram

Γ× A
⟨π0, t ◦ π0, π1⟩ //

πΓ,A
0

��

Γ×B × A

πΓ,B,A
0

��
Γ

⟨1Γ, t⟩
// Γ×B

is a pullback. By the Beck-Chevalley condition for ∃, the following square commutes:

Sub(Γ× A)

∃Γ,AA
��

Sub(Γ×B × A)

∃Γ,B,AA

��

⟨π0, t ◦ π0, π1⟩∗oo

Sub(Γ) Sub(Γ×B)
⟨1Γ, t⟩∗

oo

Therefore, for Γ, y : B, x : A | φ pred, we have

[[(∃x : A .φ)[t/y]]] = ⟨1Γ, t⟩∗(∃Γ,B,AA [[φ]]) =

∃Γ,AA (⟨π0, t ◦ π0, π1⟩∗[[φ]]) = [[∃x : A . (φ[t/y])]] .

This is indeed precisely the equation we wanted. The Beck-Chevalley condition says that
(the interpretations of) the quantifiers commute with pullbacks, in just the way that the
syntactic operations of applying quantifiers to formulas commute with substitutions of
terms (which are interpreted as pullbacks).

Definition 3.1.27. A cartesian category C has existential quantifiers if, for every f : A→
B, the left adjoint ∃f ⊣ f ∗ exists and it satisfies the Beck-Chevalley condition. Similarly,
C has universal quantifiers if the right adjoints f ∗ ⊣ ∀f exist and they satisfy the Beck-
Chevalley condition.

[DRAFT: September 15, 2024]

126 First-Order Logic

It is convenient to know that, if we have both adjoints ∃f ⊣ f ∗ ⊣ ∀f , it actually suffices
to have the Beck-Chevalley condition for either one in order to infer it for both:

Proposition 3.1.28. If for every f : A→ B, both the left and right adjoints exist

∃f ⊣ f ∗ ⊣ ∀f

then the left adjoint satisfies the Beck-Chevalley condition iff the right adjoint does.

Proof. Suppose we have the Beck-Chevalley condition for the left adjoints ∃, and that we
are given a pullback square as on the left below. We want to check the Beck-Chevalley
square for the right adjoints ∀, as indicated on the right below.

C
h //

k

��

A

f

��
D g

// B

Sub(C)

∀k
��

Sub(A)h∗oo

∀f
��

Sub(D) Sub(B)
g∗

oo

Swapping all the functors in the righthand diagram for their left adjoints we obtain the
following.

Sub(C)
∃h // Sub(A)

Sub(D)
∃g

//

k∗

OO

Sub(B)

f ∗

OO

But this is a Beck-Chevalley square for (the “transpose” of) the original pullback diagram,
and therefore commutes by the Beck-Chevalley condition for the left adjoints ∃. The
original diagram of right adjoints therefore also commutes, by uniqueness of adjoints.

The argument for the dual case is, well, dual.

Remark 3.1.29. The counit of the adjunction for ∀ is x : A | ∀x : A.φ ⊢ φ, while the unit
of the ∃ adjunction is x : A | φ ⊢ ∃x : A .φ. From the transitivity of ⊢ in any context, we
therefore obtain:

x : A | ∀x : A.φ ⊢ ∃x : A .φ . (3.7)

If there is a term a : 1 → A, we can infer ∀x : A.φ ⊢ ∃x : A .φ (in the empty context) by
substituting it (vacuously) for x : A in (3.7). The inference from ∀ to ∃, which is valid in
classical predicate logic, presumes the domain of quantification is non-empty. By keeping
track of the relevant contexts, our system of rules for quantifiers is also sound for domains
of quantification that may not have any “global points” a : 1→ A.

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 127

Exercise 3.1.30. In Set we can identify Sub(−) with powersets because Sub(X) ∼= PX.
Then quantifiers along a function f : A→ B are functions

∃f : PA→ PB , ∀f : PA→ PB .

Verify that

∃fU =
{
b ∈ B

∣∣ ∃ a : A . (fa = b ∧ a ∈ U)
}
,

∀fU =
{
b ∈ B

∣∣ ∀ a : A . (fa = b⇒ a ∈ U)
}
.

Thus ∃fU is just the usual direct image of U by f , sometimes written f!(U), or simply f(U).
But have you seen ∀fU before? It can also be written as ∀fU =

{
b ∈ B

∣∣ f ∗ {b} ⊆ U
}
.

What is the meaning of ∃q and ∀q when q : A → A/∼ is a canonical quotient map that
maps an element x ∈ A to its equivalence class qx = [x] under an equivalence relation ∼
on A?

3.2 Regular and coherent logic

We next consider the question of when a cartesian category has existential quantifiers.
It turns out that this is closely related to the notion of a regular category, a concept
which first arose in the context of abelian categories and axiomatic homology theory, quite
independently of categorical logic. We will see for instance that all algebraic categories, in
the sense of Chapter ??, are regular.

3.2.1 Regular categories

Throughout this section we work in a cartesian category C. We begin with some general
definitions. The kernel pair of a morphism f : A → B is the pair of morphisms k1, k2 :
K ⇒ A obtained as in the following pullback

K
k2 //

k1
��

A

f

��
A

f
// B

Note that a kernel pair determines an equivalence relation ⟨k1, k2⟩ : K ↣ A × A, in the
sense that the map ⟨k1, k2⟩ is a mono that satisfies the reflexivity, symmetry and transitivity
conditions. In Set the mono ⟨k1, k2⟩ : K ↣ A×A is the equivalence relation ∼ on A defined
by

x ∼ y ⇐⇒ fx = fy .

Indeed, a kernel pair in a general cartesian category is a model of the cartesian theory of
an equivalence relation, in the sense of example 3.1.8.

[DRAFT: September 15, 2024]

128 First-Order Logic

Exercise 3.2.1. Prove this.

In general, the quotient by the equivalence relation determined by the kernel pair k1, k2
is their coequalizer q : A→ Q, if it exists,

K
k1 //

k2
// A

q // Q

Such a coequalizer is called a kernel quotient.
Because f ◦ k1 = f ◦ k2, we see that f factors through q by a unique morphism m :

Q→ A,

K
k1 //

k2
// A

f //

q ��

B

Q
m

?? (3.8)

As a coequalizer, q : A→ Q is always epic; indeed, epis that are coequalizers will be called
regular epimorphisms and will be denoted by arrows with triangular heads:

e : A � ,,2B

It is of some interest to know when the second factor m : Q→ B in (3.8) is guaranteed
to be a mono. For example, in Set the function m : Q → B is defined by m[x] = fx,
where Q = A/∼ as above. In this case m is indeed injective, because m[x] = m[y] implies
fx = fy, hence x ∼ y and [x] = [y].

Definition 3.2.2. A category with finite limits is regular when it has kernel quotients,
and regular epis are stable under pullback. Thus, in detail:

1. the kernel pair of any map has a coequalizer, and

2. any pullback of a regular epi is a regular epi.

Exercise 3.2.3. Suppose e : A � ,,2B is a regular epi. Prove that it is the coequalizer
of its own kernel pair.

Let us return to (3.8) and show that m is monic in any regular category. Consider the
following diagram, in which h1, h2 are constructed as the kernel pair of m, and the other
three squares are constructed as pullbacks:

K
p2 � ,,2

p1

_���

r

� ��%

·

s2
_���

// A

q

_���
· s1

� ,,2

��

H
h2 //

h1

��

Q

m

��
A q

� ,,2Q m
// B

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 129

Because all the smaller squares are pullbacks the large square is a pullback as well, therefore
the left-hand vertical morphism is k1 : K → A, and the morphism across the top is k2 :
K → A, and we have the kernel pair k1, k2 : K ⇒ A of f = m ◦ q. The morphisms s1,
s2, p1, and p2 are all regular epis because they are pullbacks of the regular epi q. The
morphism r = s2 ◦ p2 = s1 ◦ p1 is epic because it is a composition of regular epis. Observe
that

h1 ◦ r = q ◦ k1 = q ◦ k2 = h2 ◦ r ,

and so, because r is epic, h1 = h2. But this means that m is monic, since the maps in its
kernel pair are equal; indeed, given any u, v : U → Q with m ◦ u = m ◦ v, there exists a
w : U → H such that u = w ◦ h1 = w ◦ h2 = v.

Proposition 3.2.4. In a regular category every morphism f : A→ B factors as a compo-
sition of a regular epi q followed by a mono m,

A q
� ,,2

f

&&
Q //

m
// B

The factorization is unique up to isomorphism.

Proof. By uniqueness of the factorization we mean that if

A
q′

� ,,2

f

''
Q′ //

m′
// B

is another such factorization, then there exists an isomorphism i : Q → Q′ such that
q′ = i ◦ q and m = m′ ◦ i.

A
q′ � ,,2

q

_���

Q′

��

m′

��
Q //

m
//

i

??

B

As the factorization of f we take the one constructed in (3.8). Then q is a regular epi
by construction, and we have just shown that m is monic. So it only remains to show that
the factorization is unique. Suppose f also factors as f = m′ ◦ q′ where q′ is a regular epi
and m′ is monic. Consider the following diagram, in which k1, k2 is the kernel pair of f , q
is the coequalizer of k1 and k2, and h1, h2 is the kernel pair of q

′ so that q′ is the coequalizer

[DRAFT: September 15, 2024]

130 First-Order Logic

of h1 and h2:
H

h2

��

h1

��
K

k1 //

k2
// A

q � ,,2

q′

_���

Q
��

m

��

i

��

Q′ //
m′

//

j

??

B

Because m′◦q′◦k1 = m◦q◦k1 = m◦q◦k2 = m′◦q′◦k2 and m′ is monic, q′◦k1 = q′◦k2. So
there exists a unique i : Q→ Q′ such that q′ = i◦q. But then m′◦i◦q = m′◦q′ = f = m◦q
and because q is epi, m′ ◦ i = m.

We prove that i is iso by constructing its inverse j. Because m ◦ q ◦ h1 = m′ ◦ q ◦ h1 =
m′ ◦ q ◦h2 = m ◦ q ◦h2 and m is monic, q ◦h1 = q ◦h2. So there exists a unique j : Q′ → Q
such that q = j ◦ q′. Now we have i ◦ j ◦ q′ = i ◦ q = 1Q′ ◦ q′, from which we conclude that
i ◦ j = 1Q′ because q′ is epi. Similarly, j ◦ i ◦ q = j ◦ q′ = 1Q ◦ q, therefore j ◦ i = 1Q.

Corollary 3.2.5. A map f : A→ B that is both a regular epi and a mono is an iso.

Proof. Consider the following outer square, regarded as two different reg-epi/mono factor-
izations.

A
1A //

f

��

A

f

��
B

1B
//

d

??

B

A diagonal d is then an inverse of f .

A factorization f = m ◦ q as in Proposition 3.2.4 determines a subobject

im(f) = [m : Q↣ B] ∈ Sub(B) ,

called the image of f . It is characterized as the least subobject of B through which f
factors.

Proposition 3.2.6. For a morphism f : A→ B in a regular category C, the image im(f) ↣
B is the least subobject U ↣ B of B through which f factors.

Proof. Suppose f factors through v : V ↣ B as

A g
//

f

&&
V //

v
// B

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 131

and consider the factorization of f , as in (3.8). Since v ◦ g ◦ k1 = f ◦ k1 = f ◦ k2 = v ◦ g ◦ k2
and v is mono, g◦k1 = g◦k2, therefore there exists a unique g : Q→ V such that g = g◦q.
Now v ◦ g ◦ q = v ◦ g = f = m ◦ q and because q is epic, v ◦ g = m as required. (The reader
should draw the corresponding diagram.)

Definition 3.2.7. A functor F : C → D is regular if it preserves finite limits and regular
epis. It follows that F preserves image factorizations. The category of regular functors
C → D and natural transformations is denoted by Reg(C,D).

Examples of regular categories

Let us consider some examples of regular categories.

1. The category Set is regular. It is complete and cocomplete, so it has in particular all
finite limits and coequalizers. To show that the pullback of a regular epi is again a
regular epi, note that in Set the epis are exactly the surjections, and a surjection is
a quotient of its kernel pair, and thus a regular epi. It therefore it suffices to show
that the pullback of a surjection is a surjection, which is easy.

2. More generally, any presheaf category Ĉ is also regular, because it is complete and
cocomplete, with (co)limits computed pointwise. Thus, again, every epi is regular,
and epis are stable under pullbacks.

3. (“Fuzzy logic”) Let H be a complete Heyting algebra; thus H is a cartesian closed
poset with all small joins

∨
i pi. The category of H-presets has as objects all pairs

(X, eX : X → H) where X is a set and eX is a function, called the existence predicate
of X. For x ∈ X, eX(x) can be thought of as “the amount by which x exists”. A
morphism of presets is a function f : X → Y satisfying, for all x ∈ X,

eX(x) ≤ eY (fx).

This is a regular category, with the following structure.

• the terminal object is ⊤ : 1→ H,

• the product of eA : A→ H and eB : B → H is

eA ∧ eB : A×B → H,

where (ea ∧ eB)(a, b) = eA(a) ∧ eB(b),
• the equalizer of two maps f, g : A → B is their equalizer as functions, A′ =
{a

∣∣ f(a) = g(a)} ↪→ A, with the restriction of eA : A→ H to A′ ⊆ A.

• a map f : A → B is a regular epi if and only if it is a surjective function and
for all b ∈ B:

eB(b) =
∨

f(a)=b

eA(a)

[DRAFT: September 15, 2024]

132 First-Order Logic

Exercise 3.2.8. Verify that H-presets form a regular category, and compute the regular
epi-mono factorization of a map.

The next example deserves to be a proposition.

Proposition 3.2.9. The category Mod(A, Set) of set-theoretic models of an algebraic the-
ory A is regular.

Proof. We sketch a proof, for details see [Bor94, Theorem 3.5.4]. Recall that the objects of
Mod(A) = Mod(A, Set) are A-algebras, which are structures A = (|A|, f1, f2, . . .) where |A|
is the underlying set and f1, f2, . . . are the basic operations on |A|. Every such A-algebra
is also required to satisfy the equational axioms of A. A morphism h : A→ B is a function
h : |A| → |B| that preserves the basic operations.

The category Mod(A) of A-algebras has small limits, which are created by the forgetful
functor U : Mod(A)→ Set. Thus the product of A-algebras A and B has as its underlying
set |A × B| = |A| × |B|, and the basic operations of A × B are computed separately on
each factor, and similarly for products of arbitrary (small) families

∏
iAi. An equalizer of

morphisms g, h : A→ B has as its underlying set the equalizer of g, h : |A| → |B|, and the
basic operations inherited from A.

To see that coequalizers of kernel pairs exist, consider a morphism h : A → B. We
can form the quotient A-algebra Q whose underlying set is |Q| = |A|/∼, where ∼ is the
relation defined by

x ∼ y ⇐⇒ hx = hy ,

which is just the kernel quotient of the underlying function h. A basic operation fQ :
|Q|k → |Q| is induced by the basic operation fA : |A|k → |A| by

fQ⟨[x1], . . . , [xk]⟩ = [fA⟨x1, . . . , xk⟩] .

It is easily verified that this is well-defined, that Q is an A-algebra, and that the canonical
quotient map q : A→ Q is the coequalizer of the kernel pair of h.

Lastly regular epis in Mod(A) are stable because pullbacks and kernel pairs are com-
puted as in Set, and a morphism h : A→ B is a regular epi in Mod(A) if, and only if, the
underlying function h : |A| → |B| is a regular epi in Set, which is therefore stable under
pullback.

We now know that categories of groups, rings, modules, C∞-rings and other algebraic
categories are regular. The preceding proposition is useful also for showing that certain
structures cannot be axiomatized by algebraic theories. The category of posets is an
example of a category that is not regular; therefore the theory of partial orders cannot be
axiomatized solely by equations.

Exercise 3.2.10. Show that Poset is not regular. (Hint: find a regular epi that is not
stable under pullback.) Conclude that there is no purely equational reformulation of the
cartesian theory of posets.

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 133

Exercise∗ 3.2.11. Is Top regular? Hint: is there is a topological quotient map q : X ↠ X ′

and a space Y such that q × 1Z : X × Y ↠ X ′ × Y is not a quotient map?

Remark 3.2.12 (Exactness). A regular category C is said to be exact [?] if every equiva-
lence relation (not just those arising as kernel pairs) has a quotient. It can be shown fairly
easily that categories of algebras are not just regular but also exact: an equivalence relation
in such a category is a congruence relation with respect to the algebraic operations, and its
(underlying set) quotient is then necessarily also a homomorphism, and thus a coequalizer
of algebras.

Exercise 3.2.13. Prove that the regular epis and monos in a regular category C form
the two classes (L,R), respectively, of an orthogonal factorization system in the following
sense:

1. every arrow f : A→ B factors as f = r ◦ l with l ∈ L and r ∈ R,

2. L is the class of all arrows left-orthogonal to all maps in R, and R is the class of all
arrows right-orthogonal to all maps in L, where l : A→ B is said to be left-orthogonal
to r : X → Y , and r is said to be right-orthogonal to l, if for every commutative
square as on the outside below,

A //

l

��

X

r

��
B //

d

??

Y,

there is a unique diagonal arrow d as indicated making both triangles commute.

3.2.2 Images and existential quantifiers

Recall that the poset Sub(A) is equivalent to the preordered category Mono(A) of monos
into A. If we compose an equivalence functor Sub(A) → Mono(A) with the inclusion
Mono(A)→ C/A we obtain a (full and faithful) inclusion functor

I : Sub(A) ↪→ C/A . (3.9)

In the other direction we have the “image functor” im : C/A → Sub(A), which maps an
object f : B → A in C/A to the subobject im(f) ↣ A.

Exercise 3.2.14. In order to show that im is in fact a functor, prove that f = g◦h implies
im(f) ≤ im(g).

Proposition 3.2.6 says that the image functor is left adjoint to the inclusion functor
(3.9),

im ⊣ I .

[DRAFT: September 15, 2024]

134 First-Order Logic

Furthermore, images are stable in the sense that the following diagram commutes for all
f : A→ B (as does the corresponding one with the inclusion I in place of im).

C/A

imA

��

C/B
f ∗

oo

imB

��
Sub(A) Sub(B)

f ∗
oo

(3.10)

The functor f ∗ on the top is the “change of base” functor given by pullback of an arbitrary
map, and the functor f ∗ on the bottom is the pullback functor acting on subjects. To see
that (3.10) commutes, consider g : C → B and the following diagram:

f ∗C //

_���f ∗g

��

C

_���
g

��

· //
��

��

im(g)
��

��
A

f
// B

On the right-hand side we have the factorization of g, which is then pulled back along f .
Because monos and regular epis are both stable, this gives a factorization of the pullback
f ∗g, hence (by the uniqueness of factorizations, Proposition 3.2.4) the claimed equality

im(f ∗g) = f ∗(im(g)) .

Proposition 3.2.15. A regular category has existential quantifiers. The existential quan-
tifier along f : A→ B,

∃f : Sub(A) −→ Sub(B),

is given by

∃f [m :M ↣ A] = im(f ◦m) ,

as indicated below.

M � ,,2
��

m

��

im(f ◦m)
��

��
A

f
// B

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 135

Proof. Recall that composition

Σf : C/A −→ C/B

by a map f : A → B is left adjoint to pullback f ∗ along f . Thus we are defining ∃f =
im ◦ Σf ◦ I as shown below.

Sub(A)
∃f //

� _

I

��

Sub(B)

C/A
Σf

// C/B

im

OO

First we verify that ∃f ⊣ f ∗ on subobjects. For U ↣ A and V ↣ B:

∃fU ≤ V in Sub(B)

im ◦ Σf ◦ I(U) ≤ V in Sub(B)

Σf ◦ I(U) ≤ I(V) in C/B
I(U)→ f ∗I(V) in C/A
I(U)→ I(f ∗V) in C/A
U ≤ f ∗V in Sub(A)

In the second step in the above derivation we used the adjunction between im : C/B →
Sub(B) and the inclusion Sub(B)→ C/B.

The Beck-Chevalley condition follows from stability of image factorizations. Indeed,
given a pullback

D h //

k

��

C

g

��
A

f
// B

and a subobject U ↣ C, (3.10) gives

f ∗(∃gU) = f ∗ ◦ im ◦ Σg ◦ I(U) = im ◦ f ∗ ◦ Σg ◦ I(U) = im ◦ Σk ◦ h∗ ◦ I(U)
= im ◦ Σk ◦ I ◦ h∗(U) = ∃k(h∗U)

[DRAFT: September 15, 2024]

136 First-Order Logic

f ∗U //
��

��8ww�

U
��

�� � ��%
∃kf ∗U##

##

D h //

k

��

C

g

��

∃gU~~

~~
A

f
// B

as required.

Summarizing the results of this section, we have the following.

Proposition 3.2.16. In any regular category, for every map f : A → B we have the
following situation, where f ∗ is pullback:

Sub(A)

∃f
//� _

I

��

Sub(B)
f ∗

oo
� _

I

��
C/A

im

OO

Σf

//
C/B

im

OO

f ∗
oo

with adjunctions

∃f ⊣ f ∗, im ⊣ I, Σf ⊣ f ∗

and natural isos

f ∗ ◦ im ∼= im ◦ f ∗, f ∗ ◦ I ∼= I ◦ f ∗.

Note, moreover, that

∃f ◦ im ∼= im ◦ Σf

then follows.

Finally, we call attention to the following special fact.

Proposition 3.2.17 (Frobenius Reciprocity). Given a map f : A → B and subobjects
U ≤ A and V ≤ B, the following equation holds in Sub(B).

∃f (U ∧ f ∗V) = ∃fU ∧ V

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 137

Exercise 3.2.18. Prove Frobenius reciprocity, using the following diagram.

U ∧ f ∗V

��

//

��

∃fU ∧ V

��

��
f ∗V

��

// V
��

��

U
��

��

// ∃fU

��
A

f
// B

3.2.3 Regular theories

A regular category has finite limits and image factorizations, therefore it allows us to
interpret a type theory with the terminal type and binary products, and a logic with
equality, conjunction, and existential quantifiers. This system is called regular logic.

Definition 3.2.19. A (many-sorted) regular theory T is a (many-sorted) type theory
together with a set of axioms expressed in the fragment of logic built from =, ⊤, ∧, and ∃.

In more detail, a regular theory consists of the following data, extending the notion of
cartesian theory from section ??.

• basic type symbols A1, . . . , Ak,

• basic function symbols f, . . . (with signature) (A1, · · · , Am;B),

• basic relation symbols R, . . . (with signature) (A1, · · · , An).

We then define by induction the set of terms in context,

Γ | t : A ,

as well as the formulas in context,
Γ | φ pred .

Here is the first place where things differ from cartesian logic; we extend the formation
rules for cartesian formulas (section 3.1.3) by the further clause:

6. Existential Quantifier:
Γ, x : A | φ pred

Γ | ∃x : A.φ pred

[DRAFT: September 15, 2024]

138 First-Order Logic

(We also add the evident additional clause for sustitution of terms into existentially quan-
tified formulas, namely (∃x : A.φ)[t/y] = ∃x : A. (φ[t/y]).) This defines the notion of a
regular formula, i.e. ones built from the atomic formulas s = t and R(t1, . . . , tn) using the
logical operations ⊤, ∧, and ∃.

A regular theory then includes, finally, a set of axioms of the form

Γ | φ ⊢ ψ

where φ, ψ are regular formulas.

Example 3.2.20. 1. A ring A (with unit 1) is called von Neumann regular if for every
element a there is at least one element x for which a = a · x · a. Such an x may be
thought of as a “weak inverse” of a. The theory of von Neumann regular rings is
thus an extension of the usual theory of rings with unit by adding the single axiom

a : A | ⊤ ⊢ ∃x : A . a = a · x · a

2. A perhaps more familiar example is the theory of categories, with two basic types A,O
for arrows and objects, 3 basic function symbols dom, cod : (A;O) and id : (O;A)
and one basic relation symbol C : (A,A,A), where the latter is for the relation
C(x, y, z) = “z is the composite of x and y”. The axioms for C are as follows (with
abbreviated notation for the context):

x, y, z : A | C(x, y, z) ⊢ cod(x) = dom(y) ∧ dom(z) = dom(x) ∧ cod(z) = cod(y)

x, y : A | cod(x) = dom(y) ⊢ ∃z. C(x, y, z)
x, y, z, z′ : A | C(x, y, z) ∧ C(x, y, z′) ⊢ z = z′

Recall the previous versions of the theory of categories as cartesian theories in 3.1.23.
Are the homomorphisms of categories, as models of a regular theory, the same thing
as functors?

3. The theory of an inhabited object has a single type A, no function or relation symbols,
and the single axiom:

· | ⊤ ⊢ ∃x : A. x = x

A model is an object that is “inhabited” by at least one (unnamed) element, but
the homomorphisms need not preserve anything – in this sense being inhabited is a
property, not a structure.

The rules of inference of regular logic are those of cartesian logic (section 3.1.3), with an
additional rule for the existential quantifier:

8. Existential Quantifier:
y : B, x : A | φ ⊢ ϑ
y : B | ∃x : A .φ ⊢ ϑ

Note that the lower judgement is well-formed only if x : A does not occur freely in ϑ.

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 139

We also add a rule coresponding to Frobenius reciprocity, Proposition 3.2.17, in the form

9. Frobenius:
x : A | (∃y : B.φ) ∧ ψ ⊢ ∃y : B.(φ ∧ ψ)

provided the variable y : B does not occur freely in ψ.

Note that the converse of Frobenius is easily derivable, so we have the interderivability of
(∃y : B.φ) ∧ ψ and ∃y : B.(φ ∧ ψ) when y : B is not free in ψ. The Frobenius rule will
be derivable in the extended system of Heyting logic (see Proposition 3.3.15), and could
be made derivable in a suitably formulated system of regular logic using multi-sequents
Γ | φ1, . . . , φn ⊢ ψ.

Semantics of regular theories

Turning to semantics, an interpretation of a regular theory T in a regular category C
extends the notion for cartesian logic (section 3.1.3), and is given by the following data:

1. Each basic sort A is interpreted as an object [[A]].

2. Each basic constant f with signature (A1, . . . , An;B) is interpreted as a morphism
[[f]] : [[A1]]× · · · × [[An]]→ [[B]].

3. Each basic relation symbol R with signature (A1, . . . , An) is interpreted as a subobject
[[R]] ∈ Sub([[A1]]× · · · × [[A1]]).

This is the same as for cartesian logic, as is the extension of the interpretation to all terms,

[[Γ | t : A]] : [[Γ]] −→ [[A]]

For the formulas, we extended the interpretation to cartesian formulas as before (sec-
tion ??),

[[Γ | φ]] ↣ [[Γ]] .

Finally, existential formulas ∃x : A .φ are interpreted by the existential quantifiers in the
regular category,

[[Γ | ∃x : A .φ]] = ∃A[[Γ, x : A
∣∣ φ]] ,

where
∃A = ∃π : Sub([[Γ]]× [[A]])→ Sub([[Γ]])

is the existential quantifier along the projection π : [[Γ]]× [[A]]→ [[Γ]].
The following is immediate from these definitions, and the considerations in section ??.

Proposition 3.2.21. The rules of regular logic are sound with respect to the interpretation
in regular categories.

Exercise 3.2.22. Prove this.

[DRAFT: September 15, 2024]

140 First-Order Logic

If all the axioms of T hold in a given interpretation, then we again say that the in-
terpretation is a model of the theory T. Morphisms of models are just morphisms of the
underlying cartesian structures. Thus for any regular theory T and regular category C,
there is a category of models,

Mod(T, C) .
Moreover, this semantic category is functorial in C with respect to regular functors C → D,
which, recall, preserve finite limits and regular epis. Indeed, if F : C → D is regular then
given a model M in C with underlying cartesian structure [[A]]M , [[f]]M , [[R]]M , etc., we can
determine an interpretation FM in D by setting:

[[A]]FM = F ([[A]]M), [[f]]FM = F ([[f]]M), [[R]]FM = F ([[f]]M)

etc., and these will have the correct types (up to isomorphism). To show that FM is a
T-model, if M is one and F is regular, consider an axiom of T of the form Γ | φ ⊢ ψ.
Satisfaction by M means that [[Γ | φ]]M ≤ [[Γ | ψ]]M in Sub([[Γ]]M), which in turn means
that there is a (necessarily unique) factorization,

[[Γ | φ]]M##

##

// [[Γ | ψ]]M{{

{{
[[Γ]]M ,

Applying the cartesian functor F will result in an inclusion of subobjects F [[Γ | φ]]M ≤
F [[Γ | ψ]]M in Sub(F [[Γ]]M) = Sub([[Γ]]FM). Thus is clearly suffices to show that for any
regular formula φ,

F [[Γ | φ]]M = [[Γ | φ]]FM .

This is an easy induction on φ, using the regularity of F .

Proposition 3.2.23. Given a regular functor F : C → D, taking images determines a
functor

F∗ : Mod(T, C) −→ Mod(T,D) .

Proof. It only remains show the effect of F∗ on morphisms of models. But these are just
homomorphisms of the underlying cartesian structure, so they are clearly preserved by the
cartesian functor F .

An associated result, which we will need, is the following.

Proposition 3.2.24. Given regular categories C and D and a model M in C, evaluation
at M determines a functor

evalM : Reg(C,D) −→ Mod(T,D) ,

which is natural in D.

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 141

The proof is straightforward and can be left as an exercise. The naturality means that
for any a regular functorG : D −→ D′, the following commutes (up to natural isomorphism,
as usual):

Reg(C,D)

Reg(C, G)
��

evalM //Mod(T,D)

G∗

��
Reg(C,D′)

evalM
//Mod(T,D′)

Exercise 3.2.25. Prove this.

Exercise 3.2.26. Show that for any small category C and regular theory T, there is
an equivalence between models in the functor category and functors into the category of
models,

Mod(T, SetC) ≃ Mod(T)C .

Hint: this is just as for the algebraic and cartesian cases.

3.2.4 The classifying category of a regular theory

We will next show that the framework of functorial semantics applies to regular logic and
regular categories: there is a classifying category CT for T-models, for which there is an
equivalence, natural in C,

Reg(CT, C) ≃ Mod(T, C) ,
where Reg(−,−) is the category of regular functors and natural transformations.

Remark 3.2.27. The construction of CT, and the corollary completeness theorem, are
analogous to the way of proving the completeness theorem for (say, classical) propositional
logic that we used in Chapter 2: one first constructs the Lindenbaum-Tarski algebra of
propositional logic with respect to a propositional theory T (a set of formulas) as the
set PL = {φ | φ a propositional formula}, quotiented by T-provable logical equivalence,
φ ∼T ψ iff T ⊢ φ↔ ψ,

BT = PL/∼T .

The quotient set BT becomes a Boolean algebra by defining the Boolean operations in
terms of the expected propositional logical analogues,

[φ] ∧ [ψ] = [φ ∧ ψ] , ¬[φ] = [¬φ] , [⊤] = 1 , etc. .

One then has a Boolean-valuation of PL in BT, namely [−], for which

[φ] = [ψ] iff T ⊢ φ↔ ψ .

In particular, we have [φ] = 1 in BT iff T ⊢ φ. Classical completeness with respect to
valuations in the Boolean algebra 2 = {1, 0} then follows e.g. from Stone’s representation

[DRAFT: September 15, 2024]

142 First-Order Logic

theorem, which embeds the Boolean algebra BT into a powerset P(X) ∼= 2X , where X is
the set of prime ideals in BT, corresponding to Boolean homomorphisms BT → 2, which in
turn correspond to Boolean valuations of the language PL, i.e. “rows of a truth table”.

Our syntactic construction of the classifying category CT can be regarded as a gener-
alization of this method, with CT as the “Lindenbaum-Tarski category” of the (regular)
theory T. This will give a completeness theorem with respect to models in regular cate-
gories, which can in turn be specialized to Set-valued completeness by embedding CT into a
“power of Set”, i.e. SetX for a set X. The elements of X will be regular functors CT → Set,
corrresponding to “classical” models of T in Set. See Section 3.2.6 below for the second
step.

We first sketch the construction of the classifying category CT of an arbitrary regular
theory T (a more detailed account can be found in [But98, Joh03]). An object of CT is
represented by a formula in context,

[Γ | φ],

where Γ | φ pred. Two such objects [Γ | φ] and [Γ | ψ] are equal if T proves both

Γ | φ ⊢ ψ , Γ | ψ ⊢ φ .

Objects which differ only in the names of free variables are also considered equal:

[x : A | φ] = [y : A | φ[y/x]] (no y in φ)

A morphism

[x : A | φ]
ρ // [y : B | ψ]

is represented by a formula x : A, y : B | ρ such that T proves that ρ is a functional relation
from φ to ψ:

x : A | φ ⊢ ∃ y : B . ρ (total)

x : A, y : B, z : B | ρ ∧ ρ[z/y] ⊢ y = z (single-valued)

x : A, y : B | ρ ⊢ φ ∧ ψ (well-typed)

Two functional relations ρ and σ represent the same morphism if T proves both

x : A, y : B | ρ ⊢ σ , x : A, y : B | σ ⊢ ρ .

Relations which only differ in the names of free variables are also considered equal.
(Strictly speaking, a morphism

[x : A, y : B | ρ] : [x : A | φ]→ [y : B | ψ]

should be taken to be the triple(
[x : A, y : B | ρ], [x : A | φ], [y : B | ψ]

)
[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 143

so that one knows what the domain and codomain are, but we shall often write simply

ρ : [x : A | φ]→ [y : B | ψ]

since the rest can be recovered from that much data.)
The identity morphism on [x : A | φ] is

1[x:A|φ] = [x : A, x′ : A | (x = x′) ∧ φ] : [x : A | φ]→ [x′ : A | φ[x′/x]] .

Note that we used the variable substitution φ[x′/x] and the identification [x : A | φ] = [x′ :
A | φ[x′/x]] in order to make this definition.

Composition of morphisms

[x : A | φ]
ρ // [y : B | ψ] τ // [z : C | θ]

is given by the relational product,

τ ◦ ρ = (∃ y : B . (ρ ∧ τ)) .

Of course, one needs to check that this is a morphism from φ to ϑ, i.e. that it is total, single-
valued, and well-typed. We leave the detailed proof that CT is a category as an exercise; let
us just show how to prove that composition of morphisms is associative. Given morphisms

[x : A | φ]
ρ // [y : B | ψ] τ // [z : C | θ] σ // [u : D | ζ]

we need to derive in context x : A, u : D

∃ z : C . ((∃ y : B . (ρ ∧ τ)) ∧ σ) ⊣⊢ ∃ y : B . (ρ ∧ (∃ z : C . (τ ∧ σ)))

This follows easily with repeated application of the Frobenius rule (Section 3.2.3).

Exercise 3.2.28. Extend the definition of CT to morphisms between objects with arbitrary
contexts,

[Γ | φ]
ρ // [∆ | ψ]

(use relations Γ,∆ | ρ), and provide a proof that CT is a category.

Proposition 3.2.29. The category CT is regular.

Proof. We sketch the constructions required for regularity.

• The terminal object is [· | ⊤].

• The product of [x : A | φ] and [y : B | ψ], where x and y are distinct variables, is the
object

[x : A, y : B | φ ∧ ψ] .

[DRAFT: September 15, 2024]

144 First-Order Logic

The first projection from the product is

x : A, y : B, x′ : A | x = x′ ∧ φ ∧ ψ ,

and the second projection is

x : A, y : B, y′ : B | y = y′ ∧ φ ∧ ψ ,

where we rename the codomains of the projections [x : A | φ] = [x′ : A | φ[x′/x]],
etc., to make the context variables distinct.

• An equalizer of morphisms

[x : A | φ]
ρ //
τ

// [y : B | ψ]

is
[x : A | ∃ y : B . (ρ ∧ τ)] ε // [x′ : A | φ[x′/x]]

where ε is the morphism

x : A, x′ : A | (x = x′) ∧ ∃ y : B . (ρ ∧ τ) .

• Finally, let us consider coequalizers of kernel pairs. The kernel pair of a map

ρ : [x : A | φ] −→ [y : B | ψ]

is

K
κ1 //
κ2

// [x : A | φ]

where K is the object

[u : A, v : A | ∃ y : B . (ρ[u/x] ∧ ρ[v/x])] ,

the morphism κ1 is

u : A, v : A, x : A | (u = x) ∧ ∃ y : B . (ρ[u/x] ∧ ρ[v/x]) ,

and κ2 is
u : A, v : A, x : A | (v = x) ∧ ∃ y : B . (ρ[u/x] ∧ ρ[v/x]) .

Now the coequalizer of κ1 and κ2 can be shown to be the morphism

[x : A | φ]
ρ // [y : B | ∃x : A. ρ] ,

where [y : B | ∃x : A . ρ] is the image of ρ, as a subobject of [y : B | ψ].

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 145

The following lemma shows that regular epis are stable under pullback.

Lemma 3.2.30. 1. A map ρ : [x : A | φ] −→ [y : B | ψ] is a regular epi if and only if

y : B | ψ ⊢ ∃x : A. ρ

2. Regular epis are stable under pullback in CT.

Proof. For (1), suppose ρ : [x : A | φ] → [y : B | ψ] is a regular epi. We claim first that
if ρ factors through some subobject U ↣ [y : B | ψ] then U = [y : B | ψ] is the maximal
suboject. Indeed, since ρ is regular epi it is a coequalizer of its kernel pair. But if ρ factors
through a subobject U ↣ [y : B | ψ], say by r : [x : A | φ]→ U , then r is also a coequalizer
of the kernel pair of ρ, as one can easily check. Thus U ↣ [y : B | ψ] must be iso.

Now, up to iso, every U ↣ [y : B | ψ] is of the form U = [y : B | ϑ] with y | ϑ ⊢ ψ, and
ρ factors through [y : B | ϑ] iff

y : B | ∃x : A .ρ ⊢ ϑ .

Thus for all ϑ we have that:

(y : B | ∃x : A .ρ ⊢ ϑ) ⇒ (y : B | ψ ⊢ ϑ) .

Whence y : B | ψ ⊢ ∃x : A .ρ. The convere is immediate from the specification of the
kernel quotient above.

For (2), suppose we have a pullback diagram, which has the form indicated below.

[x : A, y : B | φ ∧ ψ ∧ ∃z : C. (σ ∧ ρ)]
ρ∗σ //

σ∗ρ

��

[y : B | ψ]

ρ

��
[x : A | φ] σ

// [z : C | ϑ]

The maps σ∗ρ and ρ∗σ are represented by the relations:

σ∗ρ =
(
x : A, y : B, x′ : A | x = x′ ∧ φ ∧ ψ ∧ ∃z : C. (σ ∧ ρ)

)
ρ∗σ =

(
x : A, y : B, y′ : B | y = y′ ∧ φ ∧ ψ ∧ ∃z : C. (σ ∧ ρ)

)
If ρ is regular epi, then by (1) we have

z : C | ϑ ⊢ ∃y : B. ρ . (3.11)

To show that the pullback σ∗ρ is regular epi, again by (1) we need to show

x′ : A | φ[x′/x] ⊢ ∃x : A∃y : B.
(
x = x′ ∧ φ ∧ ψ ∧ ∃z : C. (σ ∧ ρ)

)
. (3.12)

We can make use thereby of the functionality of σ and ρ, specifically we have

x : A, z : C | σ ⊢ φ ∧ ϑ and x : A | φ ⊢ ∃z : C. σ . (3.13)

The result now follows by a simple deduction.

[DRAFT: September 15, 2024]

146 First-Order Logic

Exercise 3.2.31. Show that in CT the regular-epi mono factorization of a morphism ρ :
[x : A | φ]→ [y : B | ψ] is given by

[x : A | φ]
ρ // [y : B | ∃x : A . ρ] ι // [z : B | ψ[z/y]]

where ι is the morphism

y : B, z : B | (y = z) ∧ (∃x : A . ρ) .

Theorem 3.2.32 (Functorial semantics for regular logic). For any regular theory T, the
syntactic category CT classifies T-models in regular categories. Specifically, for any regular
category C, there is an equivalence of categories

Reg(CT, C) ≃ Mod(T, C) (3.14)

which is natural in C. In particular, there is a universal model U in CT.

Proof. We have just constructed CT and shown that it is regular.
The universal model U , corresponding to the identity functor CT → CT under (3.14), is

determined as follows:

• Each sort A is interpreted by the object [x : A | ⊤]

• A basic constant f with signature (A1, . . . , An;B) is interpreted by the formula

x1 : A1, . . . , xn : An, y : B | f(x1, . . . , xn) = y .

which is plainly a functional relation and thus a morphism [[A1]]×· · ·× [[An]] −→ [[B]].

• A relation symbol R with signature (A1, . . . , An) is interpreted by the subobject
represented by the morphism

ρ : [x1 : A1, . . . , xn : An | R(x1, . . . , xn)] −→ [y1 : A1, . . . , yn : An | ⊤]

where ρ is the formula

x1 : A1, . . . , xn : An, y1 : A1, . . . , yn : An | R(x1, . . . , xn) ∧ x1 = y1 ∧ · · · ∧ xn = yn ,

which is easily shown to be monic.

It is now straightforward to show that with respect to this structure, a formula Γ | φ
is interpreted as (the subobject determined by) the map

ι : [Γ | φ] −→ [Γ | ⊤]

where ι is the formula
Γ,Γ′ | Γ = Γ′ ∧ φ ,

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 147

(with obvious abbreviations) which, again, is easily shown to be monic. Moreover, for any
formulas Γ | φ and Γ | ψ we then have

U |= Γ | φ ⊢ ψ ⇐⇒ T proves Γ | φ ⊢ ψ .

Thus in particular U is indeed a T-model.
We next construct a functor Reg(CT, C) → Mod(T, C). Suppose C is regular and F :

CT −→ C a regular functor, then by Proposition 3.2.24, applying F to U determines a
model FU in C with

[[A]]FU = F ([[A]]U) ,

and similarly for the other parts of the structure f , R, etc. Satisfaction of an entailment
Γ | φ ⊢ ψ is preserved, because the interpretation of the logical operations is determined
by the regular structure: pullbacks, images, etc., so that [[φ]]U ≤ [[ψ]]U in Sub([[Γ]]) implies

[[φ]]FU = F ([[φ]]U) ≤ F ([[ψ]]U) = [[ψ]]FU

in Sub([[Γ]]FU).
Moreover, just as for algebraic structures, every natural transformation between regular

functors ϑ : F ⇒ G determines a homomorphism of the evaluated models by taking
components ϑU : FU → GU . In this way, as in Proposition 3.2.24, evaluation at U is a
functor

evalU : Reg(CT, C) −→ Mod(T, C) .
We claim that this functor, which is the one mentioned in (3.14), is full and faithful and
essentially surjective. The naturality in C of the equivalence then follows directly from its
determination by evaluation at U and Proposition 3.2.24.

To see that evalU is essentially surjective, let M be a model in C. We will define a
regular functor

M ♯ : CT −→ C
with M ♯(U) ∼= M . Since M is a model, there are objects [[A]]M interpreting each type A,
as well as interpretations

[[Γ | φ]] ↣ [[Γ]]

for all formulas and
[[Γ | t : B]] : [[Γ]] −→ [[B]]

for all terms. Using these, we determine the functor M ♯ : CT → C by taking an object
[Γ | φ] to [[Γ | φ]]M , i.e. the domain of a mono representing the subobject [[Γ | φ]]M ↣ [[Γ]]M .
Thus, for the record,

M ♯[Γ | φ] = [[Γ | φ]]M .

In the verification that those formulas in context [Γ | φ] that are identified in CT are also
identified in C, we use the fact that the rules of inference for regular logic are sound in the
regular category C. Note in particular that for each basic type A, we then have

M ♯([[A]]U) =M ♯([x : A | ⊤]) ∼= [[x : A | ⊤]]M ∼= [[A]]M ,

[DRAFT: September 15, 2024]

148 First-Order Logic

so that M ♯(U) ∼= M as required.
Functional relations in CT determine functional relations in C, again by soundness, which

determines the action of M ♯ on arrows, as well as the functoriality of these assignments.
Finally, to show that evalU is full and faithful, let F,G : CT −→ C be regular functors

classifying models FU and GU , and let h : FU → GU be a model homomorphism. We
then have maps

h[x:A|⊤] : F ([x : A | ⊤]) −→ G([x : A | ⊤])
for all basic types A, and these commute with the interpretations of the function symbols
f , and preserve the basic relations R, in the obvious sense, because h is a homomorphism.
It only remains to determine the components

h[Γ|φ] : F ([Γ | φ])→ G([Γ | φ]) , (3.15)

and to show that they commute with all maps ρ : [Γ | φ]→ [∆ | ψ]. Define

h[Γ|φ] : F [Γ | φ] = [[Γ | φ]]FU −→ [[Γ | φ]]GU = G[Γ | φ]

by induction on the structure of φ. The base cases involving the primitive relations R, ...
and equality of terms are given by the assumption that h : FU → GU is a model homo-
morphism, so we just need to check that for every definable subobject

[[Γ | φ]]FU ↣ [[Γ | ⊤]]FU

the following diagram can be filled in as indicated.

[[Γ | φ]]FU // //

h[Γ|φ]

��

[[Γ | ⊤]]FU

h[Γ|⊤]

��
[[Γ | φ]]GU // // [[Γ | ⊤]]GU

(3.16)

Suppose we have e.g. φ = ∃x : A.ψ, and we have already determined

h[Γ,x:A|ψ] : [[Γ, x : A | ψ]]FU −→ [[Γ, x : A | ψ]]GU .

An easy diagram chase shows that there is a unique h[Γ|∃x:A.ψ] determined by the image
factorizations indicated below.

[[Γ, x : A | ψ]]FU � ,,2

h[Γ,x:A|ψ]

��

[[Γ | φ]]FU // //

h[Γ|∃x:A.ψ]

��

[[Γ | ⊤]]FU

h[Γ|⊤]

��
[[Γ, x : A | ψ]]GU � ,,2[[Γ | φ]]GU // // [[Γ | ⊤]]GU

The other cases are even more direct. Thus we have defined the components (3.15); we leave
the required naturality with respect to all maps ρ : [Γ | φ]→ [∆ | ψ] as an exercise.

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 149

Exercise 3.2.33. Prove the naturality of the maps (3.15), using the following trick. In
any category with finite products, suppose we have objects and arrows

A

α

��

f // B

β

��
C g

// D

(3.17)

Let f̂ = ⟨1A, f⟩ : A ↣ A× B be the graph of f , and similarly for ĝ : C ↣ C ×D. Then
the diagram (3.17) commutes iff the following one does.

A

α

��

// f̂ // A×B

α× β
��

C //
ĝ
// C ×D

Corollary 3.2.34. The rules of regular logic are sound and complete with respect to se-
mantics in regular categories: a regular theory T proves an entailment

Γ | φ ⊢ ψ (3.18)

if, and only if, every model of T satisfies it.

Proof. As for algebraic logic, soundness follows from classification (although we have of
course already proved it separately in Proposition 3.3.7, and made use of it in the proof of
the theorem!): if (3.18) is provable from T, then it holds in the universal model U in CT
by the construction of U ,

U |= Γ | φ ⊢ ψ .

But since regular functors preserve the interpretations of regular formulas [[Γ | φ]], [[Γ | ψ]]
(as well as entailments between them), the entailment (3.18) then holds also in any model
M in any regular C, since there is a classifying functor M ♯ : CT → C taking U to M , for
which

M ♯([[Γ | φ]]U) ∼= [[Γ | φ]]M .

Completeness follows from the syntactic construction of the universal model U in CT.
The model U is logically generic, in the sense that

U |= (Γ | φ ⊢ ψ) iff T proves (Γ | φ ⊢ ψ) .

Thus if Γ | φ ⊢ ψ holds in all models, then it holds in particular in U , and is therefore
provable.

[DRAFT: September 15, 2024]

150 First-Order Logic

3.2.5 Coherent logic

A regular category is coherent if all the subobject posets are distributive lattices, and that
structure is stable under pullback. We add rules to regular logic to describe this further
structure, show that the rules are sound in coherent categories, and extend the results on
functorial semantics of the previous section to the coherent case, including the completeness
theorem.

Definition 3.2.35. A cartesian category C is coherent if:

1. C is regular, i.e. it has coequalizers of kernel pairs, and regular epimorphisms are
stable under pullback,

2. each subobject poset Sub(A) has all finite joins, in particular 0 and U ∨ V ,

3. for each map f : A→ B, the pullback functor f ∗ : Sub(B) −→ Sub(A) preserves the
joins:

f ∗0B = 0A, f ∗(U ∨ V) = f ∗U ∨ f ∗V .

Note that since joins are stable under pullback in a coherent category, the meets dis-
tribute over the joins,

U ∧ (V ∨W) = (U ∧ V) ∨ (U ∧W) , (3.19)

so that the posets Sub(A) are distributive lattices. Indeed, this follows from the fact that
U ∧ V may be written as

U ∧ V = ΣU ◦ U∗(V) (3.20)

where ΣU : Sub(U) → Sub(A) is the left adjoint (composition) of the pullback functor
U∗ : Sub(A) → Sub(U) along the inclusion U ↣ A. Since left adjoints preserve colimits,
and thus joins, we therefore have

U ∧ (V ∨W) = ΣU ◦ U∗(V ∨W) = ΣU ◦ U∗(V) ∨ ΣU ◦ U∗(W) = (U ∧ V) ∨ (U ∧W) .

A category is said to have have stable sums if it has all finite coproducts, in particular
an initial object 0 and binary coproducts A+B, and these are stable under pullback, in the
expected sense. The following simple observation provides plenty of examples of coherent
categories.

Proposition 3.2.36. Regular categories with stable sums are coherent.

Proof. Given subobjects U, V ↣ A, let U∨V be the image of the canonical map U+V → A
as indicated below.

U + V

_���
U

<<

""

""

U ∨ V
��

��

V

bb

||

||
A

[DRAFT: September 15, 2024]

3.2 Regular and coherent logic 151

This is easily seem to be the supremum of U and V in Sub(A). Since the unique map
0 → A is always monic, it determines the subobject 0 ↣ A. Thus Sub(A) has all finite
joins, and they are stable by stability of the coproducts and image factorizations.

As examples of coherent categories we thus have Set and Setfin, as well as all functor
categories SetC since limits and colimits (and thus image factorizations) there are computed
pointwise.

Exercise 3.2.37. Is the category of H-presets for a heyting algebra H from Section 3.2.1
coherent?

Coherent logic is the extension of regular logic by adding rules corresponding to joins.

Definition 3.2.38. A coherent theory T is (a type theory together with) a set of axioms
expressed in the fragment of logic built from =, ⊤, ⊥, ∧, ∨, and ∃.

We thus extend the formation rules for formulas in context by two additional clauses:

7. The 0-ary relation symbol ⊥ (pronounced “false”) is a formula :

·
Γ | ⊥ pred

8. Disjunction:
Γ | φ pred Γ | ψ pred

Γ | φ ∨ ψ pred

(We also again add the evident additional clauses for substitution of terms into formulas.)
A coherent theory then consists of axioms of the form

Γ | φ ⊢ ψ

where φ, ψ are coherent formulas. Coherent logic not only allows for disjunctions φ ∨ ψ
on both side of the ⊢, but the presence of the symbol ⊥ allows for a certain amount of
negation, in the form φ ⊢ ⊥, as the following classical example illustrates.

Example 3.2.39. 1. A ring A (with unit 1) is called local if it has a unique maximal
ideal. This can be captured with two coherent axioms of the form 0 = 1 ⊢ ⊥ (to
ensure that 0 ̸= 1), and

x : A, y : A | ∃z : A. z(x+ y) = 1 ⊢ (∃z : A. zx = 1) ∨ (∃z : A. zy = 1)

2. Another example is the theory of fields, which can be axiomatized by again adding
to the theory of rings the law 0 = 1 ⊢ ⊥, together with the following:

x : A | ⊤ ⊢ x = 0 ∨ (∃y : A. xy = 1)

which is a clever way of saying that every non-zero element has a multiplicative
inverse.

[DRAFT: September 15, 2024]

152 First-Order Logic

3. An order example is the notion of a linear order, which adds to the cartesian theory
of posets the totality axiom:

x : P, y : P | x ≤ y ∨ y ≤ q .

4. For another example of how we can make use of the constant false ⊥ to get the effect
of negation, at least for entire axioms, even though the coherent fragment does not
include negation, consider the theory of graphs, with two basic sorts E for edges
and V for verticies, and two operations s, t : (E;V) for source and target. A graph
G = (EG, VG, sG, tG) is acyclic if it satisfies all the finitely many axioms

∃e1 . . . en : E.
(
t(e1) = s(e2) ∧ . . . ∧ t(en) = s(e1)

)
⊢ ⊥ .

The rules of inference of coherent logic are those of regular logic (Section 3.2.3), with
additional rules for falshood the disjunctions:

10. Falsehood:

⊥ ⊢ ψ
11. Disjunction:

φ ⊢ ϑ ψ ⊢ ϑ
φ ∨ ψ ⊢ ϑ

φ ∨ ψ ⊢ ϑ
φ ⊢ ϑ

φ ∨ ψ ⊢ ϑ
ψ ⊢ ϑ

12. Distributivity:
φ ∧ (ψ ∨ ϑ) ⊢ (φ ∧ ψ) ∨ (φ ∧ ϑ)

The latter of course coresponds to the distributive law (3.19); note that the converse can be
derived. Like the Frobenius rule, this will be derivable in the extended system of Heyting
logic (see Proposition 3.3.14), and could also be made derivable in a suitably formulated
system of coherent logic using multi-sequents Γ | φ1, . . . , φn ⊢ ψ.

The semantics for coherent logic extends that for regular logic in the expected way: the
disjunctive formulas are interpreted as the corresponding joins in the subobject lattices,

[[Γ | ⊥]] = 0 , [[Γ | φ ∨ ψ]] = [[Γ | φ]] ∨ [[Γ | ψ]] .

The additional clauses in the proof of soundness are routine. We can then extend the
syntactic construction of the regular classifying category CT to include all coherent formulas
and prove the following extended functorial semantics theorem for models in coherent
categories and coherent functors, which are defined to be regular functors that preserve all
finite joins of subobjects.

Theorem 3.2.40 (Functorial semantics for coherent logic). For any coherent theory T,
the syntactic category CT classifies T-models in coherent categories. Specifically, for any
coherent category C, there is an equivalence of categories, natural in C,

Coh(CT, C) ≃ Mod(T, C) , (3.21)

where Coh(CT, C) is the category of coherent functors and natural transformations. In
particular, there is a universal model U in CT.

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 153

The corresponding completeness theorem 3.2.34 then holds as well. We leave the routine
details to the reader.

Exercise 3.2.41. Extend the functorial semantics theorem 3.2.32 from regular to coherent
logic. Specifically, one must determine the components (3.15) of a natural transformation
for the extended language of coherent logic.

3.2.6 Freyd embedding theorem

For a coherent theory T, the syntactic construction of the classifying category CT means
that it is logically generic in the sense that a sequent (Γ |φ ⊢ ψ) is T-provable just in
case it holds in the universal model U in CT. The analogue of Corollary 3.2.34 then states
the completeness of coherent logic with respect to models in coherent categories. But a
stronger statement can also be shown, namely one that restricts the models required to
infer provability. Indeed, for (regular and) coherent theories, it suffices to have validity
with respect to just the single “standard” category Set, in order to infer provability for all
theories T. This is a consequence of the following embedding theorem, which can be seen
as a categorical version of the Henkin completeness theorem for first-order logic. It plays
roughly the same role as did Birkhoff’s prime ideal theorem, Lemma 2.9.13, for distributive
lattices. And, as in that case, it will be used below to prove a stronger embedding theorem
for Heyting categories.

Theorem 3.2.42 (Freyd). Let C be a small coherent category. Given any subobject S ↣
X, if FS ∼= FX for every coherent functor F : C → Set, then S ∼= X. It follows that
every small coherent category C has a conservative, coherent embedding into a power of set,
C ↣ SetX , where for X one can take a (sufficient) set of “models”, i.e., coherent functors
C → Set.

Proof. To be added later; for now, see [Joh03, D1.5].

The result can also be shown for regular categories, and the proof is somewhat easier
for that case.

Corollary 3.2.43. Coherent logic is sound and complete with respect to classical Set-valued
semantics. Specifically, for every coherent theory T and every sequent Γ | φ ⊢ ψ,

T proves Γ | φ ⊢ ψ iff M |= Γ | φ ⊢ ψ for every model M in Set .

3.3 Heyting and Boolean categories

In this section we consider coherent categories that also model the universal quantifier
∀, in the sense of Section 3.1.4 ; such categories will be seen to model full first-order
logic. One could also consider cartesian categories modeling ∀, without being coherent,
and thus modeling the fragment of logic consisting of u = v,⊤,∧,⇒,∀, but we will not do
so separately.

[DRAFT: September 15, 2024]

154 First-Order Logic

Definition 3.3.1. A Heyting category is a coherent category with universal quantifiers
in the sense of Section 3.1.4. Thus for every map f : A → B, the pullback functor
f ∗ : Sub(B)→ Sub(A) has a right adjoint,

∀f : Sub(A)→ Sub(B) ,

in addition to the left adjoint ∃f : Sub(A)→ Sub(B) given by taking images.

Note that in a Heyting category, one therefore has both adjoints to pullback along any
map f : A→ B,

Sub(A)

∀f
//

∃f //
Sub(B)f ∗oo ∃f ⊣ f ∗ ⊣ ∀f . (3.22)

Moreover, the Beck-Chevalley conditions from Section 3.1.4 are satisfied for both ∃f (by
Proposition 3.2.15) and ∀f (by Proposition 3.1.28).

A common way to get a Heyting structure on a category C is when the operation of
universal quantification on the subobject lattices Sub(A) is inherited from a related one on
the slice categories C/A; this happens e.g. when C is locally cartesian closed. Recall that a
cartesian closed category is a category that has products and exponentials. A category is
locally cartesian closed when every slice is cartesian closed.

Definition 3.3.2. A category C is locally cartesian closed (lccc) when it has a terminal
object and every slice C/A is cartesian closed.

Note that every slice category C/A has a terminal object, namely the identity morphism
1A : A → A, and all C/A have binary products if, and only if, C has pullbacks. Thus a
locally cartesian closed category has all finite limits because it has a terminal object and
pullbacks. In addition, a locally cartesian closed category is cartesian closed because
C ∼= C/1.

We describe how exponentials in a slice C/A can be computed in terms of change of
base functors and dependent products. Given a morphism f : A→ B in C, the “change of
base along f” is the pullback functor

f ∗ : C/B → C/A .

A right adjoint to f ∗, when it exists, is called a dependent product along f , denoted

Πf : C/A→ C/B .

Now an exponential of b : B → A and c : C → A in C/A can be computed in terms of Πb

and b∗. For any d : D → A, we have b×A d = (b∗d) ◦ b = Σb(b
∗d), hence

b×A d→ c

Σb(b
∗d)→ c

b∗d→ b∗c

d→ Πb(b
∗c)

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 155

Therefore, cb = Πb(b
∗c).

We have proved that if a cartesian category C has dependent product Πf : C/A→ C/B
along every morphism f : A → B then it is locally cartesian closed. The converse holds
as well, that is every lccc has dependent products. For a proof see Section ?? or [Awo10,
9.20].

Proposition 3.3.3. A category C with a terminal object is locally cartesian closed if, and
only if, for any f : A→ B the change of base functor f ∗ : C/B → C/A has a right adjoint
Πf : C/A→ C/B.

Proposition 3.3.4. In an lccc C, for any f : A → B the change of base functor f ∗ :
C/B → C/A preserves the ccc structure.

Proof. We need to show that f ∗ preserves terminal objects, binary products, and exponen-
tials in slices. Because f ∗ is a right adjoint it preserves limits, hence it preserves terminal
objects and binary products. To see that it preserves exponentials we first show that
f ∗ ◦ Πg

∼= Πf∗g ◦ (g∗f)∗ for g : C → B. Given any d : D → C, and e : E → A:

e→ f ∗(Πgd)

Σfe→ Πgd

g∗(Σfe)→ d

g∗(f ◦ e)→ d

(g∗f) ◦ ((f ∗g)∗e)→ d

(f ∗g)∗e→ (g∗f)∗d

e→ Πf∗g((g
∗f)∗d)

By the Yoneda Lemma it follows that f ∗(Πgd) ∼= Πf∗g((g
∗f)∗d). Now we have, for any

c : C → B and d : D → B,

f ∗cd = f ∗(Πd(d
∗c)) = Πf∗d((d

∗f)∗(d∗c)) = Πf∗d((f
∗d)∗(f ∗c)) = (f ∗c)(f

∗d) .

Exercise 3.3.5. In the preceding proof we used the fact that (d∗f)∗(d∗c) ∼= (f ∗d)∗(f ∗c)
and g∗(f ◦ e) ∼= (g∗f) ◦ ((f ∗g)∗e). Prove that this is really so.

Locally cartesian closed categories are an important example of categories with universal
quantifiers.

Proposition 3.3.6. A locally cartesian closed category has universal quantifiers.

Proof. Suppose C is locally cartesian closed. First observe that a morphism m : M → A
is mono if, and only if, the morphism

M
m //

m

A

1A��
A

[DRAFT: September 15, 2024]

156 First-Order Logic

is mono in C/A. Because right adjoints preserve monos, Πf : C/A→ C/B preserve monos
for any f : A → B, that is, if m : M ↣ A is mono then Πfm : ΠfM → B is mono in C.
Therefore, we may define ∀f as the restriction of Πf to Sub(A). To be more precise, a
subobject [m :M ↣ A] is mapped by ∀f to the subobject [Πfm : ΠfM ↣ B]. This works
because for any monos m :M ↣ A and n : N ↣ B we have

f ∗[m :M ↣ A] ≤ [n : N ↣ B] in Sub(B)

f ∗m→ n in C/B
m→ Πfn in C/A

[m] ≤ ∀f [n] in Sub(A)

The Beck-Chevalley condition for ∀f follows from Proposition 3.3.4. Indeed, if g : C → B
and m :M ↣ C then

f ∗(Πgm) ∼= Πf∗g((g
∗f)∗m) ,

therefore
f ∗(∀g[m :M ↣ C]) = ∀f∗g((g∗f)∗[m :M ↣ C]) ,

as required.

Summarizing, diagram (3.23), which may be called Lawvere’s hyperdoctrine diagram,
displays the relation between the quantifiers and the change of base functors.

C/A

im

��

Σf //

Πf

//
C/B

im

��

f ∗oo

Sub(A)

∃f //

∀f
//

?�

I

OO

Sub(B)f ∗oo
?�

I

OO
(3.23)

In Section 3.3.3 below we shall see that all presheaf categories SetC
op

are Heyting,
and therefore have universal quantifiers, which we will compute explicitly (they are not
pointwise!).

3.3.1 Heyting logic

We can now extend the formation rules for the logical language to include universally
quantified formulas in the expected way:

Γ, x : A | φ pred

Γ | ∀x : A.φ pred

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 157

The corresponding additional rule of inference for the universal quantifier is:

y : B, x : A | ϑ ⊢ φ
y : B | ϑ ⊢ ∀x : A.φ

Note that the lower judgement is well-formed only if x : A does not occur freely in ϑ.
Finally, we extend the interpretation from coherent formulas from (Section 3.2.5) to

formulas including universal quantifiers by the additional clause for ∀x : A.φ using the
universal quantifiers in the Heyting category,

[[Γ | ∀x : A.φ]] = ∀A[[Γ, x : A
∣∣ φ]] ,

where
∀A = ∀π : Sub([[Γ]]× [[A]])→ Sub([[Γ]])

is the universal quantifier along the projection π : [[Γ]]× [[A]]→ [[Γ]].
The following is then immediate from the results of section ??.

Proposition 3.3.7. The rules for the universal quantifier are sound with respect to the
interpretation in Heyting categories.

Implication

Recall that the rules of inference for implication state that ⇒ is right adjoint to ∧:

Γ | ϑ pred Γ | φ pred

Γ | (ϑ⇒ φ) pred

Γ | ψ ∧ ϑ ⊢ φ
Γ | ψ ⊢ ϑ⇒ φ

Exercise 3.3.8. Show that the above two-way rule can be replaced by the following in-
troduction and elimination rules:

Γ | ψ ∧ ϑ ⊢ φ
Γ | ψ ⊢ ϑ⇒ φ

Γ | ψ ⊢ ϑ⇒ φ Γ | ψ ⊢ ϑ
Γ | ψ ⊢ φ

If we want to interpret implication in a Heyting category C we therefore require Sub(A)
to be Cartesian closed for every A ∈ C. However, we must not forget that implication
interacts with substitution by the rule

(ϑ⇒ φ)[t/x] = ϑ[t/x]⇒ φ[t/x] .

Semantically this means that implication is stable under pullbacks.

Definition 3.3.9. A cartesian category C has implications when, for every A ∈ C, the
poset Sub(A) is cartesian closed, with stable implication ⇒. This means that for U, V ∈
Sub(A) and f : B → A,

f ∗(U ⇒ V) = (f ∗U ⇒ f ∗V) .

[DRAFT: September 15, 2024]

158 First-Order Logic

Proposition 3.3.10. If a cartesian category has universal quantifiers then it has implica-
tions.

Proof. Let [u : U ↣ A] and [v : V ↣ A] be subobjects of A. Define

([u]⇒ [v]) = ∀u(u∗[v]) ,

as indicated below
u∗([v])
��

��

// // V
��

v

��

∀uu∗([v])
{{

{{
U //

u
// A

Then for any subobject [w : W ↣ A] we have:

[w] ≤ [u]⇒ [v] in Sub(A)

[w] ≤ ∀u(u∗[v]) in Sub(A)

u∗[w] ≤ u∗[v] in Sub(U)

∃u(u∗w) ≤ v in Sub(A)

[u] ∧ [w] ≤ [v] in Sub(A)

Note that we used the decomposition of [u] ∧ [w] as ∃u(u∗w) from (3.20).
Finally, stability of ⇒ follows from Beck-Chevalley condition for ∀.

Exercise 3.3.11. Prove the last claim of the proof.

Corollary 3.3.12. Any LCCC has universal quantifiers and implications.

Negation

In any Heyting category, we have not only implications U⇒V making each Sub(A) carte-
sian closed, but also 0 and ∨ coming from the coherent structure, so that Sub(A) is a
Heyting algebra. Here 0 is the bottom element [0 ↣ A], and ∨ is the join [p ∨ q ↣ A], in
the poset Sub(A). We can therefore also define negation ¬U as usual in a Heyting algebra,
namely:

¬U = (U ⇒ 0) , (3.24)

These negations are stable under pullback because the Heyting implications and the bottom
element 0 are stable.

We can therefore add formulas with negation to the logical language, along with the
evident two-way rule of inference:

Γ | φ pred

Γ | ¬φ pred

Γ | ϑ ⊢ ¬φ
Γ | ϑ ∧ φ ⊢ ⊥

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 159

We give negated formulas the obvious interpretation: given [[φ]] in Sub(A), we set

[[¬φ]] = ¬[[φ]] = [[φ]]⇒ 0 .

using the Heyting implication ⇒ and bottom element 0 in Sub(A). The following is then
immediate.

Proposition 3.3.13. The rules for negation are sound in any Heyting category.

Given Heyting implication, we can prove the distributivity rule from Section 3.2.5 for
conjunction and disjunction.

Proposition 3.3.14. The distributivity rule is provable in Heyting logic:

φ ∧ (ψ ∨ ϑ) ⊢ (φ ∧ ψ) ∨ (φ ∧ ϑ)

Proof.
(φ ∧ ψ) ∨ (φ ∧ ϑ) ⊢ ζ

(φ ∧ ψ) ⊢ ζ (φ ∧ ϑ) ⊢ ζ
ψ ⊢ φ⇒ ζ ϑ ⊢ φ⇒ ζ

ψ ∨ ϑ ⊢ φ⇒ ζ

φ ∧ (ψ ∨ ϑ) ⊢ ζ
Thus, in fact,

φ ∧ (ψ ∨ ϑ) ⊣⊢ (φ ∧ ψ) ∨ (φ ∧ ϑ).

Perhaps more surprisingly, given universal quantifiers, we can actually prove the Frobe-
nius rule from Section 3.2.3 for existential quantifiers.

Proposition 3.3.15. The Frobenius rule is provable in Heyting logic:

(∃y : B.φ) ∧ ψ ⊢ ∃y : B. (φ ∧ ψ)

provided the variable y : B does not occur freely in ψ.

Proof.
∃y : B. (φ ∧ ψ) ⊢ ζ
y : B | φ ∧ ψ ⊢ ζ
y : B | φ ⊢ ψ ⇒ ζ

(∃y : B.φ) ⊢ ψ ⇒ ζ

(∃y : B.φ) ∧ ψ ⊢ ζ
Thus, in fact,

(∃y : B.φ) ∧ ψ ⊣⊢ ∃y : B.(φ ∧ ψ).

[DRAFT: September 15, 2024]

160 First-Order Logic

⊥ ⊢ φ φ ⊢ ⊤

φ ⊢ ϑ ψ ⊢ ϑ
φ ∨ ψ ⊢ ϑ

ϑ ⊢ φ ϑ ⊢ ψ
ϑ ⊢ φ ∧ ψ

ϑ ∧ φ ⊢ ψ
ϑ ⊢ φ⇒ ψ

x : A | φ ⊢ ϑ
∃x : A .φ ⊢ ϑ

x : A | ϑ ⊢ φ
ϑ ⊢ ∀x : A .φ

Figure 3.2: Adjoint rules of inference for Heyting logic

Exercise 3.3.16. In classical logic, one has the de Morgen laws for negation,

¬(φ ∧ ψ) ⊣⊢ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ⊣⊢ ¬φ ∧ ¬ψ

Which of these four entailments can you prove in Heyting logic?

Adjoint rules of Heyting logic

Figure 3.2 collects the rules of inference for Heyting logic. These are stated as two-way
rules to emphasize the respective underlying adjunctions. The rules for disjunction and
conjunction in the bottom-up direction are, of course, to be understood a two separate
rules, left and right. The contexts are omitted where there is no change between the top
and bottom, thus e.g. the rule for existential quantifier can be stated in full as:

Γ, x : A | φ ⊢ ϑ
Γ | ∃x : A .φ ⊢ ϑ

Negation ¬φ is treated as a defined by

¬φ := φ⇒ ⊥ .

It therefore satisfies the derived rule:

ϑ ∧ φ ⊢ ⊥
ϑ ⊢ ¬φ

The rules for equality, recall from Section 3.1.3, were:

ψ ⊢ t =A t

ψ ⊢ t =A u ψ ⊢ φ[t/z]
ψ ⊢ φ[u/z] (3.25)

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 161

Lawvere [Law70] observed that equality can also be seen as an adjoint, namely to the
operation of pullback along the diagonal ∆ : A→ A×A in any cartesian category. Indeed,
we have an adjunction

Sub(A)

∃∆
��

Sub(A× A)

∆∗

OO x : A | ϑ(x) ⊢ φ(x, x)
x : A, y : A | (x = y) ∧ ϑ(x) ⊢ φ(x, y)

(3.26)

where we have displayed the variables in the style φ(x, y) in order to emphasize the effect
of ∆∗ as a “contraction of variables”,

∆∗(φ(x, y)) = φ(x, x) .

The effect of the left adjoint ∃∆ (which is simply composition with ∆, because it is monic)
is given by

∃∆(ϑ(x)) =
(
x = y ∧ ϑ(x)

)
.

The adjoint rule (3.26) may be called Lawvere’s Law. It is equivalent to the standard rules
(3.25).

Exercise 3.3.17. Prove the equivalence of (3.25) and (3.26).

We state the following for the record as a summary of the foregoing discussion.

Proposition 3.3.18 (Soundness). The adjoint rules of inference for Heyting logic as stated
in Figure 3.2, as well as Lawvere’s Law (3.26), are sound in any Heyting category.

Theorem 3.3.22 implies that these rules are also complete with respect to models in
Heyting categories.

3.3.2 First-order logic

Heyting logic with equality is often called intuitionistic first-order logic (IFOL). It lacks
the classical laws of excluded middle φ ∨ ¬φ and double negation elimination ¬¬φ ⇒ φ,
but adding either one of these implies the other (proof!), and gives a system equivalent to
standard first-order logic – with one exception: one still cannot prove the classical law

∀x : A.φ ⊢ ∃x : A .φ . (3.27)

The latter law, which is satisfied only in non-empty domains, is considered by some to be
a defect of the conventional formulation of first-order logic. It would follow if we were to
forget about the contexts, essentially permitting inferences of the form

x : A | φ ⊢ ψ
· | φ ⊢ ψ (3.28)

when x : A does not occur freely in φ or ψ (cf. Remark 3.1.29).

[DRAFT: September 15, 2024]

162 First-Order Logic

Exercise 3.3.19. Assume the rule (3.28) and prove the entailment (3.27).

Any conventional first-order theory can be formulated in IFOL, often in more than one
way, since classical logic may collapse differences between concepts that are intuitionis-
tically distinct (like, most simply, φ and ¬¬φ). Our interest in intuitionistic logic does
not arise from any philosophical scruples about the validity of the classical laws of ex-
cluded middle or double negation, but rather the fact that the logic of variable structures
is naturally intuitionistic, as we will see in Section ??.

Example 3.3.20. An example of a first-order theory that is not (immediately) coherent is
the theory of dense linear orders. In addition to the poset axioms, and the totality axiom
x, y : P | ⊤ ⊢ (x ≤ y ∨ y ≤ x), one adds density e.g. in the form

x, y : P | (x ≤ y ∧ x ̸= y) ⊢ (∃z : P. x ≤ z ∧ x ̸= z ∧ z ≤ y ∧ z ̸= y) .

The classifying category of an intuitionistic first-order theory

Given a theory T in IFOL, we can build the syntactic category CT from the formulas
over T, as was done for coherent logic in Section 3.2.4. The objects again have the form
[Γ | φ], but now using the Heyting formulas φ, including the logical operations ∀, and ⇒.
The result will then be a coherent category with universal quantifiers, and thus a Heyting
category in the sense of Definition 3.3.1. Given another Heyting category C with a T-model
M ∈ Mod(T, C), the interpretation [[−]]M associated to the modelM determines a Heyting
functor,

M ♯ : CT −→ C (3.29)

[Γ | φ] 7−→ [[Γ | φ]]M (3.30)

We would like to show that CT classifies T-models, in the sense that this assignment deter-
mines an equivalence of categories, associating homomorphisms of T-models h :M → N in
the category Mod(T, C), and natural transformations of the associated classifying Heyting
functors M ♯ → N ♯ in CT → C.

However, there is a problem. Reviewing the proof of Theorem 3.2.32, we needed to show
that definable subobjects are natural in model homomorphisms, in the following sense: let
F,G : CT −→ C be functors classifying models FU and GU , and let h : FU → GU
be a model homomorphism. We have maps hA : F (A) −→ G(A) for all basic types
A = [x : A | ⊤], commuting with the interpretations of the function symbols f and the
basic relations R. For each object [x : A | φ], say, the components

h[x:A|φ] : F [x : A | φ] = [[x : A | φ]]FU −→ [[x : A | φ]]GU = G[x : A | φ]

were then defined on definable subobject [[x : A | φ]]FU ↣ [[A]]FU = FA, in such a way

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 163

that the following diagram commutes as indicated.

[[x : A | φ]]FU // //

h[x:A|φ]

��

[[A]]FU

hA

��
[[x : A | φ]]GU // // [[A]]GU

(3.31)

This we could do for all coherent formulas φ, as was shown by induction on the structure
of φ. However, this is no longer possible when φ is Heyting. Most simply, if φ = ¬ψ for
coherent ψ, there is no need for the following to commute on the left.

[[x : A | ¬ψ]]FU // //

h[x:A|¬ψ]

��

[[A]]FU

hA

��

[[x : A | ψ]]FUoooo

h[x:A|ψ]

��
[[x : A | ¬ψ]]GU // // [[A]]GU [[x : A | ψ]]GUoooo

(3.32)

Very concretely, let T be the theory of groups, FU and GU groups in Set and hA : [[A]]FU →
[[A]]GU the trivial homomorphism that takes everything a ∈ [[A]]FU to the unit eGU ∈ [[A]]GU ,
and ψ the formula x : A | x = e. Then [[x : A | ψ]]GU = {eGU} and so [[x : A | ¬ψ]]GU = {y ∈
[[A]]GU | y ̸= eGU}, so there is a factorization h[x:A|¬ψ] : [[x : A | ¬ψ]]FU → [[x : A | ¬ψ]]GU
only if FU is trivial.

The same holds, of course, for subobjects defined by the other Heyting operations, such
as [x : A | ϑ ⇒ ψ] and [x : A | ∀y : B.ψ]; there need not be any factorizations h[x:A|φ] as
indicted in (3.31).

Our solution (although not the only possible one) is to consider only isomophisms of
models h :M ∼= N and natural isomorphisms between the classifying functors.

Lemma 3.3.21. In the situation of diagram (3.31), if the model homomorphism h : FU →
GU is an isomorphism, then for any Heyting formula [Γ | φ] there is a unique factorization

h[Γ|φ] : F [Γ | φ] = [[x : A | φ]]FU −→ [[x : A | φ]]GU = G[x : A | φ]

making the corresponding diagram (3.31) commute.

Proof. Induction on φ.

Now for every Heyting category C, let us define Mod(T, C)i to be the category of T-
models in C, and their isomorphisms; thus Mod(T, C)i is a groupoid. Accordingly we let
Heyt(CT, C)i to be the category of all Heyting functors CT → C and natural isomorphisms
between them – thus also a groupoid. Then just as in previous cases we can show:

Theorem 3.3.22 (Functorial semantics for intuitionistic first-order logic). For any the-
ory T in (intuitionistic) first-order logic, the syntactic category CT classifies T-models in

[DRAFT: September 15, 2024]

164 First-Order Logic

Heyting categories. Specifically, for any Heyting category C, there is an equivalence of
categories, natural in C,

Heyt(CT, C)i ≃ Mod(T, C)i , (3.33)

where Heyt(CT, C)i is the groupoid of Heyting functors and natural isomorphisms, and
Mod(T, C)i is the groupoid of T-models in C. In particular, there is a universal model
U in CT.

The corresponding completeness theorem 3.2.34 for intuitionistic first-order logic with
respect to models in Heyting categories then holds as well. We leave the routine details to
the reader.

Boolean categories

A Boolean category may be defined as a coherent category in which every subobject U ↣ A
is complemented, in the sense that it there is some (necessarily unique) V ↣ A such that
U ∧ V ≤ 0 and 1 ≤ U ∨ V in Sub(A). One can then introduce the Boolean negation
¬U = V , and show that each Sub(A) is a Boolean algebra. Indeed one can then show
that every Boolean category is Heyting, using the familiar definitions ∀φ = ¬∃¬φ and
φ⇒ ψ = ¬φ ∨ ψ.

This definition, however, leads to the wrong notion of a “Boolean classifying category”,
for the reasons just discussed with respect to Heyting categories: although every coher-
ent functor between Boolean categories is Boollean, the natural transformations between
classifying functors will not be simply the homomorphisms. (They will be something inter-
esting, namely elementary embeddings, but we shall not pursue this further here; see [?].)
Thus it seems preferable for our purposed to define a Boolean category to be a Heyting
category with complemented subobjects:

Definition 3.3.23. A Heyting catgeory C is Boolean if every subobject lattice Sub(A) is
a Booean algebra. Thus for all subobjects U ↣ A, the Heyting complement ¬U satisfies
U ∨ ¬U = 1 in Sub(A).

Of course, the category Set is Boolean. A presheaf category SetC is in general not
Boolean, but an important special case always is, namely when C is a groupoid. (SetG is
called the category of G-sets.)

Exercise 3.3.24. Regard a group G as a category with one object. Show that in the
functor category SetG, every subobject lattice Sub(A) is a Boolean algebra.

The classifying category theorem 3.3.22 for Heyting categories, and indeed the entire
framework of functorial semantics, applies mutatis mutandis to classical first-order logic
and Boolean categories. We will not spell out the details, which do not differ in any
unexpected way from the more general Heyting case.

Exercise 3.3.25. Assume that C is coherent and has complemented subobjects in the
sense just defined. Prove that then each Sub(A) is a Boolean algebra, and that C is a
Heyting category.

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 165

Exercise 3.3.26. Show that a Heyting category C is Boolean if, and only if, in each Sub(A)
the Heyting complement ¬U always satisfies ¬¬U = U .

3.3.3 Examples

Sets. The category Set is of course complete and cocomplete. It is cartesian closed, with
function sets BA = {f : A → B} as exponentials. It is also locally cartesian closed,
because the slice category Set/I is equivalent to the category SetI of I-indexed families of
sets (Ai)i∈I , for which the exponentials can be computed pointwise: for A = (Ai)i∈I and
B = (Bi)i∈I we can set BA = (Bi

Ai)i∈I . Since pullback is therefore a left adjoint, regular
epis are stable and so Set is coherent. It is then Heyting by Proposition 3.3.6.

In order to compute the Heyting structure explicitly, consider any map f : A→ B and
the resulting adjunctions from (3.22),

Sub(A)

∃f
**

∀f
44
Sub(B)f ∗oo ∃f ⊣ f ∗ ⊣ ∀f .

For U ∈ Sub(A) and V ∈ Sub(B) we then have:

f ∗(V) = f−1(V) = {a ∈ A | f(a) ∈ V } (3.34)

∃f (U) = {b ∈ B | for some a ∈ f−1{b}, a ∈ U}
∀f (U) = {b ∈ B | for all a ∈ f−1{b}, a ∈ U}

It follows that in Set the implications U ⇒ V for U, V ∈ Sub(A) have the form

(U ⇒ V) = {a ∈ A | a ∈ U implies a ∈ V }
= (A \ U) ∪ V .

For negation, we then have

¬U = {a ∈ A | a /∈ U}
= (A \ U) ,

as expected. Of course, Set is Boolean.

Exercise 3.3.27. In Set consider the dependent sum and product along the unique func-
tion I → 1. Show that for a : A→ I the set ΠIA is the set of right inverses of a:

ΠIA =
{
s : I → A

∣∣ a ◦ s = 1I
}
.

If (Ai)i∈I is a family of sets indexed by I and we take

A =
∐

i∈I Ai =
{
⟨i, x⟩ ∈ I ×

⋃
i∈I Ai

∣∣ i ∈ I & x ∈ Ai
}

with a = π0 : ⟨i, x⟩ 7→ i then Π!IA is precisely the cartesian product Πi∈IAi. Calculate
what Πf is in Set for a general f : J → I, and conclude that Set is locally cartesian closed.

[DRAFT: September 15, 2024]

166 First-Order Logic

Presheaves. For a small category C, the presheaf category Ĉ = SetC
op

has pointwise
limits and colimits and is cartesian closed with the exponential of presheaves P,Q calculated
using Yoneda as,

QP (C) ∼= Hom(yC,QP) ∼= Hom(yC × P,Q) , for C ∈ C.

But then Ĉ is also LCC, because for any presheaf P , the slice category Ĉ/P is equivalent
to presheaves on the category of elements

∫
C P ,

Ĉ/P = (SetC
op

)/P ≃ Set(
∫
C P)op .

See [Awo10, 9.23].
We first consider the poset Sub(P) for any presheaf P on C. Let U ↣ P be any

subobject, then since monos in are pointwise in Ĉ, and they are represented by subsets
in Set, we can represent U by a family UC ⊆ PC of subsets. If f : P → Q is a natural
transformation, the inverse image of V ↣ Q can then be calculated pointwise from fC :
PC → QC as

f ∗(V)(C) = f−1
C (V C) = {x ∈ PC | fC(x) ∈ V C} .

The image ∃f (U), as a coequalizer, is also pointwise, therefore

∃f (U)(C) = {y ∈ QC | for some x ∈ f−1
C {y}, x ∈ UC} .

The direct image ∀f (U) is however not pointwise, so we must determine it directly. The
problem with the obvious attempt

∀f (U)(C)
?
= {y ∈ QC | for all x ∈ f−1

C {y}, x ∈ UC} .

is that it is not functorial in C ! In order to correct this, have to modify it by taking instead

∀f (U)(C) = {y ∈ QC | for all h : D → C, for all x ∈ f−1
D {y.h}, x ∈ UD} , (3.35)

where we have written y.h for the action of Q on y ∈ QC, i.e. Q(h)(y) ∈ QD.

Lemma 3.3.28. The specification (3.35) is the universal quantifier ∀f in presheaves.

Proof. Consider the diagram

yC ×Q P

��

//

y′

##

U
~~

~~
P

f

��
Q

yC

y

<<

// ∀fU
``

``

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 167

For all y ∈ QC, we have y ∈ ∀fU iff the pullback y′ = f ∗y factors through U ↣ P , as
indicated. Replacing the pullback yC×QP by its generalized elements, the latter condition
is equivalent to saying that for all yD and yh : yD → yC and x ∈ PD, if f ◦ x = y ◦ yh,
then x ∈ UD, as shown below.

yD

yh

��

x

��

##
yC ×Q P

��

//

y′

##

U
~~

~~
P

f

��
Q

yC

y

<<

// ∀fU
``

``

But the last condition is equivalent to saying for all D and all h : D → C and all x ∈ PD,
if x ∈ f−1

D {y.h}, then x ∈ UD, which is the righthand side of (3.35).

Proposition 3.3.29. For any natural transformation f : P → Q, there are adjoints

Sub(P)

∃f
**

∀f
44
Sub(Q)f ∗oo ∃f ⊣ f ∗ ⊣ ∀f .

These are determined by the following formulas, where U ↣ P and V ↣ Q and C ∈ C:

f ∗(V)(C) = {x ∈ PC | fC(x) ∈ V C} (3.36)

∃f (U)(C) = {y ∈ QC | for some x ∈ PC, fC(x) = y & x ∈ UC}
∀f (U)(C) = {y ∈ QC | for all h : D → C, for all x ∈ PD, fD(x) = y.h implies x ∈ UD}

The implication U ⇒ V for U, V ∈ Sub(P) therefore has the form, for each C ∈ C,

(U ⇒ V)(C) = {x ∈ PC | for all h : D → C, x.h ∈ UD implies x.h ∈ V D} .

And the negation ¬U ∈ Sub(P) is then, for each C ∈ C,

(¬U)(C) = {x ∈ PC | for all h : D → C, x.h /∈ UD} .

Exercise 3.3.30. Prove the last two statements, computing U ⇒ V and ¬U .

[DRAFT: September 15, 2024]

168 First-Order Logic

Sets through time. For presheaves on a poset K, the foregoing description of the
Heyting structure becomes a bit simpler. Let us consider “covariant presheaves”, i.e.
functors A : K → Set. We can regard such a functor as a “set developing through
(branching) time”, with each later time i ≤ j giving rise to a transition map Ai → Aj,
which we may denote by

Ai ∋ a 7−→ aj ∈ Aj .
For any map f : A→ B (a family of functions fi : Ai → Bi compatible with the develop-
ment over time), we again have the adjunctions

Sub(A)

∃f
**

∀f
44
Sub(B)f ∗oo ∃f ⊣ f ∗ ⊣ ∀f .

These can now be described by the following formulas, where U ∈ Sub(A) and V ∈ Sub(B)
and i ∈ K:

f ∗(V)i = {x ∈ Ai | fi(x) ∈ Vi} (3.37)

∃f (U)i = {y ∈ Bi | for some x ∈ Ai, fi(x) = y & x ∈ Ui}
∀f (U)i = {y ∈ Bi | for all j ≥ i, for all x ∈ Aj, fj(x) = yj implies x ∈ Uj}

The implication U ⇒ V for U, V ∈ Sub(A) then has the form, for each i ∈ K,

(U ⇒ V)i = {x ∈ Ai | for all j ≥ i, xj ∈ Uj implies xj ∈ Vj} .

And the negation ¬U ∈ Sub(A) is then, for each i ∈ K,

(¬U)i = {x ∈ Ai | for all j ≥ i, xj /∈ Uj} .

Exercise 3.3.31. Show that for the arrow category 2 = · → · the functor category Set→

is not Boolean.

Remark 3.3.32 (Bi-Heyting categories). We know by Proposition 3.3.29 that in presheaf
categories SetC

op

, each subobject lattice Sub(P) is a Heyting algebra. Define a bi-Heyting
category to be a Heyting category in which each Sub(P) is a bi-Heyting algebra, meaning
that both Sub(P) and its opposite Sub(P)op are Heyting algebras. One can show that any
presheaf category is also bi-Heyting (this follows from the fact that limits and colimits
in presheaves are computed pointwise, but see also Exercise 3.3.33 below). See [Law91,
MR95, GER96] for more on bi-Heyting categories.

Exercise 3.3.33. Complete the following sketch to show that any presheaf category SetC
op

is bi-Heyting.

1. Every presheaf P is covered by a coproduct of representables,∐
C∈C, x∈PC

yC ↠ P .

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 169

2. There is therefore an injective lattice homomorphism

Sub(P) ↣
∏

C∈C,x∈PC

Sub(yC) .

3. It thus suffices to show that all Sub(yC) are bi-Heyting.

4. The poset Sub(yC) is isomorphic to the poset of sieves on C in C: sets S of arrows
with codomain C, closed under precomposition by arbitrary arrows, i.e. (s : C ′ →
C) ∈ S and t : C ′′ → C ′ implies s ◦ t ∈ S.

5. Writing |D| for the poset reflection of an arbitrary category D, the sieves on C
are the same as lower sets in the poset reflection of the slice category |C/C|, thus
Sub(yC) ∼= ↓|C/C|.

6. For any poset P , the poset of lower sets ↓P , ordered by inclusion, form a Heyting
algebra.

7. The opposite category of ↓P is isomorphic to the upper sets ↑P .

8. But since ↑P = ↓(P op), by (6) the poset (↓P)op is also a Heyting algebra.

9. Thus Sub(yC) is a bi-Heyting algebra.

Remark 3.3.34 (First-order logical duality). The Stone duality for Boolean algebras was
seen in Section 2.7 to have a logical interpretation, under which Boolean algebras represent
theories in propositional logic, and Stone spaces represent their 2-valued semantics, with
valuations as the points of the corresponding Stone space. There is an analogous duality
theory for first-order logic, which extends and generalizes both that for propositional logic
as well as that for algebraic theories (Lawvere duality 1.2). Theories are represented by
Boolean categories and their (Set-valued) semantics by topological groupoids of models.
The interested reader may consult the sources ([Mak93, Mak87], [AF13, Awo21]).

3.3.4 Kripke-Joyal semantics

In section 3.1.2, we introduced the idea of using “generalized elements” z : Z → C as a
way of externalizing the interpretation of the logical language. With respect to a subobject
S ↣ C, such an element is said to be in the subobject, writtten z ∈C S, if it factors through
S ↣ C.

S
��

��
Z z

//

??

C

[DRAFT: September 15, 2024]

170 First-Order Logic

Generalized elements provide a way of testing for satisfaction of a formula in context
(x : A | φ) by a model M , as follows. Let AM be the interpretion of the type A in the
model M , so that the formula determines a subobject [[x : A | φ]]M ↣ AM . Note that in
Heyting logic, with ∀ and⇒, we can consider satisfaction of individual formulas in context
(x : A | φ) rather than entailments (x : A | φ ⊢ ψ), by replacing the latter with the
equivalent (x : A ⊢ φ⇒ ψ) — or even, for that matter, (⊤ ⊢ ∀x : A.φ⇒ ψ).

Definition 3.3.35. For a theory T in first-order logic we say that a model M satisfies a
formula in context (x : A | φ), written M |= (x : A | φ), if the subobject [[x : A | φ]]M ↣
AM is the maximal one 1AM

.

Note that this notion of satisfaction of a formula agrees with our previous notion of
satisfaction for the entailment x : A | ⊤ ⊢ φ,

M |= (x : A | φ) iff [[x : A | φ]]M = 1AM
(3.38)

iff M |= (x : A | ⊤ ⊢ φ) .

Now observe that the condition [[x : A | φ]]M = 1AM
holds just in case every element

z : Z → AM factors through the subobject [[x : A | φ]]M ↣ AM . It is convenient to use the
forcing notation ⊩ for this condition, writing

Z ⊩ φ(z) for z ∈AM
[[x : A | φ]]M .

We can then use forcing to test for satisfaction, by asking whether all generalized elements
z : Z → AM factor through [[x : A | φ]]M ↣ AM , and thus “force” the formula (x : A | φ):

M |= (x : A | φ) iff for all z : Z → AM , Z ⊩ φ(z) .

We summarize these conventions in the following Definition and Lemma.

Definition 3.3.36 (Kripke-Joyal Forcing). In any Heyting category C, define the forcing
relation ⊩ as follows: for a formula in context (x : A | φ) in the langage of a theory T, and
a T-model M , let AM interpret the type symbol A; then for any z : Z → AM , we define
the relation “z forces φ” by

Z ⊩ φ(z) iff z ∈AM
[[x : A | φ]]M (3.39)

iff z : Z → AM factors as [[x : A | φ]]M
��

��
Z z

//

::

AM

.

Lemma 3.3.37. For any model M , we have:

M |= (x : A | φ) iff for all z : Z → AM , Z ⊩ φ(z) . (3.40)

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 171

Of course, we also define forcing for formulas with a context of variables Γ = x1 :
A1, . . . xn : An, and then we have

M |= (Γ | φ) iff for all z : Z → ΓM , Z ⊩ φ(z) .

where ΓM = (A1)M × . . . × (A1)M , and φ(z) = φ(z1, . . . , zn) where zi = πiz : Z → ΓM →
(Ai)M . In the extremal case, we have a formula · | φ with no free variables (a closed
formula or sentence), for which the interpretation [[· | φ]] ↣ 1 is in Sub(1). For such a
closed formula, we have

M |= (· | φ) iff for all z : Z → 1, Z ⊩ φ (3.41)

iff [[· | φ]] = 1 .

In this sense, the Heyting algebra Sub(1) contains the truth-values of statements (· | φ) in
the internal logic, which hold if and only if [[· | φ]] = 1.

The forcing relation Z ⊩ φ(z) defined in (3.39) allows us to turn an internal statement
[[x : A | φ]]M , i.e. a formula interpreted as an object of C, into an external one, i.e.
an ordinary statement that makes reference to objects an arrows of C. We first restrict
attention to categories of presheaves Ĉ = SetC

op

, for the sake of simplicity (but see Remark
3.3.39 below.) In this case, we can restrict to generalized elements z : Z → AM of the
special form c : yC → AM , i.e. with representable domains, because Lemma 3.3.37 clearly
still holds when so restricted: M |= (x : A | φ) iff for all c : yC → AM , we have yC ⊩ φ(c).
Moreover, we then write simply C ⊩ φ(c) for yC ⊩ φ(c). Observe that because (by Yoneda)
c : yC → AM corresponds to c ∈ AM(C) in Set, with subset ([[x : A | φ]]M)(C) ⊆ AM(C),
we have, finally, the equivalence

C ⊩ φ(c) iff c ∈ [[x : A | φ]]M(C) . (3.42)

Theorem 3.3.38 (Kripke-Joyal Semantics). For any presheaf category Ĉ and model M of
a theory T in first-order logic, let (x : A | φ), (x : A | ψ), and (x : A, y : B | ϑ) be formulas
(in context) in the language of T, and let C ∈ C and c, c1, c2 : yC → AM be any maps.
Then we have

1. C ⊩ ⊤(c) always.

2. C ⊩ ⊥(c) never.

3. C ⊩ c1 = c2 iff c1 = c2 as arrows yC → AM .

4. C ⊩ φ(c) ∧ ψ(c) iff C ⊩ φ(c) and C ⊩ ψ(c).

5. C ⊩ φ(c) ∨ ψ(c) iff C ⊩ φ(c) or C ⊩ ψ(c).

6. C ⊩ φ(c)⇒ ψ(c) iff for all d : D → C, D ⊩ φ(c.d) implies D ⊩ ψ(c.d).

[DRAFT: September 15, 2024]

172 First-Order Logic

7. C ⊩ ¬φ(c) iff for no d : D → C, D ⊩ φ(c.d).

8. C ⊩ ∃y : B. ϑ(c, y) iff for some c′ : C → BM , C ⊩ ϑ(c, c′).

9. C ⊩ ∀y : B. ϑ(c, y) iff for all d : D → C, for all d′ : D → BM , D ⊩ ϑ(c.d, d′).

Proof. We just do a few cases and leave the rest to the reader.
...
Use (3.36) for the non-obvious cases.

Examples: LEM, DN, a map is epic, monic, iso. Constant domains.

Remark 3.3.39. There are several variations on Kripke-Joyal semantics for various special
kinds of categories: presheaves on a poset P , sheaves on a topological space or a complete
Heyting algebra, G-sets for a group or groupoid G, sheaves on a Grothendieck site (i.e.
a Grothendieck topos), as well as a general case for arbitrary Heyting categories. Many
of these are discussed in [MM92]. In the case of sheaves, the clauses for falsehood ⊥,
disjunction ∨, and the existential quantifier ∃ typically become more involved. The result
is then akin to what is known in constructive logic as Beth semantics.

We next consider another case that is even simpler than presheaves, namely covariant
Set-valued functors on a poset P , which may be called “Kripke models”.

Exercise 3.3.40. Show that for a group G, regarded as a category with one object, the
functor category SetG is Boolean.

Exercise 3.3.41. Prove Lemma 3.3.37 in the restricted case of presheaves and generalized
elements with representable domains, a : yC → AM .

Kripke models

As already mentioned, we can regard covariant functors A : K → Set on a poset K as “sets
developing through time”. A model in such a category SetK is a parametrized family of
models, (Mi)i∈I , or a variable model, which can be thought of as changing through space
or (non-linearly ordered) time, represented by K. The satisfaction of a formula by such a
variable structure can be tested by forcing, as a special case of Theorem 3.3.38. The result
becomes simplified somewhat in the clauses for ∀ and ⇒, in a way that agrees with the
original semantics of Kripke [?].

Theorem 3.3.42 (Kripke Semantics). For any first-order theory T and poset K and model
M in the functor category SetK, let (x : A | φ), (x : A | ψ), and (x : A, y : B | ϑ) be
formulas in context in the language of T, and let i ∈ K and a, a1, a2 : yi → AM be any
maps (respectively elements a, a1, a2 ∈ (AM)i. Then for each i ∈ K we write i ⊩ φ(a) for
the relation a ∈ ([[x : A | φ]]M)i. We can then calculate:

1. i ⊩ ⊤(a) always.

[DRAFT: September 15, 2024]

3.3 Heyting and Boolean categories 173

2. i ⊩ ⊥(a) never.

3. i ⊩ a1 = a2 iff a1 = a2 as elements of the set (AM)i.

4. i ⊩ φ(a) ∧ ψ(a) iff i ⊩ φ(a) and i ⊩ ψ(a).

5. i ⊩ φ(a) ∨ ψ(a) iff i ⊩ φ(a) or i ⊩ ψ(a).

6. i ⊩ φ(a)⇒ ψ(a) iff for all j ≥ i, j ⊩ φ(aj) implies j ⊩ ψ(aj).

7. i ⊩ ¬φ(a) iff for no j ≥ i, j ⊩ φ(aj).

8. i ⊩ ∃y : B. ϑ(a, y) iff for some b : yi→ BM , i ⊩ ϑ(a, b).

9. i ⊩ ∀y : B. ϑ(a, y) iff for all j ≥ i, for all b : yj → BM , j ⊩ ϑ(aj, b).

Proof. Use (3.37) for the non-obvious cases.

Examples: LEM, DN, a map is epic, monic, iso. Constant domain, increasing domain,
individuals and trans-world identity. Presheaf of real-valued functions on a space is an
ordered ring.

3.3.5 Joyal embedding theorem

We know by Theorem 3.3.22 that intuitionstic first-order logic is complete with respect to
models in arbitrary Heyting categories, and moreover, that for every theory T, there is a
“generic” model, namely the universal one U in the classifying category CT. The model U
is logically generic in the sense that, for any formula in context (x : A | φ), we have

U |= (x : A | φ) iff T ⊢ (x : A | φ) .

(The symbol ⊢ is once again available for provability from a set of formulas, the axioms
of T, now that we can restrict attention to single formulas rather than entailments φ ⊢ ψ;
see Definition 3.3.35.)

Lemma 3.3.43. A functor F : C → D is said to be conservative if it is faithful and reflects
isomorphisms. A Heyting functor between Heyting categories is already conservative if it
reflects isos; such a functor induces an injective homomorphism on the Heyting algebras
Sub(A) for all A ∈ C.

Proof. Let F : C → D be Heyting and conservative. The induced functor Sub(F) :
Sub(A) → Sub(FA), taking U ↣ A to FU ↣ FA, is easily seen to preserve the Heyting
operations, because F is Heyting. Just as in the category of groups, a homomorphism of
Heyting algebras is injective iff it has a trivial kernel Sub(F)−1(1). Let U ↣ A be in the
kernel, i.e. FU ↣ FA is iso. Then U ↣ A is iso since F is conservative. To see that F is
faithful consider the equalizer of a parallel pair of maps.

[DRAFT: September 15, 2024]

174 First-Order Logic

By the foregoing lemma, in order to show completeness of first-order intuitionistic logic
with respect to the Kripke-Joyal semantics of Theorem 3.3.38, it will suffice if we can
embed CT by a conservative Heyting functor into a functor category Ĉ = SetC

op

for some
suitable (small) category C,

F : CT ↣ Ĉ .
For then, if FU |= (x : A | φ) in Ĉ, then U |= (x : A | φ) in CT, since

FU |= (x : A | φ) iff 1 = [[x : A | φ]]FU = F ([[x : A | φ]]U)
iff 1 = [[x : A | φ]]U
iff U |= (x : A | φ) .

Such an embedding suffices, therefore, to prove completeness with respect to models in
categories of the form Ĉ, for which we have Kripke-Joyal semantics. The following repre-
sentation theorem from [MR95] is originally due to Joyal.

Theorem 3.3.44 (Joyal). For any small Heyting category H there is a small category M
and a conservative Heyting functor

H↣ SetM . (3.43)

The proof of Joyal’s theorem is beyond the scope of these notes, but we will mention
that the category M can be taken to be (a subcategory of) the category of regular functors
H → Set,

M = Reg(H, Set) ↪→ SetH,

where Reg(H, Set) is the category of all regular (not Heyting!) functors H → Set, and can
therefore be regarded as a “category of models” of the “underlying regular theory” of the
Heyting category H. The embedding (3.43) is then the “double dual” H ↣ SetReg(H,Set),
obtained by transposing the evaluation

Reg(H, Set)×H −→ Set

which takes R : H → Set and C ∈ H to R(C) ∈ Set. Here we have a glimpse of a
generalization of Lawvere duality (as well as Stone duality, as emphasized in [MR95]) to
regular categories, as developed by Makkai [?]. The conservativity of the embedding (3.43)
makes use of the Freyd embedding theorem for regular and coherent categories from Section
3.2.6, but the remarkable fact here is that the “double dual” embedding is not just regular,
but actually Heyting. Compare the analogous result for the (special case) of propositional
logic given in Chapter 2.

Note that, although M may be a large category, since H is small, there is a small full
subcategory M′ ↪→M of “models” that is sufficient to make the embedding conservative.

Theorem 3.3.45. Intuitionistic first-order logic is sound and complete with respect to the
Kripke-Joyal semantics of 3.3.38. Specifically, for every theory T, there is a model M in
a presheaf category Ĉ with the property that, for every closed formula φ,

T ⊢ φ iff M |= φ iff C ⊩ φ ,

where by C ⊩ φ we mean C ⊩ φ for all C ∈ C.

[DRAFT: September 15, 2024]

3.4 Hyperdoctrines 175

3.3.6 Kripke completeness

Finally, in order to specialize even further to the case of a Kripke model SetK for a poset
K, we can use the following “covering theorem”.

Theorem 3.3.46 (Diaconescu). For any small category C there is a poset K and a con-
servative Heyting functor

SetC ↣ SetK . (3.44)

For a sketch of the proof (see [MM92, IX.9] and [MR95, §3] for details), the poset K
may be taken to be String(C), consisting of finite strings of arrows in C,

s = (Cn
sn−→ Cn−1 −→ . . . −→ C1

s1−→ C0)

ordered by t ≤ s iff t extends s to the left, i.e. si = ti for all si in the string s. There is an
evident functor

π : String(C) −→ C

taking s = (s0, . . . , sn) to the “first” object Cn and t ≤ s to the evident composite of the
extra initial t’s. The functor π induces one on the functor categories by precomposition

π∗ : SetC −→ SetString(C) .

One can show by a direct calculation that π∗ is Heyting and that it is conservative, using
the fact that π is surjective on both arrows and objects.

Corollary 3.3.47. Intuitionistic first-order logic is sound and complete with respect to the
Kripke semantics of Theorem 3.3.42. Specifically, for every theory T, there is a poset K
and a model M in SetK with the property that, for every closed formula φ,

T ⊢ φ iff M |= φ iff K ⊩ φ ,

where by K ⊩ φ we mean k ⊩ φ for all k ∈ K.

Remark 3.3.48 (Gödel completeness). Using the fact that a Boolean category is the
same thing a coherent category with Boolean subobject lattices, and therefore a Boolean
functor between such categories is the same thing as a coherent functor (cf. Lemma ??),
we can specialize the completeness theorem for coherent logic to Boolean categories and
Set-valued completeness, i.e., the classical Gödel completeness theorem for first-order logic.
This formulation is sometimes called the Gödel-Deligne-Joyal completeness theorem.

3.4 Hyperdoctrines

For a given algebraic signature, let C be the category of contexts Γ = (x1 : X1, ..., xn : Xn)
with n-tuples of terms in context ∆ = (y1 : Y1, ..., ym : Ym) as arrows σ : ∆ → Γ.
Composition is given by substitution, and the identity arrows by variables (terms are

[DRAFT: September 15, 2024]

176 First-Order Logic

identified up to α-renaming of variables, as in the Lawvere theories of Chapter 1). The
category C then has all finite products. For each object Γ, let P (Γ) be the poset of all
first-order formulas (Γ | φ), up to provable equivalence. Substitution of a term σ : ∆→ Γ
into a formula (Γ | φ) determines a morphism of posets σ∗ : P (Γ) → P (∆), which also
preserves all of the propositional operations,

σ∗(φ ∧ ψ) = φ[σ/x] ∧ ψ[σ/x] = σ∗(φ) ∧ σ∗(ψ),

etc. Moreover, since substitutions into formulas and terms commute with each other,
τ ∗σ∗φ = φ[σ ◦ τ/x], this action is strictly functorial, so we have a contravariant func-
tor

P : Cop −→ Heyt

from the category of contexts to the category of Heyting algebras.
Now consider the quantifiers ∃ and ∀. Given a projection of contexts pX : Γ×X → Γ,

in addition to the pullback functor

p∗X : P (Γ) −→ P (Γ×X)

induced by weakening, there are the operations of quantification

∃X , ∀X : P (Γ×X) −→ P (Γ) .

By the rules for the quantifiers, these are left and right adjoints to weakening,

∃X ⊣ p∗X ⊣ ∀X .

The Beck-Chevalley rules are also satisfied, because substitution respects quantifiers, in
the sense that (∀xφ)[s/y] = ∀x(φ[s/y]).

Definition 3.4.1. A (posetal) hyperdoctrine consists of a Cartesian category C together
with a contravariant functor

P : Cop −→ Heyt ,

such that for each f : D → C the action maps f ∗ = Pf : PC → PD have both left and
right adjoints

∃f ⊣ f ∗ ⊣ ∀f
that satisfy the Beck-Chavalley conditions.

Examples

1. We already saw the syntactic example of first-order logic. For each first-order theory
T there is an associated hyperdoctrine (CT, PT), with the types and terms of T as
the category of contexts CT, and the formulas (in context) of T as “predicates”, i.e.
the elements of the Heyting algebras φ ∈ PT(Γ). A general hyperdoctrine can be
regarded as an abstraction of this example.

[DRAFT: September 15, 2024]

3.4 Hyperdoctrines 177

2. A hyperdoctrine on the index category C = Set is given by the powerset functor

P : Setop → Heyt ,

which is represented by the Heyting algebra 2, in the sense that for each set I one
has

PI ∼= Hom(I,2) .

Similarly, for any complete Heyting algebra H, there is a hyperdoctrine H-Set, with

PH(I) ∼= Hom(I,H) .

The adjoints to precomposition along a map f : J → I are given by

∃f (φ)(i) =
∨
j∈J

i = f(j) ∧ φ(j) ,

∀f (φ)(i) =
∧
j∈J

i = f(j)⇒ φ(j) ,

where the value of x = y in H is
∨
{⊤ | x = y}.

We leave it as an exercise to show that the Beck-Chevalley conditions are satisfied.

Exercise 3.4.2. Show this.

3. For a related example, let C be any small index category and C = Ĉ, the category
of presheaves on C. An internal Heyting algebra H in C, i.e. a functor Cop → Heyt,
is said to be internally complete if, for every I ∈ C, the transpose H → HI of the
projection H× I → H has both left and right adjoints. Such an internally complete
Heyting algebra determines a (representable) hyperdoctrine PH : C → Set just as for
the case of C = Set, by setting PH(C) = C(C,H).

4. For any Heyting category H let Sub(C) be the Heyting algebra of all subobjects
S ↣ C of the object C. The presheaf Sub : Hop → Heyt, with action by pullback, is
then a hyperdoctrine, essentially by the definition of a Heyting category.

Remark 3.4.3 (Lawvere’s Law). In any hyperdoctrine (C, P), for each object C ∈ C, an
equality relation =C exists in each P (C × C), namely

(x =C y) = ∃∆C
(⊤) ,

where ∆C : C → C × C is the diagonal, ∃∆C
⊣ ∆∗

C , and ⊤ ∈ P (C). Displaying variables
for clarity, if ρ(x, y) ∈ P (C × C) then ∆∗

Cρ(x, y) = ρ(x, x) ∈ PC is the contraction of
the different variables, and the ∃∆C

⊣ ∆∗
C adjunction can be formulated as the following

two-way rule,
x : C | ⊤ ⊢ ρ(x, x)

x : C, y : C | (x =C y) ⊢ ρ(x, y)
(3.45)

which expresses that (x =C y) is the least reflexive relation on C. See [Law70] and Exercise
3.3.17 above.

[DRAFT: September 15, 2024]

178 First-Order Logic

Exercise 3.4.4. Prove the equivalence of (3.25) and the above hyperdoctrine formulation
of Lawvere’s Law (3.45).

Proper hyperdoctrines

Now let us consider some hyperdoctrines of a different kind. For any set I, let SetI be
the category of families of sets (Ai)i∈I , and for f : J → I let us reindex along f by the
precomposition functor f ∗ : SetI → SetJ , with

f ∗((Ai)i∈I)j = Af(j) .

Thus we have a contravariant functor

P : Setop → Cat

with P (I) = SetI and f ∗(A : I → Set) = A ◦ f : J → Set.

Lemma 3.4.5. The precomposition functors f ∗ : SetI → SetJ have both left and right
adjoints, f! ⊣ f ∗ ⊣ f∗, which can be computed by the formulas:

f!(A)i =
∐

j∈f−1{i}

Aj , (3.46)

f∗(A)i =
∏

j∈f−1{i}

Aj ,

for A = (Aj)j∈J . Moreover, these functors satisfy the Beck-Chevally conditions.

Proof. The Beck-Chevalley conditions for such Cat-valued functors are stated as (canonical)
isomorphisms, rather than equalities, as they were for poset-valued functors.

In this way, the entire hyperdoctrine structure can be weakened to include (coherent)
isomorphisms, when the individual categories P (I) are proper categories, and not just
posets. We will not specify the required coherences here, but the interested reader may look
up the corresponding notion of an indexed-category, which is a Cat-valued pseudofunctor
(see [Joh03, B1.2]).

We conclude this chapter with a few more examples of such proper hyperdoctrines, the
“logic” of which generalizes first-order logic, and is better described as dependent type
theory.

1. Locally cartesian closed categories. In the previous example, we took C = Set and
P : Setop → Cat to be P (I) = SetI , with action of f : J → I on A : I → Set
by precomposition f ∗A = A ◦ f : J → Set, which is strictly functorial. There is an
equivalent hyperdoctrine with the slice category Set/I as the “category of predicates”
and action by pullback f ∗ : Set/I → Set/J . The equivalence of categories

SetI ≃ Set/I

[DRAFT: September 15, 2024]

3.4 Hyperdoctrines 179

allows us to use post-composition as the left adjoint f! : Set/J → Set/I , rather
than the coproduct formula in (3.46). Indeed, this hyperdoctrine structure arises
immediately from the locally cartesian closed character of Set. We have the same
for any other LCC E , namely the pair (E , E/(−)) determines a hyperdoctrine, with
the action of E/(−) by pullback, and the left and right adjoints coming from the LCC
structure.

Another familiar example related to LCC structure is presheaves on a small category
C, where for the slice category Ĉ/X we have another category of presheaves, namely∫̂
CX, on the category of elements

∫
CX. For a natural transformation f : Y → X we

have a functor
∫
f :

∫
Y →

∫
X, which induces a triple of adjoints

(
∫
f)! ⊣ (

∫
f)∗ ⊣ (

∫
f)∗ :

∫̂
Y −→

∫̂
X .

These satisfy the Beck-Chevalley conditions up to isomorphism, because this indexed
category is equivalent to the one coming from the LCC structure,∫̂

X ≃ Ĉ/X ,

which we know satisfies them.

Note that each of the categories Ĉ/X is also Cartesian closed and has coproducts
0, X + Y , so it is a “categorified” Heyting algebra—although we don’t make that
part of the definition of a hyperdoctrine.

2. For an example not coming from an LCC, consider the category Pos of posets and
monotone maps. For each poset K, let us take as the category of predicates P (K) the
full subcategory dFib(K) ↪→ Pos/K consisting of the discrete fibrations : monotone
maps p : X → K with the “unique lifting property”: for any x and k ≤ p(x) there
is a unique x′ ≤ x with p(x′) = k. Since each category dFib(K) is equivalent to
a category of presheaves dFib(K) ≃ SetK

op

, and pullback along any monotone f :
J → K preserves discrete fibrations, and moreover commutes with the equivalences
to the presheaf categories and the precomposition functor f ∗ : K̂ → Ĵ , we have a
hyperdoctrine if only the Beck-Chevalley conditions hold. We leave this as an exercise
for the reader.

3. Fibrations of groupoids. Another example of a hyperdoctrine not arising simply
from an LCCC is the category Grpd of groupoids and homomorphisms, which is not
LCC (cf. [Pal03]). We can however take as the category of predicates P (G) the full
subcategory Fib(G) ↪→ Grpd/G consisting of the fibrations into G: homomorphisms
p : H → G with the “iso lifting property”: for any h ∈ H and γ : g ∼= p(h) there
is some ϑ : h′ ∼= h with p(ϑ) = γ. Now each category Fib(G) is biequivalent to a
category of presheaves of groupoids Fib(G) ≃ GrpdG

op

. It is not so easy to show that
this is a (bicategorical) hyperdoctrine; see [HS98].

[DRAFT: September 15, 2024]

180 First-Order Logic

Exercise 3.4.6. 1. Verify that the pullback of a discrete fibration X → K along a
monotone map f : J → K exists in Pos, and is again a discrete fibration.

2. Verify the equivalence of categories dFib(K) ≃ SetK
op

.

3. Show the Beck-Chavelley conditions for the indexed category of discrete fibrations of
posets.

These examples of proper hyperdoctrines P : Cop → Cat are related to (dependent) type
theory in the way that posetal ones P : Cop → Pos are to FOL. There are actually two dis-
tinct aspects of this generalization: (1) the individual categories P (c) of values/predicates
may be mere posets, or proper categories, (2) the variation over the index category C of
types/contexts (and its adjoints) is accordingly weakened to pseudo-functoriality. We shall
consider each of these generalizations in turn in the next chapter on type theory.

Propositional Logic Simple Type Theory

First-Order Logic Dependent Type Theory

[DRAFT: September 15, 2024]

Chapter 4

Type Theory

4.1 The Curry-Howard correspondence

Consider the following natural deduction proof in propositional calculus.

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B
B

(1)
(A ∧B) ∧ (A⇒ B)⇒ B

This deduction shows that

⊢ (A ∧B) ∧ (A⇒ B)⇒ B.

But so does the following:

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

B
(1)

(A ∧B) ∧ (A⇒ B)⇒ B

As does:

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
B

(1)
(A ∧B) ∧ (A⇒ B)⇒ B

There is a sense in which the first two proofs are “equivalent”, but not the first and the
third. The relation (or property) of provability in propositional calculus ⊢ A discards such
differences in the proofs that witness it. According to the “proof-relevant” point of view,
sometimes called propositions as types, one retains as relevant some information about the
way in which a proposition is proved. This can be done by annotating the proofs with
proof-terms as they are constructed, as follows:

[DRAFT: September 15, 2024]

182 Type Theory

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B)⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B)⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π2(π1(x)) : B

(1)
λx.π2(π1(x)) : (A ∧B) ∧ (A⇒ B)⇒ B

The proof terms for the first two proofs are the same, namely λx.π2(x)(π1(π1(x))), but the
term for the third one is λx.π2(π1(x)), reflecting the difference in the proofs. The assign-
ment works by labelling assumptions as variables, and then associating term-constructors
to the different rules of inference: pairing and projection to conjunction introduction and
elimination, function application and λ-abstraction to implication elimination (modus po-
nens) and introduction. The use of variable binding to represent cancellation of premisses
is a particularly effective device.

From the categorical point of view, the relation of deducibility A ⊢ B is a mere preorder.
The addition of proof terms x : A ⊢ t : B results in a categorification of this preorder, in
the sense that it becomes a “proper” category, the preordered reflection of which is the
deducibility preorder. And now a remarkable fact emerges: it is hardly surprising that the
deducibility preorder has, say, finite products A ∧ B or even exponentials A ⇒ B; but it
is amazing that the category with proof terms x : A ⊢ t : B as arrows also turns out to be
a cartesian closed category, and indeed a proper one, with distinct parallel arrows, such as

π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) −→ B,

π2(π1(x)) : (A ∧B) ∧ (A⇒ B) −→ B.

This category of proofs contains information about the “proof theory” of the propositional
calculus, as opposed to its mere relation of deducibility.

And now another remarkable fact emerges: when the calculus of proof terms is formu-
lated as a system of simple type theory, it admits an alternate interpretation as a formal

[DRAFT: September 15, 2024]

4.2 Cartesian closed categories 183

system of function abstraction and application. This dual interpretation of the system of
type theory—as the proof theory of propositional logic, and as formal system for manipulat-
ing functions—is sometimes called the Curry-Howard correspondence [Sco70, ML84, Tai68].
From the categorical point of view, it expresses a structural equivalence between the carte-
sian closed categories of proofs in propositional logic and terms in simple type theory, both
of which are categorifications of their common preorder reflection, the deducibility preorder
of propositional logic (cf. [MH92]).

In the following sections, we shall consider this remarkable correspondence in detail,
as well as some extensions of the basic case represented by cartesian closed categories:
categories with coproducts, cocomplete categories, and categories equipped with modal
operators. In the next chapter, it will be seen that this correspondence even extends to
proofs in quantified predicate logic and terms in dependent type theory, and beyond.

4.2 Cartesian closed categories

Exponentials

We begin with the notion of an exponential BA of two objects A,B in a category, motivated
by a couple of important examples. Consider first the category Pos of posets and monotone
functions. For posets P and Q the set Hom(P,Q) of all monotone functions between them
is again a poset, with the pointwise order:

f ≤ g ⇐⇒ fx ≤ gx for all x ∈ P . (f, g : P → Q)

Thus, when equipped with a suitable order, the set Hom(P,Q) becomes an object of Pos.

Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure on the set
Hom(K,M), defined pointwise by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

Thus the category Mon also admits such “internal Homs”. The same thing works in the
category Group of groups and group homomophisms, where the set Hom(G,H) of all ho-
momorphisms between groups G and H can be given a pointwise group structure.

These examples suggest a general notion of an “internal Hom” in a category: an “object
of morphisms A→ B” which corresponds to the hom-set Hom(A,B). The other ingredient
needed is an “evaluation” operation eval : BA×A→ B which evaluates a morphism f ∈ BA

at an argument a ∈ A to give a value eval ◦ ⟨f, a⟩ = f(a) ∈ B. This is always going to
be present as an operation on underlying sets, if we’re starting from a set of functions
Hom(A,B) between structured sets A and B, but even in that case it also needs to be an
actual morphism in the category. Finally, we need an operation of “transposition”, taking
a morphism f : C × A → B to one f̃ : C → AB. We shall see that this in fact separates
the previous two examples.

[DRAFT: September 15, 2024]

184 Type Theory

Definition 4.2.1. In a category C with binary products, an exponential (BA, ϵ) of objectsA
and B is an object BA together with a morphism ϵ : BA × A → B, called the evaluation
morphism, such that for every f : C×A→ B there exists a unique morphism f̃ : C → BA,
called the transpose1 of f , for which the following diagram commutes.

BA BA × A ϵ // B

C

f̃

OO

C × A

f̃ × 1A

OO

f

<<

Commutativity of the diagram of course means that ϵ ◦ (f̃ × 1A) = f .

Definition 4.2.1 is called the universal property of the exponential. It is just the category-
theoretic way of saying that a function f : C ×A→ B of two variables can be viewed as a
function f̃ : C → BA of one variable that maps z ∈ C to a function f̃ z = f⟨z,−⟩ : A→ B

that maps x ∈ A to f⟨z, x⟩. The relationship between f and f̃ is then the expected one:

(f̃ z)x = f⟨z, x⟩ .

That is all there is to it, except that by making the evaluation explicit, variables and
elements never need to be mentioned! The benefit of this is that the definition makes sense
also in categories whose objects are not sets, and whose morphisms are not functions—even
though some of the basic examples are of that sort.

In Poset the exponential QP of posets P and Q is the set of all monotone maps P → Q,
ordered pointwise, as above. The evaluation map ϵ : QP × P → Q is just the usual
evaluation of a function at an argument. The transpose of a monotone map f : R×P → Q
is the map f̃ : R → QP , defined by, (f̃ z)x = f⟨z, x⟩, i.e. the transposed function. We say
that the category Pos has all exponentials.

Definition 4.2.2. Suppose C has all finite products. An object A ∈ C is exponentiable
when the exponential BA exists for every B ∈ C (along with an associated evaluation map
ϵ : BA × A → B). We say that C has exponentials if every object is exponentiable. A
cartesian closed category (ccc) is a category that has all finite products and exponentials.

Example 4.2.3. Consider again the example of the set Hom(M,N) of homomorphisms
between two monoidsM,N , equipped with the pointwise monoid structure. To be a monoid
homomorphism, the transpose h̃ : 1 → Hom(M,N) of a homomorphism h : 1 ×M → N
would have to take the unit element u ∈ 1 to the unit homomorphism u : M → N ,
which is the constant function at the unit u ∈ N . Since 1 ×M ∼= M , that would mean
that all homomorphisms h : M → N would have the same transpose, namely h̃ = u :
1 → Hom(M,N). So Mon cannot be cartesian closed. The same argument works in the
category Group, and in many related ones.

1Also, f is called the transpose of f̃ , so that f and f̃ are each other’s transpose.

[DRAFT: September 15, 2024]

4.2 Cartesian closed categories 185

Exercise 4.2.4. Recall that monoids and groups can be regarded as (1-object) categories,
and then their homomorphisms are just functors. So we have full subcategories,

Mon ↪→ Group ↪→ Cat .

Is the category Cat of all (small) categories and functors cartesian closed? What about the
subcategory of all groupoids,

Grpd ↪→ Cat ,

defined as those categories in which every arrow is an iso?

Two characterizations of CCCs

Proposition 4.2.5. In a category C with binary products an object A is exponentiable if,
and only if, the functor

−× A : C → C
has a right adjoint

−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is (BA, ϵB), where
ϵB : BA × A → A is the counit of the adjunction at B. Indeed, the universal property of
the exponential is just the universal property of the counit ϵ : (−)A ⇒ 1C .

Conversely, suppose for every B there is an exponential (BA, ϵB). As the object part
of the right adjoint we then take BA. For the morphism part, given g : B → C, we can
define gA : BA → CA to be the transpose of g ◦ ϵB,

gA = (g ◦ ϵB)∼

as indicated below.

BA × A ϵB //

gA × 1A
��

B

g

��
CA × A ϵC

// C

(4.1)

The counit ϵ : −A×A =⇒ 1C at B is then ϵB itself, and the naturality square for ϵ is then
exactly (4.1), i.e. the defining property of (f ◦ ϵB)∼:

ϵC ◦ (gA × 1A) = ϵC ◦ ((g ◦ ϵB)∼ × 1A) = g ◦ ϵB .

The universal property of the counit ϵ is precisely the universal property of the exponential
(BA, ϵB)

Note that because exponentials can be expressed as right adjoints to binary products,
they are determined uniquely up to isomorphism. Moreover, the definition of a cartesian
closed category can then be phrased entirely in terms of adjoint functors: we just need to
require the existence of the terminal object, binary products, and exponentials.

[DRAFT: September 15, 2024]

186 Type Theory

Proposition 4.2.6. A category C is cartesian closed if, and only if, the following functors
have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,
(−× A) : C → C . (A ∈ C)

Here !C is the unique functor from C to the terminal category 1 and ∆ is the diagonal
functor ∆A = ⟨A,A⟩, and the right adjoint of −× A is exponentiation by A.

The significance of the adjoint formulation is that it implies the possibility of a purely
equational specification (adjoint structure on a category is “algebraic”, in a sense that can
be made precise; see [?]). It follows that there is a equational formulation of the definition
of a cartesian closed category.

Proposition 4.2.7 (Equational version of CCC). A category C is cartesian closed if, and
only if, it has the following structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A × B for all A,B ∈ C together with morphisms π0 : A × B → A and
π1 : A × B → B, and for every pair of morphisms f : C → A, g : C → B a
morphism ⟨f, g⟩ : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism ϵ : BA × A → B, and a
morphism f̃ : C → BA for every morphism f : C × A→ B.

These new objects and morphisms are required to satisfy the following equations:

1. For every f : A→ 1,

f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π0 ◦ ⟨f, g⟩ = f , π1 ◦ ⟨f, g⟩ = g , ⟨π0 ◦ h, π1 ◦ h⟩ = h .

3. For all f : C × A→ B, g : C → BA,

ϵ ◦ (f̃ × 1A) = f , (ϵ ◦ (g × 1A))
∼ = g .

where for e : E → E ′ and f : F → F ′ we define

e× f := ⟨eπ0, fπ1⟩ : E × F → E ′ × F ′.

[DRAFT: September 15, 2024]

4.2 Cartesian closed categories 187

These equations ensure that certain diagrams commute and that the morphisms that are
required to exist are unique. For example, let us prove that (A × B, π0, π1) is the product
of A and B. For f : C → A and g : C → B there exists a morphism ⟨f, g⟩ : C → A× B.
Equations

π0 ◦ ⟨f, g⟩ = f and π1 ◦ ⟨f, g⟩ = g

enforce the commutativity of the two triangles in the following diagram:

C

f

""

g

||

⟨f, g⟩
��

A A×Bπ0
oo

π1
// B

Suppose h : C → A × B is another morphism such that f = π0 ◦ h and g = π1 ◦ h. Then
by the third equation for products we get

h = ⟨π0 ◦ h, π1 ◦ h⟩ = ⟨f, g⟩ ,

and so ⟨f, g⟩ is unique.

Exercise 4.2.8. Use the equational characterization of CCCs, Proposition 4.2.7, to show
that the category Pos of posets and monotone functions is cartesian closed, as claimed.
Also verify that that Mon is not. Which parts of the definition fail in Mon?

Exercise 4.2.9. Use the equational characterization of CCCs, Proposition 4.2.7, to show
that the product category Πi∈I Ci of any (set-indexed) family (Ci)i∈I of cartesian closed
categories Ci is cartesian closed. Is the same true for an arbitrary limit in Cat?

Some proper CCCs

We next review some important examples of (non-poset) cartesian closed categories, most
of which have already been discussed.

Example 4.2.10. The first example is the category Set. We already know that the ter-
minal object is a singleton set and that binary products are cartesian products. The
exponential of X and Y in Set is just the set of all functions from X to Y ,

Y X =
{
f ⊆ X × Y

∣∣ ∀x : X . ∃! y : Y . ⟨x, y⟩ ∈ f
}
.

The evaluation morphism eval : Y X ×X → Y is the usual evaluation of a function at an
argument, i.e., eval⟨f, x⟩ is the unique y ∈ Y for which ⟨x, y⟩ ∈ f .

[DRAFT: September 15, 2024]

188 Type Theory

Example 4.2.11. The category Cat of all small categories is cartesian closed. The expo-
nential of small categories C and D is the category DC of functors, with natural trans-
formations as arrows (see A.6). Note that if D is a groupoid (all arrows are isos), then
so is DC. It follows that the category of groupoids is full (even as a 2-category) in Cat.
Since limits of groupoids in Cat are also groupoids, the inclusion of the full subcategory
Grpd ↪→ Cat preserves limits. It also preserves the CCC structure.

Example 4.2.12. The same reasoning as in the previous example shows that the full
subcategory Pos ↪→ Cat of all small posets and monotone maps is also cartesian closed,
and the (limit preserving) inclusion Pos ↪→ Cat also preserves exponentials. Note that the
(non-full) forgetful functor U : Pos → Set does not, and that U(QP) ⊆ (UQ)UP is in
general a proper subset.

Exercise 4.2.13. There is a full and faithful functor I : Set→ Poset that preserves finite
limits as well as exponentials. How is this related to the example Grpd ↪→ Cat?

The foregoing examples are instances of the following general situation.

Proposition 4.2.14. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a left adjoint reflection L : E → S preserving finite products. Suppose moreover that for
any two objects A,B in S, the exponential iBiA is again in S. Then S has all exponentials,
and these are preserved by i.

Proof. By assumption, we have L ⊣ i with isomorphic counit LiS ∼= S for all S ∈ S.
Let us identify S with the subcategory of E that is its image under i : S ↪→ E . The
assumption that BA is again in S for all A,B ∈ S, along with the fullness of S in E , gives
the exponentials, and the closure of S under finite products in E ensures that the required
transposes will also be in S.

Alternately, for any A,B ∈ S set BA = L(iBiA). Then for any C ∈ S, we have natural
isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= E

(
iC, iL(iBiA)

)
∼= S

(
C,L(iBiA)

)
∼= S

(
C,BA

)
where in the fifth line we used the assumption that iBiA is again in S, in the form iBiA ∼= iE
for some E ∈ S, which is then necessarily L(iBiA) = LiE ∼= E.

A related general situation that covers some (but not all) of the above examples is this:

Proposition 4.2.15. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a right adjoint reflection R : E → S. If i preserves finite products, then S also has all
exponentials, and these are computed first in E, and then reflected by R into S.

[DRAFT: September 15, 2024]

4.2 Cartesian closed categories 189

Proof. For any A,B ∈ S set BA = R(iBiA) as described. Now for any C ∈ S, we have
natural isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= S

(
C,R(iBiA)

)
∼= S

(
C,BA

)
.

An example of the foregoing is the inclusion of the opens into the powerset of points of
a space X,

OX ↪→ PX

This frame homomorphism is associated to the map |X| → X of locales (or in this case,
spaces) from the discrete space on the set of points of X.

Exercise 4.2.16. Which of the examples follows from which proposition?

Example 4.2.17. For any set X, the slice category Set/X is cartesian closed. The product
of f : A → X and g : B → X is the pullback A×X B → X, which can be constructed as
the set of pairs

A×X B → X = {⟨a, b⟩ | fa = gb} .

The exponential, however, is not simply the set

{h : A→ B | f = g ◦ h} ,

(what would the projection to X be?), but rather the set of all pairs

{⟨x, h : Ax → Bx⟩ | x ∈ X, f = g ◦ h} ,

where Ax = f−1{x} and Bx = g−1{x}, with the evident projection to X.

Exercise 4.2.18. Prove that Set/X is always cartesian closed.

Example 4.2.19. A presheaf category Ĉ is cartesian closed, provided the index category
C is small. To see what the exponential of presheaves P and Q ought to be, we use the
Yoneda Lemma. If QP exists, then by Yoneda Lemma and the adjunction (−×P) ⊣ (−P),
we have for all A ∈ C,

QP (A) ∼= Nat(yA,QP) ∼= Nat(yA× P,Q) .

Because C is small Nat(yA× P,Q) is a set, so we can define QP to be the presheaf

QP = Nat(y−× P,Q) .

[DRAFT: September 15, 2024]

190 Type Theory

The evaluation morphism E : QP × P =⇒ Q is the natural transformation whose compo-
nent at A is

EA : Nat(yA× P,Q)× PA→ QA ,

EA : ⟨η, x⟩ 7→ ηA⟨1A, x⟩ .

The transpose of a natural transformation ϕ : R × P =⇒ Q is the natural transformation
ϕ̃ : R =⇒ QP whose component at A is the function that maps z ∈ RA to the natural
transformation ϕ̃Az : yA× P =⇒ Q, whose component at B ∈ C is

(ϕ̃Az)B : C(B,A)× PB → QB ,

(ϕ̃Az)B : ⟨f, y⟩ 7→ ϕB⟨(Rf)z, y⟩ .

Exercise 4.2.20. Verify that the above definition of QP really gives an exponential of
presheaves P and Q.

It follows immediately that the category of graphs Graph is cartesian closed because it
is the presheaf category Set·⇒·. The same is of course true for the “category of functions”,
i.e. the arrow category Set→, as well as the category of simplicial sets Set∆

op

from topology.

Exercise 4.2.21. This exercise is for students with some background in linear algebra.
Let Vec be the category of real vector spaces and linear maps between them. Given vector
spaces X and Y , the linear maps L(X, Y) between them form a vector space. So define
L(X,−) : Vec → Vec to be the functor which maps a vector space Y to the vector space
L(X, Y), and it maps a linear map f : Y → Z to the linear map L(X, f) : L(X, Y) →
L(X,Z) defined by h 7→ f ◦ h. Show that L(X,−) has a left adjoint −⊗X, but also show
that this adjoint is not the binary product in Vec.

A few other instructive examples that can be explored by the interested reader are the
following.

• Etale spaces over a base space X. This category can be described as consisting of
local homeomorphisms f : Y → X and commutative triangles over X between such
maps. It is equivalent to the category Sh(X) of sheaves on X. See [?, ch.n].

• Various subcategories of topological spaces (sequential spaces, compactly-generated
spaces). Cf. [?].

• Dana Scott’s category Equ of equilogical spaces [?].

4.3 Simple type theory

The λ-calculus is an abstract theory of functions, much like group theory is an abstract
theory of symmetries. There are two basic operations that can be performed with functions.
The first one is the application of a function to an argument: if f is a function and a is an

[DRAFT: September 15, 2024]

4.3 Simple type theory 191

argument, then fa is the application of f to a, also called the value of f at a. The second
operation is abstraction: if x is a variable and t is an expression in which x may appear,
then there is a function f defined by the equation

fx = t .

Here we gave the name f to the newly formed function. But we could have expressed the
same function without giving it a name; this is usually written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation, which is more
convenient when such abstractions are nested, namely

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the function that
maps an argument a to the function λy. (a+ y), which maps an argument b to the value
a+ b. The variable x is said to be bound in t in the expression λx. t.

It may seem strange that in specifying the abstraction of a function, we switched
from talking about objects (functions, arguments, values) to talking about expressions :
variables, names, equations. This “syntactic” point of view seems to have been part of
the notion of a function from the start, in the theory of algebraic equations. It is the
reason that the λ-calculus is part of logic, unlike the theory of cartesian closed categories,
which remains thoroughly semantical (and “variable-free”). The relation between the two
different points of view occupies the rest of this chapter—and, indeed, the entire subject
of logic!

There are two kinds of λ-calculus: the typed and the untyped. In the untyped version
there are no restrictions on how application is formed, so that an expression such as

λx. (xx)

is valid, whatever it may mean. We will concentrate here on the typed λ-calculus. In typed
λ-calculus every expression has a type, and there are rules for forming valid expressions and
types. For example, we can only form an application fa when a has a type A and f has a
type A→ B, which indicates a function taking arguments of type A and giving results of
type B. The judgment that expression t has a type A is written as

t : A .

To computer scientists the idea of expressions having types is familiar from programming
languages, whereas mathematicians can think of types as sets and read t : A as t ∈ A.

[DRAFT: September 15, 2024]

192 Type Theory

Simply-typed λ-calculus. We now give a more formal definition of what constitutes a
simply-typed λ-calculus. First, we are given a set of simple types, which are generated from
basic types by formation of products and function types:

Basic types B ::= B0 | B1 | B2 · · ·
Simple types A ::= B | A1 × A2 | A1 → A2.

We adopt the convention that function types associate to the right:

A→ B → C = A→ (B → C) .

We assume there is a countable set of variables x, y, u, . . .We are also given a set of
basic constants. The set of terms is generated from variables and basic constants by the
following grammar:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. a variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if u and t are terms then ⟨u, t⟩ is a term, called a pair,

5. if t is a term then fst t and snd t are terms,

6. if u and t are terms then u t is a term, called an application

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term, called a
λ-abstraction.

The variable x is bound in λx : A . t. Application associates to the left, thus s t u = (s t)u.
The set of free variables FV(t) of a term t is determined as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(⟨u, t⟩) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

[DRAFT: September 15, 2024]

4.3 Simple type theory 193

If x1, . . . , xn are distinct variables and A1, . . . , An are types then the sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted by a dot ·,
and it is a valid context. Contexts are denoted by capital Greek letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition the free variables of t
must occur in Γ, but Γ may contain other variables as well. We read the above judgment
as “in context Γ the term t has type A”. Next we describe the rules for deriving typing
judgments.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An | xi : Ai
(1 ≤ i ≤ n)

• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections are:

Γ | a : A Γ | b : B
Γ | ⟨a, b⟩ : A×B

Γ | t : A×B
Γ | fst t : A

Γ | c : A×B
Γ | snd t : B

• The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | a : A

Γ | t a : B

Γ, x : A | t : B
Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms: for terms of type A in context Γ,

Γ | s : A , Γ | t : A ,

the judgment that they are equal is written as

Γ | s = t : A .

Note that s and t necessarily have the same type; it does not make sense to compare terms
of different types. We have the following rules for equations, the effect of which is to make
equality between terms into an equivalence relation at each type, and a congruence with
respect to all of the operations, just as for algebraic theories:

[DRAFT: September 15, 2024]

194 Type Theory

• Equality is an equivalence relation:

Γ | t = t : A

Γ | s = t : A

Γ | t = s : A

Γ | s = t : A Γ | t = u : A

Γ | s = u : A

• The substitution rule:

Γ | s = t : A Γ, x : A | u = v : B

Γ | u[s/x] = v[t/x] : B

• The weakening rule:

Γ | s = t : A

Γ, x : B | s = t : A

• Unit type:

Γ | t = ∗ : 1

• Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | ⟨u, s⟩ = ⟨v, t⟩ : A×B
Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B
Γ | snd s = snd t : A

Γ | t = ⟨fst t, snd t⟩ : A×B

Γ | fst ⟨s, t⟩ = s : A Γ | snd ⟨s, t⟩ = t : A

• Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

Γ | λx : A . (t x) = t : A→ B
if x ̸∈ FV(t) (η-rule)

This completes the description of a simply-typed λ-calculus.

[DRAFT: September 15, 2024]

4.3 Simple type theory 195

Simply-typed λ-theories. Apart from the above rules for equality, which are part of
the λ-calculus, we might want to impose additional equations between terms. In this case
we speak of a λ-theory. Thus, a λ-theory T is given by a set of basic types and a set of
basic constants, called the signature, and a set of equations of the form

Γ | s = t : A .

Note that we can always state the equations equivalently in closed form simply by λ-
abstracting all the variables in the context Γ.

We summarize the preceding definitions.

Definition 4.3.1. A (simply-typed) signature S is given by a set of basic types (Bi)i∈I
together with a set of basic (typed) constants (cj : Cj)j∈J ,

S =
(
(Bi)i∈I , (cj : Cj)j∈J

)
.

A simply-typed λ-theory T = (S,E) is a simply-typed signature S together with a set of
equations between terms,

E =
(
uk = vk : Ak

)
k∈K .

Example 4.3.2. The theory of a group is a simply-typed λ-theory. It has one basic type
G and three basic constants, the unit e, the inverse i, and the group operation m,

e : G , i : G→ G , m : G× G→ G ,

with the following familiar equations:

x : G | m⟨x, e⟩ = x : G

x : G | m⟨e, x⟩ = x : G

x : G | m⟨x, ix⟩ = e : G

x : G | m⟨ix, x⟩ = e : G

x : G, y : G, z : G | m⟨x, m⟨y, z⟩⟩ = m⟨m⟨x, y⟩, z⟩ : G

Example 4.3.3. More generally, any (Lawvere) algebraic theory A (as in Chapter 1)
determines a λ-theory Aλ. There is one basic type A and for each operation f of arity k
there is a basic constant f : Ak → A, where Ak is the k-fold product A × · · · × A. It is
understood that A0 = 1. The terms of A are translated to corresponding terms of Aλ in a
straightforward manner. For every axiom u = v of A there is a corresponding one in Aλ,

x1 : A, . . . , xn : A | u = v : A

where x1, . . . , xn are the variables occurring in u and v.

Example 4.3.4. The theory of a directed graph is a simply-typed theory with two basic
types, V for vertices and E for edges, and two basic constants, source src and target trg,

src : E→ V , trg : E→ V .

There are no equations.

[DRAFT: September 15, 2024]

196 Type Theory

Example 4.3.5. The theory of a simplicial set is a simply-typed theory with one basic
type Xn for each natural number n, and the following basic constants, also for each n, and
each 0 ≤ i ≤ n:

di : Xn+1 → Xn , si : Xn → Xn+1 .

The equations are as follows, for all natural numbers i, j:

didj = dj−1di, if i < j,

sisj = sj+1si, if i ≤ j,

disj =

sj−1di, if i < j,

id, if i = j or i = j + 1,

sjdi−1, if i > j + 1.

Example 4.3.6. An example of a λ-theory found in the theory of programming languages
is the mini-programming language PCF. It is a theory in simply-typed λ-calculus with a
basic type nat for natural numbers, and a basic type bool of Boolean values,

Basic types B ::= nat type | bool type.

There are basic constants zero 0, successor succ, the Boolean constants true and false,
comparison with zero iszero, and for each type A the conditional condA and the fixpoint
operator fixA. They have the following types:

0 : nat

succ : nat→ nat

true : bool

false : bool

iszero : nat→ bool

condA : bool→ A→ A

fixA : (A→ A)→ A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 4.3.7 (D.S. Scott). Another example of a λ-theory is the theory of a reflexive
type. This theory has one basic type D and two constants

r : D→ D→ D s : (D→ D)→ D

[DRAFT: September 15, 2024]

4.3 Simple type theory 197

satisfying the equation
f : D→ D | r (s f) = f : D→ D (4.2)

which says that s is a section and r is a retraction, so that the function type D → D is a
subspace (even a retract) of D. A type with this property is said to be reflexive. We may
additionally stipulate the axiom

x : D | s (rx) = x : D (4.3)

which implies that D is isomorphic to D→ D.
A reflexive type can be used to interpret the untyped λ-calculus into the typed λ-

calculus.

Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are generated by
the following grammar:

t ::= v | t! t2 | λx. t .
In words, a variable is a term, an application t t′ is a term, for any terms t and t′, and a
λ-abstraction λx. t is a term, for any term t. Variable x is bound in λx. t. A context is a
list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed in Γ. The
judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really necessary
but we include it because it is always good practice to list the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | (λx. t)u = t[u/x]
(β-rule)

Γ | λx. (t x) = t
if x ̸∈ FV(t) (η-rule)

[DRAFT: September 15, 2024]

198 Type Theory

The untyped λ-calculus can be translated into the theory of a reflexive type from Exam-
ple 4.3.7. An untyped context Γ is translated to a typed context Γ∗ by typing each variable
in Γ with the reflexive type D, i.e., a context x1, . . . , xk is translated to x1 : D, . . . , xk : D.
An untyped term t is translated to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .

For example, the term λx. (x x) translates to s (λx : D . ((rx)x)). A judgment

Γ | u = t (4.4)

is translated to the judgment

Γ∗ | u∗ = t∗ : D . (4.5)

Exercise∗ 4.3.8. Prove that if equation (4.4) is provable then equation (4.5) is provable
as well. Identify precisely at which point in your proof you need to use equations (4.2)
and (4.3). Does provability of (4.5) imply provability of (4.4)?

Higher-order logic

This example presumes familiarity with the results of Chapter ??, or at least with the
basic categorical approach to first-order logic as presented in [?, ?]. The approach to
IHOL presented here is closely tied to topos theory, which is to be treated in greater depth
in Chapter ??.

To be added ...

4.4 Interpretation of λ-calculus in a CCC

We now consider semantic aspects of the λ-calculus and λ-theories. Suppose T is a λ-
theory and C is a cartesian closed category. An interpretation [[−]] of T in C is given by
the following data:

• For every basic type B in T an object [[B]] ∈ C. The interpretation is extended to all
types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

• For every basic constant c of type C, a morphism [[c]] : 1→ [[C]].

The interpretation is extended to all terms in context as follows.

[DRAFT: September 15, 2024]

4.4 Interpretation of λ-calculus in a CCC 199

• A context Γ = x1 : A1, · · · , xn : An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object,

[[·]] = 1 .

• A typing judgment
Γ | t : A

will be interpreted as a morphism

[[Γ | t : A]] : [[Γ]]→ [[A]] .

The interpretation is defined inductively by the following rules:

• The i-th variable is interpreted as the i-th projection,

[[x0 : A0, . . . , xn : An | xi : Ai]] = πi : [[Γ]]→ [[Ai]] .

• A basic constant c : C in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

• The interpretation of projections and pairs is

[[Γ | ⟨t, u⟩ : A×B]] = ⟨[[Γ | t : A]], [[Γ | u : B]]⟩ : [[Γ]]→ [[A]]× [[B]]

[[Γ | fst t : A]] = π0 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[A]]

[[Γ | snd t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[B]] .

• The interpretation of application and λ-abstraction is

[[Γ | t u : B]] = ϵ ◦ ⟨[[Γ | t : A→ B]], [[Γ | u : A]]⟩ : [[Γ]]→ [[B]]

[[Γ | λx : A . t : A→ B]] = ([[Γ, x : A | t : B]])∼ : [[Γ]]→ [[B]][[A]]

where ϵ : [[A → B]] × [[A]] → [[B]] is the evaluation morphism for [[B]][[A]] and ([[Γ, x :
A | t : B]])∼ is the transpose of the morphism

[[Γ, x : A | t : B]] : [[Γ]]× [[A]]→ [[B]] .

Definition 4.4.1. An interpretation of a λ-theory T is a model of T if it satisfies all the
axioms of T, in the sense that for every axiom Γ | u = v : A of T, the interpretations of u
and v coincide as arrows in C,

[[Γ | u : A]] = [[Γ | v : A]] : [[Γ]] −→ [[A]].

[DRAFT: September 15, 2024]

200 Type Theory

It follows that all equations that are provable in T are also satisfied in any model, by
the following basic fact.

Proposition 4.4.2 (Soundness). If T is a λ-theory and [[−]] a model of T in a cartesian
closed category C, then for every equation in context Γ | s = t : C that is provable from the
axioms of T, we have

[[Γ | s : C]] = [[Γ | t : C]] : [[Γ]] −→ [[C]] .

Briefly, for all T-models [[−]],

T ⊢ (Γ | s = t : C) implies [[−]] |= (Γ | s = t : C) .

The proof is a straightforward induction, first on the typing judgements for the inter-
pretation, and then on the equational rules for the equations. If we stop after the first
step, we can consider just the following notion of inhabitation:

Remark 4.4.3 (Inhabitation). There is another notion of provability for the λ-calculus,
related to the Curry-Howard correspondence of section 4.1, relating it to propositional
logic. If we regard types as “propositions” rather than generalized algebraic structures,
and terms as “proofs” rather than operations in such structures, then it is more natural
to ask whether there even is a term a : A of some type, than whether two terms of the
same type are equal s = t : A. Of course, this only makes sense when A is considered
in the empty context · ⊢ A, rather than Γ ⊢ A for non-empty Γ (consider the case where
Γ = x : A, . . .). We say that a type A is inhabited (by a closed term) when there is some
⊢ a : A, and regard an inhabited type A as one that is provable. There is then a different
notion of soundness related to this notion of provability.

Proposition 4.4.4 (Inhabitation soundness). If T is a λ-theory and [[−]] a model of T in
a cartesian closed category C, then for every type A that is inhabited in T, there is a point
1→ [[A]] in C. Thus for all T-models [[−]],

⊢ a : A implies there is a point 1→ [[A]] .

This follows immediately from the fact that [[·]] = 1 for the empty context; for then the
interpretation of any ⊢ a : A is a point

[[a]] : 1→ [[A]] .

Example 4.4.5. 1. A model of an algebraic theory A, extended to a λ-theory Aλ as in
Example 4.3.3, taken in a CCC C, is just a model of the algebraic theory A in the
underlying finite product category |C|× of C. An important difference, however, is
that in defining the category of models

ModFP(A, |C|×)

we can take all homomorphisms of models of A as arrows, while the arrows in the
category

Modλ(Aλ, C)

[DRAFT: September 15, 2024]

4.5 Functorial semantics of STT in CCCs 201

of λ-models are best taken to be isomorphisms, for which one has an obvious way to
deal with the contravariance of the function type [[A→ B]] = [[B]][[A]] (this is discussed
in more detail in the next section).

2. A model of the theory of a reflexive type, Example 4.3.7, in Set must be the one-
element set 1 = {⋆} (prove this!). Fortunately, the exponentials in categories of
presheaves are not computed pointwise; otherwise it would follow that this theory
has no non-trivial models at all! (And then, by Theorem 4.7.6, that the theory itself
is degenerate, in the sense that all equations are provable.) That there are non-
trivial models is an important fact in the semantics of programming languages and
the subject called domain theory. A fundamental paper in which this is shown is [?].

3. A (positive) propositional theory T may be regarded as a λ-theory, and a model in
a cartesian closed poset P is then the same thing as before: an interpretation of the
atomic propositions p1, p2, ... of T as elements [[p1]], [[p2]], ... ∈ P , such that the axioms
ϕ1, ϕ2, ... of T are all sent to 1 ∈ P by the extension of [[−]] to all formulas,

1 = [[ϕ1]] = [[ϕ2]] = · · · ∈ P .

Exercise 4.4.6. How are models of a (not necessarily propositional) λ-theory T in Carte-
sian closed posets related to models in arbitrary Cartesian closed categories? (Hint: Con-
sider the inclusion CCPos ↪→ CCC. Does it have any adjoints?)

4.5 Functorial semantics of STT in CCCs

In Chapter ?? we saw how algebraic theories can be viewed as categories (with finite
products), and their algebras, or models, as functors (preserving finite products), and we
arranged this analysis of the traditional relationship between syntax and sematics into
a framework that we called functorial semantics. In Chapter ??, we did the same for
propositional logic. As a common generalization of both, the same framework of functorial
semantics can be applied to λ-theories and their models in CCCs. The first step is to build
a classifying category CT from a λ-theory T, which again is constructed from the theory
itself as a syntactic category. This is done as follows:

Definition 4.5.1. For any λ-theory T, the syntactic category CT is determined as follows.

• The objects of CT are the types of T.

• Arrows A→ B are terms in context

[x : A | t : B] ,

where two such terms x : A | s : B and x : A | t : B represent the same morphism
when T proves x : A | s = t : B.

[DRAFT: September 15, 2024]

202 Type Theory

• Composition of the terms

[x : A | t : B] : A −→ B and [y : B | u : C] : B −→ C

is the term obtained by substituting t for y in u:

[x : A | u[t/y] : C] : A −→ C .

• The identity morphism on A is the term [x : A | x : A].

Proposition 4.5.2. The syntactic category CT built from a λ-theory is cartesian closed.

Proof. We omit the equivalence classes brackets [x : A | t : B] and simply treat equivalent
terms as equal.

• The terminal object is the unit type 1. For any type A the unique morphism !A :
A→ 1 is the term

x : A | ∗ : 1 .

This morphism is indeed unique, because we have the equation

Γ | t = ∗ : 1

is an axiom for the terms of unit type 1.

• The product of objects A and B is the type A × B. The first and the second
projections are the terms

c : A×B | fst c : A , c : A×B | snd c : B .

Given morphisms

z : C | a : A , z : C | b : B ,

the term

z : C | ⟨a, b⟩ : A×B

represents the unique morphism satisfying

z : C | fst ⟨a, b⟩ = a : A , z : C | snd ⟨a, b⟩ = b : B .

Indeed, if fst t = a and snd t = b for some t, then

t = ⟨fst t, snd t⟩ = ⟨a, b⟩ .

[DRAFT: September 15, 2024]

4.5 Functorial semantics of STT in CCCs 203

• The exponential of objects A and B is the type A→ B with the evaluation morphism

e : (A→ B)× A
∣∣ (fst e)(snd e) : B .

The transpose of a morphism w : C × A | t : B is the term

z : C | λx : A . (t[⟨z, x⟩/w]) : A→ B .

Showing that this is the transpose of t amounts to showing, in context w : C × A,

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t : B

Indeed, we have:

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t[⟨fstw, sndw⟩/w] = t[w/w] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique, because
any morphism z : C | s : A→ B that satisfies

(s[fstw/z])(sndw) = t

is equal to λx : A . (t[⟨z, x⟩/w]), because then

t[⟨z, x⟩/w] = (s[fstw/z])(sndw)[⟨z, x⟩/w] =
(s[fst ⟨z, x⟩/z])(snd ⟨z, x⟩) = (s[z/z])x = s x .

Therefore,
λx : A . (t[⟨z, x⟩/w]) = λx : A . (s x) = s ,

as claimed.

Now as before, the syntactic category allows us to replace a model [[−]] in a CCC C
with a functor M : CT → C. More precisely, we have the following.

Lemma 4.5.3. A model [[−]] of a λ-theory T in a cartesian closed category C determines
a cartesian closed functor M : CT → C with

M(B) = [[B]], M(c) = [[c]] : 1→ [[C]] =M(C) , (4.6)

for all basic types B and basic constants c : C. Moreover, M is unique up to a unique
isomorphism of CCC functors, in the sense that given another model N satisfying (4.6),
there is a unique natural iso M ∼= N , determined inductively by the comparison maps
M(1) ∼= N(1),

M(A×B) ∼= MA×MB ∼= NA×NB ∼= N(A×B) ,

and similarly for M(BA).

[DRAFT: September 15, 2024]

204 Type Theory

Proof. Straightforward.

We then also have the usual functorial semantics theorem:

Theorem 4.5.4. For any λ-theory T, the syntactic category CT classifies T-models, in the
sense that for any cartesian closed category C there is an equivalence of categories

Modλ
(
T, C

)
≃ CCC

(
CT , C

)
, (4.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of CCC functors.

Proof. The only thing remaining to show is that, given a model [[−]] in a CCC C and a
CCC functor f : C → D, there is an induced model [[−]]f in D, given by the interpretation
[[A]]f = f [[A]]. This is straightforward, just as for algebraic theories.

Remark 4.5.5. As mentioned in Example 4.4.5(1) the categories involved in the equiva-
lence (4.7) are groupoids, in which every arrow is iso. The reason we have defined them as
such is that the contravariant argument A in the function type A → B prevents us from
specifying a non-iso homomorphism of models h :M → N by the obvious recursion on the
type structure.

In more detail, given hA : [[A]]M → [[A]]N and hB : [[B]]M → [[B]]N , there is no obvious
candidate for a map

hA→B : [[A→ B]]M −→ [[A→ B]]N ,

when all we have are the following induced maps:

[[A→ B]]M = // ([[B]]M)[[A]]
M (hB)

[[A]]M

// ([[B]]N)[[A]]
M

([[B]]M)[[A]]
N

([[B]]M)hA

OO

(hB)
[[A]]N

// ([[B]]N)[[A]]
N

([[B]]N)hA

OO

=
// [[A→ B]]N

One solution is therefore to take isos hA : [[A]]M ∼= [[A]]N and hB : [[B]]M ∼= [[B]]N and then
use the inverses h−1

A : [[A]]N → [[A]]M in the contravariant positions, in order to get things
to line up:

[[A→ B]]M = // ([[B]]M)[[A]]
M

([[B]]M)h
−1
A ∼
��

(hB)
[[A]]M

// ([[B]]N)[[A]]
M

([[B]]N)h
−1
A∼

��

([[B]]M)[[A]]
N

(hB)
[[A]]N

// ([[B]]N)[[A]]
N

=
// [[A→ B]]N

[DRAFT: September 15, 2024]

4.6 The internal language of a CCC 205

This suffices to at get a category of models Modλ
(
T, C

)
, rather than just as set, which is

enough structure to determine the equivalence (4.7). Note that for an algebraic theory A,
this category of λ-models in Set, say, Modλ(Aλ) is still the (wide but non-full) subcategory
of isomorphisms of conventional (algebraic) A-models

Modλ(Aλ) ↣ Mod(A) .

We shall consider other solutions to the problem of contravariance below.

We can now proceed just as we did in the case of algebraic theories and prove that the
semantics of λ-theories in cartesian closed categories is complete, in virtue of the syntactic
construction of the classifying category CT. Specifically, a λ-theory T has a canonical
interpretation [−] in the syntactic category CT, which interprets a basic type A as itself, and
a basic constant c of type A as the morphism [x : 1 | c : A]. The canonical interpretation
is a model of T, also known as the syntactic model, in virtue of the definition of the
equivalence relation [−] on terms. In fact, it is a logically generic model of T, because by
the construction of CT, for any terms Γ | u : A and Γ | t : A, we have

T ⊢ (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= Γ | u = t : A .

For the record, we therefore have now shown:

Proposition 4.5.6. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (4.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by CCC functors (Proposition 4.4.2).

Corollary 4.5.7. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every CCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

4.6 The internal language of a CCC

In the case of algebraic theories, we were able to recover the syntactic category from the
semantics by taking certain Set-valued functors on the category of models in Set. This
then extended to a duality between the category of all algebraic theories and that of all
“algebraic categories”, which we defined as the categories of Set-valued models of some

[DRAFT: September 15, 2024]

206 Type Theory

algebraic theory (and also characterized abstractly). In the (classical) propositional case,
this syntax-semantics duality was seen to be exactly the classical Stone duality between the
categories of Boolean algebras and of Stone topological spaces. That sort of duality theory
seems to be more difficult to formulate for λ-theories, however, now that we have taken the
category of models to be just a groupoid (but see Remark ??). Nonetheless, there is still a
correspondence between λ-theories and CCCs, which we get by organizing the former into
a category, which is then equivalent to that of the latter. But note that this is analogous to
the equivalence between algebraic theories, regarded syntactically, and regarded as finite
product categories—rather than to the duality between syntax and semantics.

In order to define the equivalence in question, we first need a suitable notion of mor-
phism of theories. A translation τ : S → T of a λ-theory S into a λ-theory T is given by
the following data:

1. For each basic type A in S a type τA in T. The translation is then extended to all
types by the rules

τ1 = 1 , τ(A×B) = τA× τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type A in S a term τc of type τA in T. The translation
of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ⟨t, u⟩ = ⟨τt, τu⟩ , τ(λx : A . t) = λx : τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .

A context Γ = x1 : A1, . . . , xn : An is translated by τ to the context

τΓ = x1 : τA1, . . . , xn : τAn .

Furthermore, a translation is required to preserve the axioms of S: if Γ | t = u : A is an
axiom of S then T proves τΓ | τt = τu : τA. It then follows that all equations proved by S
are translated to valid equations in T.

A moment’s consideration shows that a translation τ : S → T is the same thing as a
model of S in CT, despite being specified entirely syntactically. More precisely, λ-theories
and translations between them clearly form a category: translations compose as functions,
therefore composition is associative. The identity translation ιT : T → T translates every
type to itself and every constant to itself.

Definition 4.6.1. Let λThr be the category whose objects are λ-theories and morphisms
are translations between them.

We now have an isomorphism of sets,

HomλThr(S,T) ∼= Modλ(S, CT) , (4.8)

[DRAFT: September 15, 2024]

4.6 The internal language of a CCC 207

which is natural in the theory S, as can be seen by considering the canonical interpretation
of S in CS induced by the identity translation ιS : S→ S.

Let C be a small cartesian closed category. There is a λ-theory L(C) corresponding
to C, called the internal language of C, and defined as follows:

1. For every object A ∈ C there is a basic type ⌜A⌝.

2. For every morphism f : A → B there is a basic constant ⌜f⌝ whose type is ⌜A⌝ →
⌜B⌝.

3. For every A ∈ C there is an axiom

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝ .

4. For all morphisms f : A→ B, g : B → C, and h : A→ C such that h = g ◦ f , there
is an axiom

x : ⌜A⌝ | ⌜h⌝x = ⌜g⌝ (⌜f⌝x) : ⌜C⌝ .

5. There is a constant
T : 1→ ⌜1⌝ ,

and for all A,B ∈ C there are constants

PA,B : ⌜A⌝× ⌜B⌝→ ⌜A×B⌝ , EA,B : (⌜A⌝→ ⌜B⌝)→ ⌜BA⌝ .

They satisfy the following axioms:

u : ⌜1⌝ | T ∗ = u : ⌜1⌝

z : ⌜A×B⌝ | PA,B⟨⌜π0⌝z, ⌜π1⌝z⟩ = z : ⌜A×B⌝

w : ⌜A⌝× ⌜B⌝ | ⟨⌜π0⌝(PA,Bw), ⌜π1⌝(PA,Bw)⟩ = w : ⌜A⌝× ⌜B⌝

f : ⌜BA⌝ | EA,B(λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨f, x⟩))) = f : ⌜BA⌝

f : ⌜A⌝→ ⌜B⌝ | λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨(EA,Bf), x⟩)) = f : ⌜A⌝→ ⌜B⌝

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure the
isomorphisms ⌜1⌝ ∼= 1, ⌜A×B⌝ ∼= ⌜A⌝× ⌜B⌝, and ⌜BA⌝ ∼= ⌜A⌝→ ⌜B⌝. Types A and B
are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that S proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories S and T is a pair of translations

S
τ

** T
σ

jj

[DRAFT: September 15, 2024]

208 Type Theory

such that, for any type A in S and any type B in T,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : CCC→ λThr ,

where CCC is the category of small cartesian closed categories and functors between them
that preserve finite products and exponentials. Such functors are also called cartesian
closed functors or ccc functors. If F : C → D is a cartesian closed functor then L(F) :
L(C)→ L(D) is the translation given by:

1. A basic type ⌜A⌝ is translated to ⌜FA⌝.

2. A basic constant ⌜f⌝ is translated to ⌜Ff⌝.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and EFA,FB, respec-
tively.

We now have a functor L : CCC→ λThr. How about the other direction? We already
have the construction of syntactic category which maps a λ-theory S to a small cartesian
closed category CS. This extends to a functor

C : λThr→ CCC ,

because a translation τ : S→ T induces a functor Cτ : CS → CT in an obvious way: a basic
type A ∈ CS is mapped to the object τA ∈ CT, and a basic constant x : 1 | c : A is mapped
to the morphism x : 1 | τc : A. The rest of Cτ is defined inductively on the structure of
types and terms.

Theorem 4.6.2. The functors L : CCC → λThr and C : λThr → CCC constitute an
equivalence of categories “up to equivalence” (a biequivalence of 2-categories). This means
that for any C ∈ CCC there is an equivalence of categories

C ≃ CL(C) ,

and for any S ∈ λThr there is an equivalence of theories

S ≃ L(CS) .

Proof. For a small cartesian closed category C, consider the functor ηC : C → CL(C), defined
for an object A ∈ C and f : A→ B in C by

ηCA = ⌜A⌝ , ηCf = (x : ⌜A⌝ | ⌜f⌝x : ⌜B⌝) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝

[DRAFT: September 15, 2024]

4.6 The internal language of a CCC 209

and for all f : A→ B and g : B → C,

x : ⌜A⌝ | ⌜g ◦ f⌝x = ⌜g⌝(⌜f⌝x) : ⌜C⌝ .

To see that ηC is an equivalence of categories, it suffices to show that for every object
X ∈ CL(C) there exists an object θCX ∈ C such that ηC(θCX) ∼= X. The choice map θC is
defined inductively by

θC1 = 1 , θC⌜A⌝ = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)
θCY .

We skip the verification that ηC(θCX) ∼= X. In fact, θC can be extended to a functor
θC : CL(C) → C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1CL(C) .

Given a λ-theory S, we define a translation τS : S→ L(CS). For a basic type A let

τSA = ⌜A⌝ .

The translation τSc of a basic constant c of type A is

τSc = ⌜x : 1 | c : τSA⌝ .

In the other direction we define a translaton σS : L(CS) → S as follows. If ⌜A⌝ is a basic
type in L(CS) then

σS ⌜A⌝ = A ,

and if ⌜x : A | t : B⌝ is a basic constant of type ⌜A⌝→ ⌜B⌝ then

σS ⌜x : A | t : B⌝ = λx : A . t .

The basic constants T, PA,B and EA,B are translated by σS into

σS T = λx : 1 . x ,

σS PA,B = λp : A×B . p ,

σS EA,B = λf : A→ B . f .

If A is a type in S then σS(τSA) = A. For the other direction, we would like to show, for
any type X in L(CS), that τS(σSX) ∼= X. We prove this by induction on the structure of
type X:

1. If X = 1 then τS(σS1) = 1.

2. If X = ⌜A⌝ is a basic type then A is a type in S. We proceed by induction on the
structure of A:

(a) If A = 1 then τS(σS⌜1⌝) = 1. The types 1 and ⌜1⌝ are isomorphic via the
constant T : 1→ ⌜1⌝.

[DRAFT: September 15, 2024]

210 Type Theory

(b) If A is a basic type then τS(σS⌜A⌝) = ⌜A⌝.

(c) If A = B × C then τS(σS⌜B × C⌝) = ⌜B⌝ × ⌜C⌝. But we know ⌜B⌝ × ⌜C⌝ ∼=
⌜B × C⌝ via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τS(σS(Y × Z)) = τS(σSY) × τS(σSZ). By induction hypothesis,
τS(σSY) ∼= Y and τS(σSZ) ∼= Z, from which we easily obtain

τS(σSY)× τS(σSZ) ∼= Y × Z .

4. The case X = Y → Z is similar.

Composing the isomorphism 4.8 with the equivalence 4.7 we can formulate the foregoing
Theorem 4.6.2 as an adjoint equivalence.

Corollary 4.6.3. There is a biequivalence between the categories λThr of λ-theories and
translations between them (and isos thereof), and the category CCC of cartesian closed
categories and CCC functors (and natural isos),

HomλThr

(
T,LC

) ∼= Modλ
(
T, C

)
,

≃ HomCCC

(
CT , C

)
.

This is mediated by an adjunction,

CCC
L ,,

λThr
C

ll

with C ⊣ L, between the syntactic category functor C and the internal language functor L.

Exercise 4.6.4. In the proof of Theorem 4.6.2 we defined, for each C ∈ CCC, a functor
ηC : C → CL(C). Verify that this determines a natural transformation η : 1CCC =⇒ C ◦ L
which is an equivalence of categories. What about the translation ϵT : T→ L(CT)—is that
an isomorphism?

See the book [?] for another approach to the biequivalence of Corollary 4.6.3, which
turns it into an equivalence of categories by fixing the CCC structure and requiring it to
be preserved strictly.

[DRAFT: September 15, 2024]

4.7 Embedding and completeness theorems 211

4.7 Embedding and completeness theorems

We have considered the λ-calculus as a common generalization of both propositional logic,
modelled by poset CCCs such as Boolean and Heyting algebras, and equational logic,
modelled by finite product categories. Accordingly, there are then two different notions
of “provability”, as discussied in Remark 4.4.3; namely, the derivability of a closed term
⊢ a : A, and the derivability of an equation between two (not necessarily closed) terms of
the same type Γ ⊢ s = t : A. With respect to the semantics, there are then two different
corresponding notions of soundness and completeness: for “inhabitation” of types, and for
equality of terms. We consider special cases of these notions in more detail below.

Conservativity

With regard to the former notion, inhabitation, one can also consider the question of how
it compares with simple provability in propositional logic: e.g. a positive propositional
formula ϕ in the variables p1, p2, ..., pn obviously determines a type Φ in the corresponding
λ-theory T(X1, X2, ..., Xn) over n basic type symbols. What is the relationship between
provability in positive propositional logic, PPL ⊢ ϕ, and inhabitation in the associated
λ-theory, T(X1, X2, ..., Xn) ⊢ t : Φ? Let us call this the question of conservativity of λ-
calculus over PPL. According to the basic idea of the Curry-Howard correspondence from
Section 4.1, the λ-calculus is essentially the “proof theory of PPL”. So one should expect
that starting from an inhabited type Φ, a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ
should result in a corresponding proof of ϕ in PPL just by “rubbing out the proof terms”.
Conversely, given a provable formula ⊢ ϕ, one should be able to annotate a proof of it in
PPL to obtain a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ in the λ-calculus (although
perhaps not the same term that one started with, if the proof was obtained from rubbing
out a term).

We can make this idea precise semantically as follows. Write |C| for the poset reflection
of a category C, that is, the left adjoint to the inclusion i : Pos ↪→ Cat, and let η : C → |C|
be the unit of the adjunction.

Lemma 4.7.1. If C is cartesian closed, then so is |C|, and η : C → |C| preserves the CCC
structure.

Proof. Exercise!

Exercise 4.7.2. Prove Lemma 4.7.1.

Corollary 4.7.3. The syntactic category PPC(p1, p2, ..., pn) of the positive propositional
calculus on n propositional variables is the poset reflection of the syntactic category CT(X1,X2,...,Xn)

of the λ-theory T(X1, X2, ..., Xn),

|CT(X1,X2,...,Xn)| ∼= PPC(p1, p2, ..., pn) .

[DRAFT: September 15, 2024]

212 Type Theory

Proof. We already know that CT(X1,X2,...,Xn) is the free cartesian closed category on n gener-
ating objects, and that PPC(p1, p2, ..., pn) is the free cartesian closed poset on n generating
elements. From the universal property of CT(X1,X2,...,Xn), we get a CCC map

CT(X1,X2,...,Xn) −→ PPC(p1, p2, ..., pn)

taking generators to generators, and it extends along the quotient map to |CT(X1,X2,...,Xn)|
by the universal property of the poset reflection. Thus it suffices to show that the quotient
map preserves, and indeed creates, the CCC structure on |CT(X1,X2,...,Xn)|, which follows
from the Lemma 4.7.1.

Remark 4.7.4. Corollary 4.7.3 can be extended to other systems of type theory and logic,
with further operations such as CCCs with sums 0, A+B (“bicartesian closed categories”),
and the full intuitionistic propositional calculus IPC with the logical operations ⊥ and p∨q.
We leave this as a topic for the interested student.

Completeness

As was the case for equational theories and propositional logic, the fact that there is
a generic model (Proposition 4.5.6) allows the general completeness theorem stated in
Corollary 4.5.7 to be specialized to various classes of special models, via embedding (or
“representation”) theorems, this time for CCCs, rather than for finite product categories or
Boolean/Heyting algebras. We shall consider three such cases: “variable” models, Kripke
models, and topological models. In each case, an “embedding theorem” of the form:

Every CCC embeds into one of the special form X .

gives rise to a completeness theorem of the form:

For all λ-theories T, if 1→ [[A]]M in all T-models M in all X , then T ⊢ a : A,

and if [[a]]M = [[b]]M : 1→ [[A]] in all T-models M in all X , then T ⊢ a = b : A.

This of course follows the same pattern that we saw for the simpler “proof relevant” case
of equational (i.e. finite product) theories, and the even simpler “proof irrelevant” case
of propositional logic, but now the proofs of some of the embedding theorems for CCCs
require more sophisticated methods.

Variable models

By a variable model of the λ-calculus we mean one in a CCC of the form Ĉ = SetC
op

, i.e.
presheaves on a (small) category C. We regard such a model as “varying over C”, just as
we saw earlier that a presheaf of groups on e.g. the simplex category ∆ may be seen both
as a simplicial group—a simplicial object in the category of groups—and as a group in the
category Set∆

op

of simplicial sets. The basic embedding theorem that we use in specializing
Proposition 4.5.6 to such variable models is the following, which is one of the fundamental
facts of categorical semantics.

[DRAFT: September 15, 2024]

4.7 Embedding and completeness theorems 213

Lemma 4.7.5. For any small cartesian closed category C, the Yoneda embedding

y : C ↪→ SetC
op

preserves the cartesian closed structure.

This is of course the “categorified” analogue of Lemma 2.8.5, which we used for the
Kripke completeness of the positive propositional calculus PPC.

Proof. We can just evaluate yA(X) = C(X,A). It is clear that y1(X) = C(X, 1) ∼= 1
naturally in X, and that y(A×B)(X) = C(X,A × B) ∼= C(X,A) × C(X,B) ∼= (yA ×
yB)(X) for all A,B,X, naturally in all three arguments. For BA ∈ C, we then have

y(BA)(X) = C(X,BA) ∼= C(X × A,B) ∼= Ĉ(y(X × A), yB) ∼= Ĉ(yX × yA, yB),

since y is full and faithful and, as we just showed, preserves ×. But now recall that the
exponential QP of presheaves P,Q is defined at X by the specification

QP (X) = Ĉ(yX × P,Q) .

So, continuing where we left off, Ĉ(yX × yA, yB) = yByA(X), and we’re done.

For an early version of the following theorem (and much more), see the nice paper
[Sco80] by Dana Scott.

Theorem 4.7.6. For any λ-theory T, we have the following:

(i) A type A is inhabited,

T ⊢ a : A

if, and only if, for every a small category C, in every model [[−]] in presheaves SetC
op

on C, there is a point

1→ [[A]] .

(ii) For any terms Γ | s, t : A,
T ⊢ (Γ | s = t : A)

if, and only if,

[[Γ ⊢ s : A]] = [[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

for every such presheaf model.

Proof. We simply specialize the general completeness statement of Corollary 4.5.7 to CCCs
of the form Ĉ using Lemma 4.7.5, together with the fact that the Yoneda embedding is
full (and therefore reflects inhabitation) and faithful (and therefore reflects satisfaction of
equations).

[DRAFT: September 15, 2024]

214 Type Theory

4.8 Kripke models

By a Kripke model of (a theory T in) the λ-calculus, we mean a model [[−]] in the sense of
Definition 4.4.1 in a presheaf CCC of the form SetK for a poset K, i.e. a variable model
in the sense of the previous section, where the domain of variation is just a poset, rather
than a proper category. As with Kirpke models of propositional logic, we can regard such
a model as varying through (branching) time, over a causally ordered state space, or some
other partially-ordered parameter space. By Theorem 4.5.4, such a model (K, [[−]]) is
essentially the same thing as a CCC functor M : CT → SetK , taking values in “variable
sets”. Regarding the λ-calculus as the proof theory of the propositional calculus via the
Curry-Howard correspondence (Section 4.1), it is perhaps not surprising that it should be
(inhabitation) complete with respect to such Kripke models, in light of Theorem 2.8.4.
Completeness with respect to equations between terms is another matter, though; while
true, the proof is far from a simple generalization of other known results. It can perhaps
be seen as a verification that βη-equivalence is the “right” notion of equality for proofs.

Before considering such questions, however, let us first spell out explicitly what such a
Kripke model looks like for the simple example of a theory T of an object with a commu-
tative, binary operation,

T =
(
B, m : B× B→ B, x ∗ y = y ∗ x

)
.

There is one basic type symbol B, a binary operation symbol ∗ : B × B → B, and a single
equation x, y : B |x ∗ y = y ∗ x : B. Let K be a poset with ordering relation j ≤ k for
j, k ∈ K.

A Kripke model M of T over K consists, first, of a family of sets (Mk)k∈K , equipped
with functions

mj,k :Mj →Mk (for all j ≤ k ∈ K) ,

satisfying the conditions:

mk,k = 1Mk
, mj,k ◦mi,j = mi,k (for all j ≤ k ∈ K) .

This is of course exactly a functor M : K → Set, as the interpretation M = [[B]] of the
basic type symbol B. Next, we need functions

sk :Mk ×Mk →Mk (for all k ∈ K)

satisfying

sk
(
mj,k(x),mj,k(y)

)
= mj,k

(
sj(x, y)

)
(for all j ≤ k ∈ K and x, y ∈Mj) .

This is just a natural transformation s :M ×M →M , as the interpretation s = [[∗]] of the
operation symbol ∗ : B × B → B. Finally, the interpretation (M, s) = [[B, ∗]] should satisfy
the equation x, y : B |x ∗ y = y ∗ x : B, meaning that

sk(x, y) = sk(y, x) (for all k ∈ K) ,

[DRAFT: September 15, 2024]

4.8 Kripke models 215

since two natural transformations are equal just if all of their components are equal. Thus
a Kripke model of this theory T is just a model of the underlying algebraic theory in
the functor category SetK—which of course is the same thing as a functor from K to the
category of T-models in Set.

A theory involving an operation of “higher type”, such as the section s : (D → D)→ D
in (the theory of) a reflexive type (Example 4.3.7) is no more “non-standard”. Let D = [[D]]
be the interpretation of the basic type D, so that [[D→ D]] = DD : K → Set is an exponential
presheaf. At each k ∈ K, we then have,

(DD)k = SetK
(
D ×K(k,−), D

)
,

which is trivial except on the upset ↑k, where it consists of natural transformations

Set ↑k
(
D ↑k,D ↑k

)
,

where D ↑k : ↑k → Set is just D restricted to the upset ↑k ⊆ K, i.e. the composite

↑k ↪→ K
D−→ Set .

Given any such natural transformation ϑ : D ↑k −→ D ↑k, and any k ≤ j, the action of
the functor,

(DD)k → (DD)j

on ϑ is simply to restrict it further to ↑j ⊆↑k, thus taking ϑ to

ϑ ↑j : D ↑j −→ D ↑j ,

which is just the same function as ϑ, with the new domain of definition ↑j ⊆↑k.
The section s : (D → D)→ D therefore takes, at each k ∈ K, such a ϑ : D ↑k −→ D ↑k

to an element sk(ϑ) ∈ Dk, respecting the restrictions ↑j ⊆↑k in the sense that

dk,jsk(ϑ) = sj(ϑ ↑j) ∈ Dj ,

where dk,j : Dk → Dj is the action of the functor D : K → Set.
In this way, the presheaf exponential DD : K → Set is entirely determined by the “base-

case” D : K → Set, and is still a “full function space” at each k ∈ K, but the functorial
action in k requires it not to be just DDk

k (which for a reflexive type would then be trivial at
all k ∈ K), but rather, to take the entire segment ↑k into account—much in the way that
k ⊩ φ ⇒ ψ was determined for Kripke models of the intuitionistic propositional calculus
IPC by considering all j ≥ k. (Indeed, one can explicitly formulate the Kripke semantics
for simple type theory in the usual Kripke-forcing style k ⊩ a : A, cf. [AGH21].)

The proof of the following theorem uses a deep result from topos theory (due to Joyal-
Tierney [?]) that is, unfortunately, beyond the scope of this book. It implies that, for every
small CCC C there is a poset K and a full and faithful CCC functor C ↪→ SetK .

Theorem 4.8.1 (Kripke completeness for λ-calculus). For any λ-theory T:

[DRAFT: September 15, 2024]

216 Type Theory

(i) A type A is inhabited just if it has a point 1→ [[A]] in every Kripke model (K, [[−]]).

(ii) Two terms are provably equal, T ⊢ (Γ | s = t : A), just if they are equal in every
Kripke model (K, [[−]]),

[[s]] = [[t]] : [[Γ]] −→ [[A]] .

For the proof, see [AR11], as well as [AGH21].

Remark 4.8.2. One can reformulate the Kripke semantics for simple type theory in terms
of discrete opfibrations of posets,

π : F −→ K ,

rather than (covariant) presheaves F : K → Set. Indeed, since the (full!) subcategory of
all such maps

dopFib/K ↪→ Pos/K

is equivalent to SetK , this category is also cartesian closed. And with its obvious forgetful
functor

dopFib/K −→ Pos ,

this provides another useful perspective on the functor category SetK . This “fibrational”
point of view is pursued in [AR11]. It is particularly useful for the semantics of dependent
type theory, which we shall consider in next.

4.9 Dependent type theory

The Curry-Howard correspondence from Section 4.1 can be extended to natural deduction
proofs in first-order logic, providing a refinement of the “propositions as types/proofs as
terms” idea from propositional to first-order logic. In addition to simple types A,B, ...
representing propositions, one has dependent types x : A | B(x) representing propositional
functions. In addition to the simple type formers A × B and A → B, one has dependent
type formers Σx:AB(x) and Πx:AB(x), representing the quantified formulas ∃x:AB(x) and
∀x:AB(x). As before, these types may have different terms s, t : Πx:AB(x), resulting from
different proofs of the corresponding propositions, so that the calculus of terms records
more information than mere provability. Also as before, the resulting structure turns out
to be one that is shared by other categories not arising from logic—and now the coincidence
is even more remarkable, because the structure at issue is a much richer and more elaborate
one. Where proofs in the propositional calculus gave rise to a Cartesian closed category,
the category of proof terms of first-order logic will be seen to be locally Cartesian closed, a
mathematical structure also shared by sheaves on a space, Grothendieck toposes, categories
of fibrations, and other important examples.

Recall first the notion of a hyperdoctrine P : Cop → Cat from Section 3.4, and in
particular the distinction between poset-valued and proper ones. The latter correspond
more closely to dependent type theory, where the individual value categories P (C) may
be, e.g., cartesian closed, but they must also admit adjoints ΣA ⊣ p∗A ⊣ ΠA along all

[DRAFT: September 15, 2024]

4.9 Dependent type theory 217

projections pA : X × A → A in the category C of contexts. An important difference
between hyperdoctrines and dependent type theories, however, is that the category of
contexts in dependent type theory has not just finite products or finite limits, but also
additional structure resulting from an operation of context extension, which takes as input
a type in context Γ | A and returns a new context (Γ, x : A) together with a substitution
(Γ, x : A)→ Γ. This is taking the “propositions-as-types” idea seriously, by allowing every
proposition Γ | φ in first-order logic to form a new type {Γ | φ}, or letting the objects
A ∈ P (C) in a hyperdoctrine (C, P) become arrows {A} → C in C.2

Dependently-typed lambda-calculus. We give a somewhat informal specification of
the syntax of the dependently-typed λ-calculus (see [?] for a more detailed exposition). To
formulate the rules, we revisit the rules of simple type theory from section 4.3 and adjust
them as follows.

Judgements: There are three kinds of judgements: for contexts, types, and terms, re-
spectively,

Γ ctx , Γ | A type , Γ | a : A .

For each of these there are also (judgemental) equalities, the rules for which are the expected
ones.

Contexts: These are formed by the rules:

(·) ctx
Γ | A type

Γ, x : A ctx

Here it is assumed that x is a fresh variable, not already occurring in Γ. Note that the
order of the types occurring in a context matters, since types to the right may depend on
ones to their left.

Types: In addition to the usual simple types, generated from basic types by formation of
products and function types, we may also have some basic types in context,

Basic dependent types Γ1 | B1, Γ2 | B2, · · ·

where the contexts Γ need not be basic. Further dependent types are formed from the
basic ones by the Σ and Π type formers, using the rules:

Γ, x : A | B type

Γ | Σx:AB type

Γ, x : A | B type

Γ | Πx:AB type

2[Law70] does just this.

[DRAFT: September 15, 2024]

218 Type Theory

Terms: As for simple types, we assume there is a countable set of variables x, y, z,
We are also given a set of basic constants. The set of terms is generated from variables
and basic constants by the following grammar, just as for simple types:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

The rules for deriving typing judgments are as for simple types:

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An | xi : Ai
(1 ≤ i ≤ n)

• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections now take the form:

Γ | a : A Γ | b : B(a)

Γ | ⟨a, b⟩ : Σx:AB

Γ | c : Σx:AB

Γ | fst c : A
Γ | c : Σx:AB

Γ | snd c : B(fst c)

We write e.g. B(a) rather than B[a/x] to indicate a substitution of the term a for
the variable x in the type B. We treat A×B as another way of writing Σx:AB, when
the variable x : A does not occur in the type B.

• The typing rules for application and λ-abstraction are now:

Γ | t : Πx:AB Γ | a : A

Γ | t a : B(a)

Γ, x : A | t : B
Γ | (λx : A . t) : Πx:AB

We treat A→ B as another way of writing Πx:AB, when the variable x : A does not
occur in the type B.

Equations: The (β and η) equations between these terms are just as they were for simple
types. There are also the usual equations making judgemental equality a congruence with
respect to all type and term formers.

[DRAFT: September 15, 2024]

4.10 Locally cartesian closed categories 219

Equality types: Just as for first-order logic, we may also add a primitive equality type
x =A y for each type A, sometimes called propositional equality, and not to be confused with
the judgemental equality, which we shall now write as s ≡ t to emphasize the difference.
The formation, introduction, elimination, and computation rules for equality types are as
follows:

Γ | s : A Γ | t : A
Γ | s =A t type

Γ | a : A

Γ | refla : (a =A a)

Γ | p : s =A t

Γ | s ≡ t : A

Γ | p : s =A t

Γ | p ≡ refls : (s =A s)

Remark 4.9.1 (Identity types). This formulation of the rules for equality is known as the
extensional theory. There is also an intensional version, with different elimination (and
computation) rules, in which the types are sometimes called identity types and written
IdA(s, t) instead. See [?] for details.

Example 4.9.2 (The type-theoretic axiom of choice). Reading Σ as “there exists” and Π
as “for all”, a type such a Πx:AΣy:BR(x, y) can be regarded as a stating a proposition—in
this case, “for all x : A there is a y : B such that R(x, y)”. By Curry-Howard, such
a “proposition” is then provable if it has a closed term t : Πx:AΣy:BR(x, y), which then
corresponds to a proof, by unwinding the rules that constructed the term, and observing
that they correspond to the usual natural deduction rules for first-order logic.

This only partly true, however: the rules of construction for terms correspond to prov-
ability under a certain “constructive” conception of validity (see [?]). This is made clear
by the following example, which is sometimes called the “type theoretic axiom of choice”,
because it sounds like the axiom of choice under the conventional interpretation; but this
statement is actually provable from the rules of type theory, rather than being an axiom!

Πx:AΣy:BR(x, y)→ Σf :A→BΠx:AR(x, fx) . (4.9)

Exercise 4.9.3. Prove the type theoretic axiom of choice (4.9) from the rules for dependent
type theory given here.

4.10 Locally cartesian closed categories

Recall the following from Proposition 3.3.3.

Proposition 4.10.1. The following conditions on a category C with terminal object 1 are
equivalent:

1. Every slice category C/A is cartesian closed.

[DRAFT: September 15, 2024]

220 Type Theory

2. For every arrow f : B → A, the (post-) composition functor Σf : C/B → C/A has a
right adjoint f ∗, which in turn has a right adjoint Πf ,

B
f // A

C/B

Σf
((

Πf

66 C/Af ∗oo

Such a category is called locally cartesian closed.

The notation of course anticipates the interpretation of DTT.

Proof. Construct Π from exponentials and pullbacks; see the proof of Proposition 3.3.3.

Basic examples of LCCCs

We have the following basic examples, most of which we have already seen in Section 3.4
on hyperdoctrines,

1. Set: We have already seen the hyperdoctrine SetI of families of sets (Ai)i∈I , with
action of f : J → I on A : I → Set by precomposition f ∗A = A ◦ f : J → Set. The
equivalent hyperdoctrine

SetI ≃ Set/I

uses the slice categories Set/I with action by pullback f ∗ : Set/I → Set/J . It follows
that Set is locally cartesian closed.

2. Presheaves: The LCC structure on presheaves Ĉ on a small category C follows from
the CCC structure on each slice, since each of the slice categories Ĉ/X is another

category of presheaves, namely
∫̂
CX, on the category of elements

∫
CX. That Ĉ is

a CCC is shown directly by computing the products of presheaves P ×Q pointwise,
and the exponential as QP = Hom(y(−)× P,Q).

3. Pos: The category of posets is cartesian closed, but not locally so. However, we
have seen that the category of discrete fibartions on a poset K is equivalent to a
category of presheaves dFib(K) ≃ SetK

op

. It follows that the (non-full) subcategory
dFib ↪→ Pos of posets and discrete fibrations as arrows would be locally cartesian
closed except for the fact that it lacks a terminal object. Thus every slice of this
category dFib(K)/P ≃ SetK

op

/P ≃ Set(
∫
KP)op is LCC.

[DRAFT: September 15, 2024]

4.11 Functorial semantics of DTT in LCCCs 221

4. An example similar to the foregoing is the non-full subcategory LocHom ↪→ Top of
topological spaces and local homeomorphisms between them, which lacks a terminal
object, but each slice of which LocHom/X ≃ Sh(X) is equivalent to the topos of
sheaves on the space X, and is therefore CCC (and so LCCC).

Exercise 4.10.2. Let P : Cop → Cat be a hyperdoctrine for which there are equivalences
PC ≃ C/C, naturally in C, with respect to the left adjoints Σf : C/A → C/B for all
f : A→ B in C. Show that C is then LCC.

Exercise 4.10.3. Show that any LCCC C, regarded as a hyperdoctrine, has equality in
the sense of Remark 3.4.3.

4.11 Functorial semantics of DTT in LCCCs

In the semantics of dependent type theory in a locally cartesian closed category, contexts
are interpreted as objects, and dependent types as morphisms. Let C be an LCCC and
interpret the empty context as the terminal object, [[·]] = 1, and for a closed type · | B, let
[[· | B]] : [[B]]→ 1. More generally, given any type in context Γ | A, we shall have

[[Γ | A]] : [[Γ, A]] −→ [[Γ]] ,

abbreviating Γ, x : A to Γ, A. Specifically, given Γ, A | B, we then have maps

[[Γ, A,B]]
[[Γ,A|B]]−→ [[Γ, A]]

[[Γ|A]]−→ [[Γ]] ,

and we use the left and right adjoints to pullback to interpret the eponymous type-forming
operations:

[[Γ | Σx:AB]] = Σ[[Γ|A]]([[Γ, A | B]]) ,

[[Γ | Πx:AB]] = Π[[Γ|A]]([[Γ, A | B]]) .

A term Γ | a : A is interpreted as a section:

[[Γ]]

=

''

[[Γ | a : A]]
// [[Γ, A]]

[[Γ | A]]
��

[[Γ]]

Finally, as in first-order logic, substitution of a term Γ | a : A for a variable Γ, x : A is
interpreted by pullback,

[[Γ, B(a)]] //

[[Γ | B(a)]]

��

[[Γ, A,B]]

[[Γ, A | B]]

��
[[Γ]]

[[Γ | a : A]]
// [[Γ, A]]

[DRAFT: September 15, 2024]

222 Type Theory

and similarly for substitution into terms. The interpretation of substitution as pullback
leads to a coherence problem that we shall consider in the next section.

As was done for simple type theory in Section 4.6, we can again develop the relationship
between the type theory and its models using the framework of functorial semantics. This
is now a common generalization of λ-theories, modeled in CCCs, and first-order logic,
modeled in Heyting categories. The first step is to build a syntactic classifying category
CT from a theory T in dependent type theory, which we then show classifies T-models in
LCCCs. We omit the now essentially routine details (given the analogous cases already
considered), and merely state the main result, the proof of which is also analogous to the
previous cases. A detailed treatment can be found in the seminal paper [See84].

Theorem 4.11.1. For any theory T in dependent type theory, the locally cartesian closed
syntactic category CT classifies T-models, in the sense that for any locally cartesian closed
category C there is an equivalence of categories

Mod
(
T, C

)i ≃ LCCC
(
CT , C

)i
, (4.10)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of LCCC functors.

As a corollary, again as before, we have that dependent type theory is complete with
respect to the semantics in locally cartesian closed categories, in virtue of the syntactic
construction of the classifying category CT. Specifically, any theory T has a canonical
interpretation [−] in the syntactic category CT which is logically generic in the sense that,
for any terms Γ | s : A and Γ | t : A, we have

T ⊢ (Γ | u ≡ t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= (Γ | s ≡ t : A) .

Thus, for the record, we have:

Proposition 4.11.2. For any dependently typed theory T,
T ⊢ (Γ | u ≡ t : A) if, and only if, CT |= (Γ | u ≡ t : A) .

Of course, the syntactic model [−] in CT is the one associated under (4.10) to the
identity functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation
just in case the equation holds in all models, by the classifying property of CT, and the
preservation of satisfaction of equations by LCCC functors (as in Proposition 4.4.2).

Corollary 4.11.3. For any dependently typed theory T,
T ⊢ (Γ | u ≡ t : A) if, and only if, M |= (Γ | u ≡ t : A) for every LCCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

The embedding and completeness theorems of Section 4.7 with respect to general
presheaf and Kripke models can also be extended to dependently typed theories. See
[AR11] for details. There is also a version of Kripke-Joyal forcing for such theories (and an
associated completeness theorem), for which the interested reader can consult [AGH21].

[DRAFT: September 15, 2024]

4.12 Coherence and natural models 223

4.12 Coherence and natural models

The semantics of DTT in LCCCs described in the previous section uses the “slice category”
hyperdoctrine of an LCC to interpret the dependent types. Thus the contexts Γ and
substitutions σ : ∆ → Γ are interpreted as the objects and arrow of an LCC category C,
and the dependent types Γ | A and terms Γ | a : A are interpreted as objects A → Γ in
the slice category C/Γ and their global sections a : Γ → A (over Γ). However, there is a
problem with this kind of semantics (as first pointed out by [Hof]): as a hyperdoctrine,
this interpretation is a pseudofunctor C/ : Cop → Cat, but the syntax of DTT produces an
actual presheaf of types in context Ty : Cop → Set, since substitution into dependent types
is strictly functorial with respect to composition of substitutions, in the sense that for a
type in context Γ | A and substitutions σ : ∆ → Γ and τ : Θ → ∆ we have an equality of
types in context,

Θ | (A[σ])[τ] ≡ A[σ ◦ τ] ,

rather than the (canonical) isomorphism ∼= fitting into the two-pullbacks diagram of the
hyperdoctrine, namely:

(σ ◦ τ)∗A ∼=
//

$$

))
τ ∗σ∗A //

��

σ∗A //

��

A

��
Θ τ //

σ ◦ τ
44∆ σ // Γ

A similar problem occurs in the Beck-Chavalley conditions, where the hyperdoctrine struc-
ture has only canonical isos, rather than the strict equalities that obtain in the syntax,
such as

(Πx:AB)[σ] ≡ (Πx:A[σ]B[σ]) .

There are various different solutions to this problem in the literature, some involving
“strictifications” of the LCC slice-category hyperdoctrine (including both left- and right-
adjoint strictifications), as well as other semantics altogether, such as categories-with-
families [Dyb96], categories-with-attributes, and comprehension categories.

A solution based on the notion of universe Ũ → U was first proposed by Voevodsky;
this approach is combined with the notion of a representable natural transformation in
[Awo16] as follows.

Definition 4.12.1. For a small category C, a natural transformation f : Y → X of
presheaves on C is called representable if for every C ∈ C and x ∈ X(C), there is given a

[DRAFT: September 15, 2024]

224 Type Theory

D ∈ C, a p : D → C, and a y ∈ Y (D) such that the following square is a pullback.

yD

yp

��

y // Y

f

��
yC x

// X

(4.11)

A representable natural transformation is the same thing as a category with families
in the sense of Dybjer [Dyb96]. Indeed, let us write the objects of C as Γ,∆, . . . and the
arrows as σ : ∆ → Γ, . . . , thinking of C as a “category of contexts”. Let p : E → U be a
representable map of presheaves, and write its elements as:

A ∈ U(Γ) iff Γ | A
a ∈ E(Γ) iff Γ | a : A,

where A = p ◦ a, as indicated in:

E

p

��
yΓ

a

>>

A
// U.

Thus we regard U as the presheaf of types, with U(Γ) the set of all types in context
Γ, and E as the presheaf of terms, with E(Γ) the set of all terms in context Γ, while the
component pΓ : E(Γ)→ U(Γ) is the typing of the terms in context Γ.

Naturality of p : E → U just means that for any substitution σ : ∆ → Γ, we have an
action on types and terms:

Γ | A 7→ ∆ | Aσ
Γ | a : A 7→ ∆ | aσ : Aσ .

While, by functoriality, given any further τ : Θ→ ∆, we have

(Aσ)τ = A(σ ◦ τ) (aσ)τ = a(σ ◦ τ),

as well as

A1 = A a1 = a

for the identity substitution 1 : Γ→ Γ.
Finally, the representability of the natural transformation p : E → U is exactly the

operation of context extension: given any Γ | A, by Yoneda we have the corresponding

[DRAFT: September 15, 2024]

4.12 Coherence and natural models 225

map A : yΓ → U , and we let pA : Γ.A → Γ be (the map representing) the pullback of p
along A, as in (4.11). We therefore have a pullback square:

yΓ.A

ypA

��

qA // E

p

��
yΓ

A
// U,

(4.12)

where the map qA : Γ.A→ E now determines a term

Γ.A | qA : ApA.

We may omit the y for the Yoneda embedding, letting the Greek letters serve to distinguish
representable presheaves.

Exercise 4.12.2. Show that the fact that (4.12) is a pullback means that given any
σ : ∆→ Γ and ∆ | a : Aσ, there is a map

(σ, a) : ∆→ Γ.A,

and this operation satisfies the equations

pA ◦ (σ, a) = σ

qA(σ, a) = a,

as indicated in the following diagram.

∆

σ

(σ, a)

!!

a

!!
Γ.A

pA

��

qA
// E

p

��
Γ

A
// U

Show moreover that the uniqueness of (σ, a) means that for any τ : ∆′ → ∆ we also have:

(σ, a) ◦ τ = (σ ◦ τ, aτ)
(pA, qA) = 1.

Comparing the foregoing with the definition of a category with families in [Dyb96], we
have shown:

[DRAFT: September 15, 2024]

226 Type Theory

Proposition 4.12.3. Let p : E → U be a natural transformation of presheaves on a small
category C with a terminal object. Then p is representable in the sense of Definition 4.12.1
just in case it determines a category with families, as just indicated.

The notion of a category with families is a variable-free way of presenting dependent
type theory, including contexts and substitutions, types and terms in context, and context
extension. Accordingly, we may think of a representable map of presheaves on a category
C as a “type theory over C” as the category of contexts and substitutions. (This is the
reason for the requirement that C should have a terminal object to represent the “empty
context”.) One can also show that such a map of presheaves is essentially determined by a
class of maps in C that is closed under all pullbacks, corresponding to the types in context
(see [Awo16]).

Definition 4.12.4. A natural model of type theory on a small category C is a representable
map of presheaves p : E → U .

Exercise 4.12.5. Let T be a dependent type theory and CT its category of contexts and
substitutions. Define the presheaves Ty : CTop → Set of types-in-context and Tm : CTop →
Set of terms-in-context, along with a natural transformation,

τ : Tm→ Ty

that takes a term to its type. Show that τ : Tm→ Ty is a natural model of type theory.

4.13 Universes

4.14 Induction and W-types

[DRAFT: September 15, 2024]

Chapter 5

Dependent Type Theory

5.1 Dependent type theory

5.2 Inductive types

5.2.1 Initial algebras for endofunctors

Construction by iteration.

Induction principles.

Examples:

• lifting functor in domain theory

5.2.2 Inductive and coinductive types

NNO as inductive type.

Induction and coinduction.

Inductive and coinductive types for polynomial functors, perhaps for more general
functors.

Existence of W-types in toposes.

Other possible examples of W -types:

• syntax: the expressions of a language are a W -type for a suitable signature

• data structures: lists, trees, etc.

• lazy data structures: lazy lists, lazy numbers, regular infinite trees, streams (these
are coinductive).

• Von Neumann ordinals as well-founded infinitely branching trees.

[DRAFT: September 15, 2024]

228 Dependent Type Theory

5.2.3 Bracket types

5.3 Dependent type theory with FOL

[DRAFT: September 15, 2024]

Appendix A

Category Theory

A.1 Categories

Definition A.1.1. A category C consists of classes

C0 of objects A, B, C, . . .
C1 of morphisms f , g, h, . . .

such that:

• Each morphism f has uniquely determined domain dom f and codomain cod f , which
are objects. This is written:

f : dom f → cod f

• For any morphisms f : A → B and g : B → C there exists a uniquely determined
composition g ◦ f : A→ C. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

where domains are codomains are as follows:

A
f // B

g // C
h // D

• For every object A there exists the identity morphism 1A : A → A which is a unit
for composition,

1A ◦ f = f , g ◦ 1A = g ,

where f : B → A and g : A→ C.

Morphisms are also called arrows or maps. Note that morphisms do not actually have
to be functions, and objects need not be sets or spaces of any sort. We often write C
instead of C0.

[DRAFT: September 15, 2024]

230 Category Theory

Definition A.1.2. A category C is small when the objects C0 and the morphisms C1
are sets (as opposed to proper classes). A category is locally small when for all objects
A,B ∈ C0 the class of morphisms with domain A and codomain B, written Hom(A,B) or
C0(A,B), is a set.

We normally restrict attention to locally small categories, so unless we specify otherwise
all categories are taken to be locally small. Next we consider several examples of categories.

A.1.1 Examples

The empty category 0 The empty category has no objects and no arrows.

The unit category 1 The unit category, also called the terminal category, has one object
⋆ and one arrow 1⋆:

⋆ 1⋆ee

Other finite categories There are other finite categories, for example the category with
two objects and one (non-identity) arrow, and the category with two parallel arrows:

⋆ // • ⋆ 88
&& •

Groups as categories Every group (G, ·), is a category with a single object ⋆ and each
element of G as a morphism:

⋆

b

�� a
pp

c

NN a, b, c, . . . ∈ G

The composition of arrows is given by the group operation:

a ◦ b = a · b

The identity arrow is the group unit e. This is indeed a category because the group
operation is associative and the group unit is the unit for the composition. In order to get
a category, we do not actually need to know that every element in G has an inverse. It
suffices to take a monoid, also known as semigroup, which is an algebraic structure with
an associative operation and a unit.

We can turn things around and define a monoid to be a category with a single object.
A group is then a category with a single object in which every arrow is an isomorphism
(in the sense of definition A.1.5 below).

[DRAFT: September 15, 2024]

A.1 Categories 231

Posets as categories Recall that a partially ordered set, or poset (P,≤), is a set with a
reflexive, transitive, and antisymmetric relation:

x ≤ x (reflexive)

x ≤ y & y ≤ z ⇒ x ≤ z (transitive)

x ≤ y & y ≤ x ⇒ x = y (antisymmetric)

Each poset is a category whose objects are the elements of P , and there is a single arrow
p → q between p, q ∈ P if, and only if, p ≤ q. Composition of p → q and q → r is the
unique arrow p → r, which exists by transitivity of ≤. The identity arrow on p is the
unique arrow p→ p, which exists by reflexivity of ≤.

Antisymmetry tells us that any two isomorphic objects in P are equal.1 We do not
need antisymmetry in order to obtain a category, i.e., a preorder would suffice.

Again, we may define a preorder to be a category in which there is at most one arrow
between any two objects. A poset is a skeletal preorder, i.e. one in which the only isomor-
phisms are the identity arrows. We allow for the possibility that a preorder or a poset is
a proper class rather than a set.

A particularly important example of a poset category is the poset of open sets OX of
a topological space X, ordered by inclusion.

Sets as categories Any set S is a category whose objects are the elements of S and
whose only arrows are identity arrows. Such a category, in which the only arrows are the
identity arrows, is called a discrete category.

A.1.2 Categories of structures

In general, structures like groups, topological spaces, posets, etc., determine categories in
which the maps are structure-preserving functions, composition is composition of functions,
and identity morphisms are identity functions:

• Group is the category whose objects are groups and whose morphisms are group
homomorphisms.

• Top is the category whose objects are topological spaces and whose morphisms are
continuous maps.

• Set is the category whose objects are sets and whose morphisms are functions.2

• Graph is the category of (directed) graphs an graph homomorphisms.

• Poset is the category of posets and monotone maps.

1A category in which isomorphic object are equal is a skeletal category.
2A function between sets A and B is a relation f ⊆ A × B such that for every x ∈ A there exists a

unique y ∈ B for which ⟨x, y⟩ ∈ f . A morphism in Set is a triple ⟨A, f,B⟩ such that f ⊆ A × B is a
function.

[DRAFT: September 15, 2024]

232 Category Theory

Such categories of structures are generally large, but locally small. Note that it is not
necessary to check the associative and unit laws for such categories of functions (why?),
unlike the following example.

Exercise A.1.3. The category of relations Rel has as objects all sets A,B,C, . . . and as
arrows A → B the relations R ⊆ A × B. The composite of R ⊆ A × B and S ⊆ B × C,
and the identity arrow on A, are defined by:

S ◦R =
{
⟨x, z⟩ ∈ A× C

∣∣ ∃ y ∈ B . xRy & ySz
}
,

1A =
{
⟨x, x⟩

∣∣ x ∈ A} .
Show that this is indeed a category!

A.1.3 Basic notions

We recall some further basic notions from category theory.

Definition A.1.4. A subcategory C ′ of a category C is given by a subclass of objects
C ′0 ⊆ C0 and a subclass of morphisms C ′1 ⊆ C1 such that f ∈ C ′1 implies dom f, cod f ∈ C ′0,
1A ∈ C ′1 for every A ∈ C ′0, and g ◦ f ∈ C ′1 whenever f, g ∈ C ′1 are composable.

A subcategory C ′ of C is full if for all A,B ∈ C ′0, we have C ′(A,B) = C(A,B), i.e. every
f : A→ B in C1 is also in C ′1.

Definition A.1.5. An inverse of a morphism f : A → B is a morphism f−1 : B → A
such that

f ◦ f−1 = 1B and f−1 ◦ f = 1A .

A morphism that has an inverse is an isomorphism, or iso. If there exists a pair of mutually
inverse morphisms f : A → B and f−1 : B → A we say that the objects A and B are
isomorphic, written A ∼= B.

The notation f−1 is justified because an inverse, if it exists, is unique. A left inverse is
a morphism g : B → A such that g ◦ f = 1A, and a right inverse is a morphism g : B → A
such that f ◦ g = 1B. A left inverse is also called a retraction, whereas a right inverse is
called a section.

Definition A.1.6. A monomorphism, or mono, is a morphism f : A → B that can be
cancelled on the left: for all g : C → A, h : C → A,

f ◦ g = f ◦ h⇒ g = h .

An epimorphism, or epi, is a morphism f : A→ B that can be cancelled on the right: for
all g : B → C, h : B → A,

g ◦ f = h ◦ f ⇒ g = h .

[DRAFT: September 15, 2024]

A.2 Functors 233

In Set monomorphisms are the injective functions and epimorphisms are the surjective
functions. Isomorphisms in Set are the bijective functions. Thus, in Set a morphism is iso
if, and only if, it is both mono and epi. However, this example is misleading! In general,
a morphism can be mono and epi without being an iso. For example, the non-identity
morphism in the category consisting of two objects and one morphism between them is
both epi and mono, but it has no inverse. A more interesting example of morphisms that
are both epi and mono but are not iso occurs in the category Top of topological spaces and
continuous maps, where not every continuous bijection is a homeomorphism.

A diagram of objects and morphisms is a directed graph whose vertices are objects of
a category and edges are morphisms between them, for example:

A
f //

g

��

B h // C

j
��

D
k

//

m

??

E

Such a diagram is said to commute when the composition of morphisms along any two
paths with the same beginning and end gives equal morphisms. Commutativity of the
above diagram is equivalent to the following two equations:

f = m ◦ g , k = j ◦ h ◦m .

From these we can derive k ◦ g = j ◦ h ◦ f by a diagram chase.

A.2 Functors

Definition A.2.1. A functor F : C → D from a category C to a category D consists of
functions

F0 : C0 → D0 and F1 : C1 → D1

such that, for all f : A→ B and g : B → C in C:

F1f : F0A→ F0B ,

F1(g ◦ f) = (F1g) ◦ (F1f) ,

F1(1A) = 1F0A .

We usually write F for both F0 and F1.

A functor is thus a homomorphism of the category structure; note that it maps com-
mutative diagrams to commutative diagrams because it preserves composition.

We may form the “category of categories” Cat whose objects are small categories and
whose morphisms are functors. Composition of functors is composition of the corresponding
functions, and the identity functor is one that is identity on objects and on morphisms.
The category Cat is large but locally small.

[DRAFT: September 15, 2024]

234 Category Theory

Definition A.2.2. A functor F : C → D is faithful when it is “locally injective on mor-
phisms”, in the sense that for all f, g : A→ B, if Ff = Fg then f = g.

A functor F : C → D is full when it is “locally surjective on morphisms”: for every
g : FA→ FB there exists f : A→ B such that g = Ff .

We consider several examples of functors.

A.2.1 Functors between sets, monoids and posets

When sets, monoids, groups, and posets are regarded as categories, the functors turn out
to be the usual morphisms, for example:

• A functor between sets S and T is a function from S to T .

• A functor between groups G and H is a group homomorphism from G to H.

• A functor between posets P and Q is a monotone function from P to Q.

Exercise A.2.3. Verify that the above claims are correct.

A.2.2 Forgetful functors

For categories of structures Group, Top, Graph, Poset, . . . , there is a forgetful functor U
which maps an object to the underlying set and a morphism to the underlying function.
For example, the forgetful functor U : Group → Set maps a group (G, ·) to the set G and
a group homomorphism f : (G, ·)→ (H, ⋆) to the function f : G→ H.

There are also forgetful functors that forget only part of the structure, for example
the forgetful functor U : Ring→ Group which maps a ring (R,+,×) to the additive group
(R,+) and a ring homomorphism f : (R,+R, ·S)→ (S,+S, ·S) to the group homomorphism
f : (R,+R)→ (S,+S). Note that there is another forgetful functor U ′ : Ring→ Mon from
rings to monoids.

Exercise A.2.4. Show that taking the graph Γ(f) =
{
⟨x, f(x)⟩

∣∣ x ∈ A} of a function
f : A → B determines a functor Γ : Set → Rel, from sets and functions to sets and
relations, which is the identity on objects. Is this a forgetful functor?

A.3 Constructions of Categories and Functors

A.3.1 Product of categories

Given categories C and D, we form the product category C × D whose objects are pairs
of objects ⟨C,D⟩ with C ∈ C and D ∈ D, and whose morphisms are pairs of morphisms
⟨f, g⟩ : ⟨C,D⟩ → ⟨C ′, D′⟩ with f : C → C ′ in C and g : D → D′ in D. Composition is
given by ⟨f, g⟩ ◦ ⟨f ′, g′⟩ = ⟨f ◦ f ′, g ◦ g′⟩.

[DRAFT: September 15, 2024]

A.3 Constructions of Categories and Functors 235

There are evident projection functors

C × D
π0

}}

π1

""
C D

which act as indicated in the following diagrams:

⟨C,D⟩8
π0

||

� π1

##
C D

⟨f, g⟩;
π0

}}

� π1

!!
f g

Exercise A.3.1. Show that, for any categories A, B, C, there are distinguished isos:

1× C ∼= C
B× C ∼= C× B

A× (B× C) ∼= (A× B)× C

Does this make Cat a (commutative) monoid?

A.3.2 Slice categories

Given a category C and an object A ∈ C, the slice category C/A has as objects, morphisms
into A,

B

f
��
A

(A.1)

and as morphisms, commutative diagrams over A:

B

f ��

g // B′

f ′~~
A

(A.2)

That is, a morphism from f : B → A to f ′ : B′ → A is a morphism g : B → B′ such that
f = f ′ ◦ g. Composition of morphisms in C/A is composition of morphisms in C.

There is a forgetful functor UA : C/A→ C which maps an object (A.1) to its domain B,
and a morphism (A.2) to the morphism g : B → B′.

Furthermore, for each morphism h : A→ A′ in C there is a functor “composition by h”,

C/h : C/A→ C/A′

[DRAFT: September 15, 2024]

236 Category Theory

which maps an object (A.1) to the object h ◦ f : B → A′ and a morphisms (A.2) to the
morphism

B

h ◦ f

g // B′

h ◦ f ′~~
A′

The construction of slice categories is itself a functor

C/− : C → Cat

provided that C is small. This functor maps each A ∈ C to the category C/A and each
morphism h : A→ A′ to the composition functor C/h : C/A→ C/A′.

Since Cat is itself a category, we may form the slice category Cat/C for any small
category C. The slice functor C/− then factors through the forgetful functor UC : Cat/C →
Cat via a functor C : C → Cat/C,

C C //

C/−
!!

Cat/C

UC

��
Cat

where for A ∈ C, the object part CA is

C/A

UA

��
C

and for h : A→ A′ in C, the morphism part Ch is

C/A

UA

C/h
// C/A′

UA′}}
C

A.3.3 Arrow categories

Similar to the slice categories, an arrow category has arrows as objects, but without a fixed
codomain. Given a category C, the arrow category C→ has as objects the morphisms of C,

A

f
��
B

(A.3)

[DRAFT: September 15, 2024]

A.3 Constructions of Categories and Functors 237

and as morphisms f → f ′ the commutative squares,

A

f
��

g // A′

f ′
��

B
g′
// B′.

(A.4)

That is, a morphism from f : A → B to f ′ : A′ → B′ is a pair of morphisms g : A → A′

and g′ : B → B′ such that g′ ◦ f = f ′ ◦ g. Composition of morphisms in C→ is just
componentwise composition of morphisms in C.

There are two evident forgetful functors U1, U2 : C→ → C, given by the domain and
codomain operations. (Can you find a common section for these?)

A.3.4 Opposite categories

For a category C the opposite category Cop has the same objects as C, but all the morphisms
are turned around, that is, a morphism f : A → B in Cop is a morphism f : B → A in C.
The identity arrows in Cop are the same as in C, but the order of composition is reversed.
The opposite of the opposite of a category is clearly the original category.

A functor F : Cop → D is sometimes called a contravariant functor (from C to D), and
a functor F : C → D is a covariant functor.

For example, the opposite category of a preorder (P,≤) is the preorder P turned upside
down, (P,≥).

Exercise A.3.2. Given a functor F : C → D, can you define a functor F op : Cop → Dop in
such a way that −op itself becomes a functor? On what category is it a functor?

A.3.5 Representable functors

Let C be a locally small category. Then for each pair of objects A,B ∈ C the collection of
all morphisms A→ B forms a set, written HomC(A,B), Hom(A,B) or C(A,B). For every
A ∈ C there is a functor

C(A,−) : C → Set

defined by

C(A,B) =
{
f ∈ C1

∣∣ f : A→ B
}

C(A, g) : f 7→ g ◦ f

where B ∈ C and g : B → C. In words, C(A, g) is composition by g. This is indeed a
functor because, for any morphisms

A
f // B

g // C h // D (A.5)

[DRAFT: September 15, 2024]

238 Category Theory

we have
C(A, h ◦ g)f = (h ◦ g) ◦ f = h ◦ (g ◦ f) = C(A, h)(C(A, g)f) ,

and C(A, 1B)f = 1A ◦ f = f = 1C(A,B)f .
We may also ask whether C(−, B) is a functor. If we define its action on morphisms to

be precomposition,
C(f,B) : g 7→ g ◦ f ,

it becomes a contravariant functor,

C(−, B) : Cop → Set .

The contravariance is a consequence of precomposition; for morphisms (A.5) we have

C(g ◦ f,D)h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f,D)(C(g,D)h) .

A functor of the form C(A,−) is a (covariant) representable functor, and a functor of the
form C(−, B) is a (contravariant) representable functor.

It follows that the hom-set is a functor

C(−,−) : Cop × C → Set

which maps a pair of objects A,B ∈ C to the set C(A,B) of morphisms from A to B, and
it maps a pair of morphisms f : A′ → A, g : B → B′ in C to the function

C(f, g) : C(A,B)→ C(A′, B′)

defined by
C(f, g) : h 7→ g ◦ h ◦ f .

(Why does it follow that this is a functor?)

A.3.6 Group actions

A group (G, ·) is a category with one object ⋆ and elements of G as the morphisms. Thus,
a functor F : G→ Set is given by a set F⋆ = S and for each a ∈ G a function Fa : S → S
such that, for all x ∈ S, a, b ∈ G,

(Fe)x = x , (F (a · b))x = (Fa)((Fb)x) .

Here e is the unit element of G. If we write a ·x instead of (Fa)x, the above two equations
become the familiar laws for a left group action on the set S:

e · x = x , (a · b) · x = a · (b · x) .

Exercise A.3.3. A right group action by a group (G, ·) on a set S is an operation · :
S ×G→ S that satisfies, for all x ∈ S, a, b ∈ G,

x · e = x , x · (a · b) = (x · a) · b .

Exhibit right group actions as functors.

[DRAFT: September 15, 2024]

A.4 Natural Transformations and Functor Categories 239

A.4 Natural Transformations and Functor Categories

Definition A.4.1. Let F : C → D and G : C → D be functors. A natural transformation
η : F =⇒ G from F to G is a map η : C0 → D1 which assigns to every object A ∈ C a
morphism ηA : FA→ GA, called the component of η at A, such that for every f : A→ B
in C we have ηB ◦ Ff = Gf ◦ ηA, i.e., the following diagram in D commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB ηB

// GB

A simple example is given by the “twist” isomorphism t : A × B → B × A (in Set).
Given any maps f : A→ A′ and g : B → B′, there is a commutative square:

A×B
tA,B //

f × g
��

B × A

g × f
��

A′ ×B′
tA′,B′

// B′ × A′

Thus naturality means that the two functors F (X, Y) = X × Y and G(X, Y) = Y × X
are related to each other (by t : F → G), and not simply their individual values A × B
and B × A. As a further example of a natural transformation, consider groups G and H
as categories and two homomorphisms f, g : G→ H as functors between them. A natural
transformation η : f =⇒ g is given by a single element η⋆ = b ∈ H such that, for every
a ∈ G, the following diagram commutes:

⋆
b //

fa
��

⋆

ga
��

⋆
b
// ⋆

This means that b · fa = (ga) · b, that is ga = b · (fa) · b−1. In other words, a natural
transformation f =⇒ g is a conjugation operation b−1 · − · b which transforms f into g.

For every functor F : C → D there exists the identity transformation 1F : F =⇒ F
defined by (1F)A = 1A. If η : F =⇒ G and θ : G =⇒ H are natural transformations, then
their composition θ ◦ η : F =⇒ H, defined by (θ ◦ η)A = θA ◦ ηA is also a natural transfor-
mation. Composition of natural transformations is associative because it is composition in
the codomain category D. This leads to the definition of functor categories.

[DRAFT: September 15, 2024]

240 Category Theory

Definition A.4.2. Let C and D be categories. The functor category DC is the category
whose objects are functors from C to D and whose morphisms are natural transformations
between them.

A functor category may be quite large, too large in fact. In order to avoid problems
with size we normally require C to be a locally small category. The “hom-class” of all
natural transformations F =⇒ G is usually written as

Nat(F,G)

instead of the more awkward HomDC(F,G).
Suppose we have functors F , G, and H with a natural transformation θ : G =⇒ H, as

in the following diagram:

C F // D
G

''

H
77�� θ E

Then we can form a natural transformation θ ◦ F : G ◦ F =⇒ H ◦ F whose component at
A ∈ C is (θ ◦ F)A = θFA.

Similarly, if we have functors and a natural transformation

C
G

((

H
66�� θ D F // E

we can form a natural transformation (F ◦θ) : F ◦G =⇒ F ◦H whose component at A ∈ C
is (F ◦ θ)A = FθA. These operations are known as whiskering.

A natural isomorphism is an isomorphism in a functor category. Thus, if F : C → D
and G : C → D are two functors, a natural isomorphism between them is a natural
transformation η : F =⇒ G whose components are isomorphisms. In this case, the inverse
natural transformation η−1 : G =⇒ F is given by (η−1)A = (ηA)

−1. We write F ∼= G
when F and G are naturally isomorphic.

The definition of natural transformations is motivated in part by the fact that, for any
small categories A, B, C, we have

Cat(A× B,C) ∼= Cat(A,CB) . (A.6)

The isomorphism takes a functor F : A × B → C to the functor F̃ : A → CB defined on
objects A ∈ A, B ∈ B by

(F̃A)B = F ⟨A,B⟩

and on a morphism f : A→ A′ by

(F̃ f)B = F ⟨f, 1B⟩ .

The functor F̃ is called the transpose of F .

[DRAFT: September 15, 2024]

A.4 Natural Transformations and Functor Categories 241

The inverse isomorphism takes a functor G : A → CB to the functor G̃ : A × B → C,
defined on objects by

G̃⟨A,B⟩ = (GA)B

and on a morphism ⟨f, g⟩ : A×B → A′ ×B′ by

G̃⟨f, g⟩ = (Gf)B′ ◦ (GA)g = (GA′)g ◦ (Gf)B ,

where the last equation holds by naturality of Gf :

(GA)B
(Gf)B //

(GA)g

��

(GA′)B

(GA′)g

��
(GA)B′

(Gf)B′

// (GA′)B′

A.4.1 Directed graphs as a functor category

Recall that a directed graph G is given by a set of vertices GV and a set of edges GE. Each
edge e ∈ GE has a uniquely determined source srcG e ∈ GV and target trgG e ∈ GV . We
write e : a → b when a is the source and b is the target of e. A graph homomorphism
ϕ : G → H is a pair of functions ϕ0 : GV → HV and ϕ1 : GE → HE, where we usually
write ϕ for both ϕ0 and ϕ1, such that whenever e : a → b then ϕ1e : ϕ0a → ϕ0b. The
category of directed graphs and graph homomorphisms is denoted by Graph.

Now let ·⇒ · be the category with two objects and two parallel morphisms, depicted
by the following “sketch”:

E

t

77

s
''
V

An object of the functor category Set·⇒· is a functor G : (·⇒ ·) → Set, which consists
of two sets GE and GV and two functions Gs : GE → GV and Gt : GE → GV . But
this is precisely a directed graph whose vertices are GV , the edges are GE, the source of
e ∈ GE is (Gs)e and the target is (Gt)e. Conversely, any directed graph G is a functor
G : (·⇒ ·)→ Set, defined by

GE = GE , GV = GV , Gs = srcG , Gt = trgG .

Now category theory begins to show its worth, for the morphisms in Set·⇒· are precisely
the graph homomorphisms. Indeed, a natural transformation ϕ : G =⇒ H between graphs
is a pair of functions,

ϕE : GE → HE and ϕV : GV → HV

[DRAFT: September 15, 2024]

242 Category Theory

whose naturality is expressed by the commutativity of the following two diagrams:

GE

ϕE //

srcG

��

HE

srcH

��
GV

ϕV
// HV

GE

ϕE //

trgG

��

HE

trgH

��
GV

ϕV
// HV

This is precisely the requirement that e : a → b implies ϕEe : ϕV a → ϕV b. Thus, in sum,
we have,

Graph = Set·⇒·.

Exercise A.4.3. Exhibit the arrow category C→ and the category of group actions Set(G)
as functor categories.

A.4.2 The Yoneda embedding

The example Graph = Set·⇒· leads one to wonder which categories C can be represented as
functor categories SetD for a suitably chosen D or, when that is not possible, at least as
full subcategories of SetD.

For a locally small category C, there is the hom-functor

C(−,−) : Cop × C → Set .

By transposing as in (A.6) we obtain the functor

y : C → SetC
op

which maps an object A ∈ C to the representable functor

yA = C(−, A) : B 7→ C(B,A)

and a morphism f : A → A′ in C to the natural transformation yf : yA =⇒ yA′ whose
component at B is

(yf)B = C(B, f) : g 7→ f ◦ g .

This functor y is called the Yoneda embedding.

Exercise A.4.4. Show that this is a functor.

Theorem A.4.5 (Yoneda embedding). For any locally small category C the Yoneda em-
bedding

y : C → SetC
op

is full and faithful and injective on objects. Therefore, C is a full subcategory of SetC
op

.

[DRAFT: September 15, 2024]

A.4 Natural Transformations and Functor Categories 243

The proof of the theorem uses the famous Yoneda Lemma.

Lemma A.4.6 (Yoneda). Every functor F : Cop → Set is naturally isomorphic to the
functor Nat(y−, F). That is, for every A ∈ C,

Nat(yA,F) ∼= FA ,

and this isomorphism is natural in A.

Indeed, the displayed isomorphism is also natural in F .

Proof. The desired natural isomorphism θA maps a natural transformation η ∈ Nat(yA,F)
to ηA1A. The inverse θA

−1 maps an element x ∈ FA to the natural transformation (θA
−1x)

whose component at B maps f ∈ C(B,A) to (Ff)x. To summarize, for η : C(−, A) =⇒ F ,
x ∈ FA and f ∈ C(B,A), we have

θA : Nat(yA,F)→ FA , θA
−1 : FA→ Nat(yA,F) ,

θAη = ηA1A , (θA
−1x)Bf = (Ff)x .

To see that θA and θA
−1 really are inverses of each other, observe that

θA(θA
−1x) = (θA

−1x)A1A = (F1A)x = 1FAx = x ,

and also

(θA
−1(θAη))Bf = (Ff)(θAη) = (Ff)(ηA1A) = ηB(1A ◦ f) = ηBf ,

where the third equality holds by the following naturality square for η:

C(A,A)
ηA //

C(f, A)
��

FA

Ff

��
C(B,A) ηB

// FB

It remains to check that θ is natural, which amounts to establishing the commutativity of
the following diagram, with g : A→ A′:

Nat(yA,F)
θA // FA

Nat(yA′, F)
θA′

//

Nat(yg, F)

OO

FA′

Fg

OO

[DRAFT: September 15, 2024]

244 Category Theory

The diagram is commutative because, for any η : yA′ =⇒ F ,

(Fg)(θA′η) = (Fg)(ηA′1A′) = ηA(1A′ ◦ g) =
ηA(g ◦ 1A) = (Nat(yg, F)η)A1A = θA(Nat(yg, F)η) ,

where the second equality is justified by naturality of η.

Proof of Theorem A.4.5. That the Yoneda embedding is full and faithful means that for
all A,B ∈ C the map

y : C(A,B)→ Nat(yA, yB)

which maps f : A→ B to yf : yA =⇒ yB is an isomorphism. But this is just the Yoneda
Lemma applied to the case F = yB. Indeed, with notation as in the proof of the Yoneda
Lemma and g : C → A, we see that the isomorphism

θ−1
A : C(A,B) = (yB)A→ Nat(yA, yB)

is in fact y:
(θA

−1f)Cg = ((yA)g)f = f ◦ g = (yf)Cg .

Furthermore, if yA = yB then 1A ∈ C(A,A) = (yA)A = (yB)A = C(B,A) which can only
happen if A = B. Therefore, y is injective on objects.

The following corollary is often useful.

Corollary A.4.7. For A,B ∈ C, A ∼= B if, and only if, yA ∼= yB in SetC
op

.

Proof. Every functor preserves isomorphisms, and a full and faithful one also reflects them.
(A functor F : C → D is said to reflect isomorphisms when Ff : FA → FB being an
isomorphisms implies that f : A→ B is an isomorphism.)

Exercise A.4.8. Prove that a full and faithful functor reflects isomorphisms.

Functor categories SetC
op

are important enough to deserve a name. They are called
presheaf categories, and a functor F : Cop → Set is called a presheaf on C. We also use the
notation Ĉ = SetC

op

.

A.4.3 Equivalence of categories

An isomorphism of categories C and D in Cat consists of functors

C
F

** D
G

jj

such that G◦F = 1C and F ◦G = 1D. This is often too restrictive a notion. A more general
notion which replaces the above identities with natural isomorphisms is more useful.

[DRAFT: September 15, 2024]

A.4 Natural Transformations and Functor Categories 245

Definition A.4.9. An equivalence of categories is a pair of functors

C
F

** D
G

jj

such that there are natural isomorphisms

G ◦ F ∼= 1C and F ◦G ∼= 1D .

We say that C and D are equivalent categories and write C ≃ D.
A functor F : C → D is called an equivalence functor if there exists G : D → C such

that F and G form an equivalence.

The point of equivalence of categories is that it preserves almost all categorical prop-
erties, but ignores those concepts that are not of interest from a categorical point of view,
such as identity of objects.

The following proposition requires the Axiom of Choice as stated. However, in many
specific cases a canonical choice can be made without appeal to that axiom.

Proposition A.4.10. A functor F : C → D is an equivalence functor if, and only if, F is
full and faithful, and essentially surjective on objects, meaning that for every B ∈ D there
exists A ∈ C such that FA ∼= B.

Proof. It is easily seen that the conditions are necessary, so we only show they are sufficient.
Suppose F : C → D is full and faithful, and essentially surjective on objects. For each
B ∈ D, choose an object GB ∈ C and an isomorphism ηB : F (GB)→ B. If f : B → C is
a morphism in D, let Gf : GB → GC be the unique morphism in C for which

F (Gf) = ηC
−1 ◦ f ◦ ηB . (A.7)

Such a unique morphism exists because F is full and faithful. This defines a functor G :
D → C, as can be easily checked. In addition, (A.7) ensures that η is a natural isomorphism
F ◦G =⇒ 1D.

It remains to show that G ◦ F ∼= 1C. For A ∈ C, let θA : G(FA) → A be the unique
morphism such that FθA = ηFA. Naturality of θA follows from functoriality of F and
naturality of η. Because F reflects isomorphisms, θA is an isomorphism for every A.

Example A.4.11. As an example of equivalence of categories we consider the category of
sets and partial functions and the category of pointed sets.

A partial function f : A ⇀ B is a function defined on a subset supp f ⊆ A, called the
support3 of f , and taking values in B. Composition of partial functions f : A ⇀ B and
g : B ⇀ C is the partial function g ◦ f : A ⇀ C defined by

supp (g ◦ f) =
{
x ∈ A

∣∣ x ∈ supp f ∧ fx ∈ supp g
}

(g ◦ f)x = g(fx) for x ∈ supp (g ◦ f)
3The support of a partial function f : A ⇀ B is usually called its domain, but this terminology conflicts

with A being the domain of f as a morphism.

[DRAFT: September 15, 2024]

246 Category Theory

Composition of partial functions is associative. This way we obtain a category Par of sets
and partial functions.

A pointed set (A, a) is a set A together with an element a ∈ A. A pointed function
f : (A, a) → (B, b) between pointed sets is a function f : A → B such that fa = b. The
category Set• consists of pointed sets and pointed functions.

The categories Par and Set• are equivalent. The equivalence functor F : Set• → Par
maps a pointed set (A, a) to the set F (A, a) = A\{a}, and a pointed function f : (A, a)→
(B, b) to the partial function Ff : F (A, a)⇀ F (B, b) defined by

supp (Ff) =
{
x ∈ A

∣∣ fx ̸= b
}
, (Ff)x = fx .

The inverse equivalence functor G : Par → Set• maps a set A ∈ Par to the pointed set
GA = (A + {⊥A} ,⊥A), where ⊥A is an element that does not belong to A. A partial
function f : A ⇀ B is mapped to the pointed function Gf : GA→ GB defined by

(Gf)x =

{
fx if x ∈ supp f

⊥B otherwise .

A good way to think about the “bottom” point ⊥A is as a special “undefined value”. Let
us look at the composition of F and G on objects:

G(F (A, a)) = G(A \ {a}) = ((A \ {a}) +⊥A,⊥A) ∼= (A, a) .

F (GA) = F (A+ {⊥A} ,⊥A) = (A+ {⊥A}) \ {⊥A} = A .

The isomorphism G(F (A, a)) ∼= (A, a) is easily seen to be natural.

Example A.4.12. Another example of an equivalence of categories arises when we take
the poset reflection of a preorder. Let (P,≤) be a preorder, If we think of P as a category,
then a, b ∈ P are isomorphic, when a ≤ b and b ≤ a. Isomorphism ∼= is an equivalence
relation, therefore we may form the quotient set P/∼=. The set P/∼= is a poset for the order
relation ⊑ defined by

[a] ⊑ [b] ⇐⇒ a ≤ b .

Here [a] denotes the equivalence class of a. We call (P/∼=,⊑) the poset reflection of P .
The quotient map q : P → P/∼= is a functor when P and P/∼= are viewed as categories.
By Proposition A.4.10, q is an equivalence functor. Trivially, it is faithful and surjective
on objects. It is also full because qa ⊑ qb in P/∼= implies a ≤ b in P .

A.5 Adjoint Functors

The notion of adjunction is perhaps the most important concept revealed by category
theory. It is a fundamental logical and mathematical concept that occurs everywhere and
often marks an important and interesting connection between two constructions of interest.
In logic, adjoint functors are pervasive, although this is only recognizable through the lens
of category theory.

[DRAFT: September 15, 2024]

A.5 Adjoint Functors 247

A.5.1 Adjoint maps between preorders

Let us begin with a simple situation. We have already seen that a preorder (P,≤) is
a category in which there is at most one morphism between any two objects. A functor
between preorders is a monotone map. Suppose we have preorders P and Q with monotone
maps back and forth,

P
f

++
Q .

g
jj

We say that f and g are adjoint, and write f ⊣ g, when for all x ∈ P , y ∈ Q,

fx ≤ y ⇐⇒ x ≤ gy . (A.8)

Note that adjointness is not a symmetric relation. The map f is the left adjoint and g is
the right adjoint (note their positions with respect to ≤).

Equivalence (A.8) is more conveniently displayed as

fx ≤ y

x ≤ gy

The double line indicates the fact that this is a two-way rule: the top line implies the
bottom line, and vice versa.

Let us consider two examples.

Conjunction is adjoint to implication Consider a propositional calculus with logical
operations of conjunction ∧ and implication ⇒ (perhaps among others). The formulas of
this calculus are built from variables x0, x1, x2, . . . , the truth values ⊥ and ⊤, and the
logical connectives ∧,⇒, The logical rules are given in natural deduction style:

⊤
⊥
A

A B

A ∧B
A ∧B
A

A ∧B
B

A⇒ B A

B

[u : A]

...

B

A⇒ B
u

For example, we read the inference rules for ⇒ as, respectively, “from A ⇒ B and A we
infer B” and “if from assumption A we infer B, then (without any assumptions) we infer
A⇒ B”. Discharged assumptions are indicated by enclosing them in brackets, along with
a label [u : A] for the assumption, which is recorded along with the rule that discharges it,
as above.

[DRAFT: September 15, 2024]

248 Category Theory

Logical entailment ⊢ between formulas of the propositional calculus is the relation A ⊢
B which holds if, and only if, from assuming A we can infer B (by using only the inference
rules of the calculus). It is trivially the case that A ⊢ A, and also

if A ⊢ B and B ⊢ C then A ⊢ C .

In other words, ⊢ is a reflexive and transitive relation on the set P of all propositional
formulas, so that (P,⊢) is a preorder.

Let A be a propositional formula. Define f : P→ P and g : P→ P to be the maps

fB = (A ∧B) , gB = (A⇒ B) .

To see that the maps f and g are functors we need to show they respect entailment. Indeed,
if B ⊢ B′ then A ∧B ⊢ A ∧B′ and A⇒ B ⊢ A⇒ B′ by the following two derivations.

A ∧B
A

A ∧B
B
...

B′

A ∧B′

A⇒ B [u : A]

B
...

B′

A⇒ B′ u

We claim that f ⊣ g. For this we need to prove that A∧B ⊢ C if, and only if, B ⊢ A⇒ C.
The following two derivations establish the required equivalence.

[u : A] B

A ∧B
...

C

A⇒ C
u

A ∧B
B
...

A⇒ C
A ∧B
A

C

Therefore, conjunction is left adjoint to implication.

Topological interior as an adjoint Recall that a topological space (X,OX) is a set X
together with a family OX ⊆ PX of subsets of X which contains ∅ and X, and is closed
under finite intersections and arbitrary unions. The elements of OX are called the open
sets.

The topological interior of a subset S ⊆ X is the largest open set contained in S,
namely,

intS =
⋃{

U ∈ OX
∣∣ U ⊆ S

}
.

Both OX and PX are posets ordered by subset inclusion. The inclusion i : OX → PX is
thus a monotone map, and so indeed is the interior int : PX → OX, as follows immediately
from its construction. So we have:

OX
i ,, PX
int

ll

[DRAFT: September 15, 2024]

A.5 Adjoint Functors 249

Moreover, for U ∈ OX and S ∈ PX we plainly also have

iU ⊆ S

U ⊆ intS

since intS is the largest open set contained in S. Thus topological interior is right adjoint
to the inclusion of OX into PX.

A.5.2 Adjoint functors

Let us now generalize the notion of adjoint monotone maps from posets to the situation

C
F

** D
G

jj

with arbitrary categories and functors. For monotone maps f ⊣ g, the adjunction condition
is a bijection

fx→ y

x→ gy

between morphisms of the form fx → y and morphisms of the form x → gy. This is
the notion that generalizes the special case; for any A ∈ C, B ∈ D we require a bijection
between the sets D(FA,B) and C(A,GB):

FA→ B

A→ GB

Definition A.5.1. An adjunction F ⊣ G between the functors

C
F

** D
G

jj

is a natural isomorphism θ between functors

D(F−,−) : Cop ×D → Set and C(−, G−) : Cop ×D → Set .

This means that for every A ∈ C and B ∈ D there is a bijection

θA,B : D(FA,B) ∼= C(A,GB) ,

and naturality of θ means that for f : A′ → A in C and g : B → B′ in D the following
diagram commutes:

D(FA,B)
θA,B //

D(Ff, g)
��

D(A,GB)

C(f,Gg)
��

D(FA′, B′)
θA′,B′

// C(A′, GB′)

[DRAFT: September 15, 2024]

250 Category Theory

Equivalently, for every h : FA→ B in D,

Gg ◦ (θA,Bh) ◦ f = θA′,B′(g ◦ h ◦ Ff) .

We say that F is the left adjoint and G is the right adjoint.

We have already seen examples of adjoint functors. For any category B we have functors
(−)× B and (−)B from Cat to Cat. Recall the isomorphism (A.6),

Cat(A× B,C) ∼= Cat(A,CB) .

This isomorphism is in fact natural in A and C, so that

(−)× B ⊣ (−)B .

Similarly, for any set B ∈ Set there are functors

(−)×B : Set→ Set , (−)B : Set→ Set ,

where A×B is the cartesian product of A and B, and CB is the set of all functions from B
to C. For morphisms, f × B = f × 1B and fB = f ◦ (−). We then indeed have a natural
isomorphism, for all A,C ∈ Set,

Set(A×B,C) ∼= Set(A,CB) ,

which maps a function f : A×B → C to the function (f̃x)y = f⟨x, y⟩. Therefore,

(−)×B ⊣ (−)B .

Exercise A.5.2. Verify that the definition (A.8) of adjoint monotone maps between pre-
orders is a special case of Definition A.5.1. What happened to the naturality condition?

For another example, consider the forgetful functor

U : Cat→ Graph ,

which maps a category to the underlying directed graph. It has a left adjoint P ⊣ U .
The functor P is the free construction of a category from a graph; it maps a graph G to
the category of paths P (G). The objects of P (G) are the vertices of G. The morphisms
of P (G) are the finite paths

v0
e1 // v1

e2 // · · · en // vn

of edges in G, composition is concatenation of paths, and the identity morphism on a
vertex v is the empty path starting and ending at v.

By using the Yoneda Lemma we can easily prove that adjoints are unique up to natural
isomorphism.

[DRAFT: September 15, 2024]

A.5 Adjoint Functors 251

Proposition A.5.3. Let F : C → D and G : D → C be adjoint functors, with F ⊣ G. If
also G′ : D → C with F ⊣ G′, then G ∼= G′.

Proof. Since the Yoneda embedding is full and faithful, we have GB ∼= G′B if, and only
if, C(−, GB) ∼= C(−, G′B). But this indeed holds, because, for any A ∈ C, we have

C(A,GB) ∼= D(FA,B) ∼= C(A,G′B) ,

naturally in A.

Left adjoints are of course also unique up to isomorphism, by duality.

A.5.3 The unit of an adjunction

Let F : C → D and G : D → C be adjoint functors, F ⊣ G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object A ∈ C
there is a distinguished morphism ηA = θA,FA1FA : A→ G(FA),

1FA : FA→ FA

ηA : A→ G(FA)

Since θ is natural in A, we have a natural transformation η : 1C =⇒ G ◦ F , which is
called the unit of the adjunction F ⊣ G. In fact, we can recover θ from η as follows. For
f : FA→ B, we have

θA,Bf = θA,B(f ◦ 1FA) = Gf ◦ θA,FA(1FA) = Gf ◦ ηA ,

where we used naturality of θ in the second step. Schematically, given any f : FA → B,
the following diagram commutes:

A
ηA //

θA,Bf
""

G(FA)

Gf

��
GB

Since θA,B is a bijection, it follows that every morphism g : A → GB has the form
g = Gf ◦ ηA for a unique f : FA → B. We say that ηA : A → G(FA) is a universal
morphism to G, or that η has the following universal mapping property : for every A ∈ C,
B ∈ D, and g : A→ GB, there exists a unique f : FA→ B such that g = Gf ◦ ηA:

A
ηA //

g
""

G(FA)

Gf

��

FA

f

��
GB B

[DRAFT: September 15, 2024]

252 Category Theory

This means that an adjunction can be given in terms of its unit. The isomorphism θ :
D(F−,−)→ C(−, G−) is then recovered by

θA,Bf = Gf ◦ ηA .

Proposition A.5.4. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

η : 1C =⇒ G ◦ F ,

called the unit of the adjunction, such that, for all A ∈ C and B ∈ D the map θA,B :
D(FA,B)→ C(A,GB), defined by

θA,Bf = Gf ◦ ηA ,

is an isomorphism.

Let us demonstrate how the universal mapping property of the unit of an adjunction
appears as a well known construction in algebra. Consider the forgetful functor from
monoids to sets,

U : Mon→ Set .

Does it have a left adjoint F : Set → Mon? In order to obtain one, we need a “most
economical” way of making a monoid FX from a given set X. Such a construction readily
suggests itself, namely the free monoid on X, consisting of finite sequences of elements
of X,

FX =
{
x1 . . . xn

∣∣ n ≥ 0 & x1, . . . , xn ∈ X
}
.

The monoid operation is concatenation of sequences

x1 . . . xm · y1 . . . yn = x1 . . . xmy1 . . . yn ,

and the empty sequence is the unit of the monoid. In order for F to be a functor, it should
also map morphisms to morphisms. If f : X → Y is a function, define Ff : FX → FY by

Ff : x1 . . . xn 7→ (fx1) . . . (fxn) .

There is an inclusion ηX : X → U(FX) which maps every element x ∈ X to the singleton
sequence x. This gives a natural transformation η : 1Set =⇒ U ◦ F .

The monoid FX is “free” in the sense that it “satisfies only the equations required
by the monoid laws”; we make this precise as follows. For every monoid M and function
f : X → UM there exists a unique monoid homomorphism f : FX → M such that the
following diagram commutes:

X
ηX //

f
""

U(FX)

Uf

��
UM

[DRAFT: September 15, 2024]

A.5 Adjoint Functors 253

This is precisely the condition required by Proposition A.5.4 for η to be the unit of the
adjunction F ⊣ U . In this case, the universal mapping property of η is just the usual
characterization of the free monoid FX generated by the setX: a homomorphism from FX
is uniquely determined by its values on the generators.

A.5.4 The counit of an adjunction

Let F : C → D and G : D → C be adjoint functors with F ⊣ G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object B ∈ D
we have a distinguished morphism εB = θ−1

GB,B1GB : F (GB)→ B by:

1GB : GB → GB

εB : F (GB)→ B

The natural transformation ε : F ◦G =⇒ 1D is called the counit of the adjunction F ⊣ G.
It is the dual notion to the unit of an adjunction. We state briefly the basic properties
of the counit, which are easily obtained by “turning around” all the morphisms in the
previous section and exchanging the roles of the left and right adjoints.

The bijection θ−1
A,B can be recovered from the counit. For g : A→ GB in C, we have

θ−1
A,Bg = θ−1

A,B(1GB ◦ g) = θ−1
A,B1GB ◦ Fg = εB ◦ Fg .

The universal mapping property of the counit is this: for every A ∈ C, B ∈ D, and
f : FA→ B, there exists a unique g : A→ GB such that f = εB ◦ Fg:

B F (GB)
εBoo GB

FA

Fg

OO

f

bb

A

g

OO

The following is the dual of Proposition A.5.4.

Proposition A.5.5. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

ε : F ◦G =⇒ 1D ,

called the counit of the adjunction, such that, for all A ∈ C and B ∈ D the map θ−1
A,B :

C(A,GB)→ D(FA,B), defined by

θ−1
A,Bg = εB ◦ Fg ,

is an isomorphism.

[DRAFT: September 15, 2024]

254 Category Theory

Let us consider again the forgetful functor U : Mon → Set and its left adjoint F :
Set → Mon, the free monoid construction. For a monoid (M, ⋆) ∈ Mon, the counit of the
adjunction F ⊣ U is a monoid homomorphism εM : F (UM)→M , defined by

εM(x1x2 . . . xn) = x1 ⋆ x2 ⋆ · · · ⋆ xn .

It has the following universal mapping property: for X ∈ Set, (M, ⋆) ∈ Mon, and a
homomorphism f : FX → M there exists a unique function f : X → UM such that
f = εM ◦ Ff , namely

fx = fx ,

where in the above definition x ∈ X is viewed as an element of the set X on the left-hand
side, and as an element of the free monoid FX on the right-hand side. To summarize,
the universal mapping property of the counit ε is the familiar piece of wisdom that a
homomorphism f : FX → M from a free monoid is already determined by its values on
the generators.

A.6 Limits and Colimits

The following limits and colimits are all special cases of adjoint functors, as we shall see.

A.6.1 Binary products

In a category C, the (binary) product of objects A and B is an object A × B together
with projections π0 : A × B → A and π1 : A × B → B such that, for every object C ∈ C
and every pair of morphisms f : C → A, g : C → B there exists a unique morphism
h : C → A×B for which the following diagram commutes:

C

f

||

h

��

g

""
A A×Bπ0
oo

π1
// B

We normally refer to the product (A×B, π0, π1) just by its objectA×B, but you should keep
in mind that a product is given by an object and two projections. The arrow h : C → A×B
is denoted by ⟨f, g⟩. The property

for all C, for all f : C → A, for all g : C → B,

there is a unique h : C → A×B,

with π0 ◦ h = f & π1 ◦ h = g

is the universal mapping property of the product A×B. It characterizes the product of A
and B uniquely up to isomorphism in the sense that if (P, p0 : P → A, p1 : P → B) is

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 255

another product of A and B, then there is a unique isomorphism r : P
∼→ A×B such that

p0 = π0 ◦ r and p1 = π1 ◦ r.
If in a category C every two objects have a product, we can turn binary products into an

operation4 by choosing a product A×B for each pair of objects A,B ∈ C. In general this
requires the Axiom of Choice, but in many specific cases a particular choice of products can
be made without appeal to that axiom. When we view binary products as an operation,
we say that “C has chosen products”. The same holds for other instances of limits and
colimits.

For example, in Set the usual cartesian product of sets is a product. In categories of
structures, products are the usual construction: the product of topological spaces in Top
is their topological product, the product of directed graphs in Graph is their cartesian
product, the product of categories in Cat is their product category, and so on.

A.6.2 Terminal objects

A terminal object in a category C is an object 1 ∈ C such that for every A ∈ C there exists
a unique morphism !A : A→ 1.

For example, in Set an object is terminal if, and only if, it is a singleton. The terminal
object in Cat is the unit category 1 consisting of one object and one morphism.

Exercise A.6.1. Prove that if 1 and 1′ are terminal objects in a category then they are
isomorphic.

Exercise A.6.2. Let Field be the category whose objects are fields and morphisms are
field homomorphisms.5 Does Field have a terminal object? What about the category Ring
of rings?

A.6.3 Equalizers

Given objects and morphisms

E e // A
f //

g
// B

we say that e equalizes f and g when f ◦ e = g ◦ e.6 An equalizer of f and g is a universal
equalizing morphism; thus e : E → A is an equalizer of f and g when it equalizes them
and, for all k : K → A, if f ◦ k = g ◦ k then there exists a unique morphism m : K → E

4More precisely, binary product is a functor from C × C to C, cf. Section A.6.11.
5A field (F,+, ·,−1, 0, 1) is a ring with a unit in which all non-zero elements have inverses. We also

require that 0 ̸= 1. A homomorphism of fields preserves addition and multiplication, and consequently
also 0, 1 and inverses.

6Note that this does not mean the diagram involving f , g and e is commutative!

[DRAFT: September 15, 2024]

256 Category Theory

such that k = e ◦m:

E
e // A

f //

g
// B

K

m

OO

k

??

In Set the equalizer of parallel functions f : A→ B and g : A→ B is the set

E =
{
x ∈ A

∣∣ fx = gx
}

with e : E → A being the subset inclusion E ⊆ A, ex = x. In general, equalizers can be
thought of as those subobjects (subsets, subgroups, subspaces, . . .) that can be defined by
an equation.

Exercise A.6.3. Show that an equalizer is a monomorphism, i.e., if e : E → A is an
equalizer of f and g, then, for all r, s : C → E, e ◦ r = e ◦ s implies r = s.

Definition A.6.4. A morphism is a regular mono if it is an equalizer.

The difference between monos and regular monos is best illustrated in the category Top:
a continuous map f : X → Y is mono when it is injective, whereas it is a regular mono
when it is a topological embedding.7

A.6.4 Pullbacks

A pullback of f : A → C and g : B → C is an object P with morphisms p0 : P → A and
p1 : P → B such that f ◦ p0 = g ◦ p1, and whenever Q, q0 : Q → A, and q1 : Q → B are
such that f ◦ q0 = g ◦ q1, there then exists a unique h : Q → P such that q0 = p0 ◦ h and
q1 = p1 ◦ h:

Q
q1

!!

h

��

q0

��

P
p1 //

p0

��

B

g

��
A

f
// C

We indicate that P is a pullback by drawing a square corner next to it, as in the above
diagram. The pullback is sometimes written A ×C B, since it is indeed a product in the
slice category over C.

7A continuous map f : X → Y is a topological embedding when, for every U ∈ OX, the image f [U] is
an open subset of the image im(f); this means that there exists V ∈ OY such that f [U] = V ∩ im(f).

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 257

In Set, the pullback of f : A→ C and g : B → C is the set

P =
{
⟨x, y⟩ ∈ A×B

∣∣ fx = gy
}

and the functions p0 : P → A, p1 : P → B are the projections, p0⟨x, y⟩ = x, p1⟨x, y⟩ = y.

When we form the pullback of f : A → C and g : B → C we may also say that we
pull g back along f and draw the diagram

f ∗B //

f ∗g

��

B

g

��
A

f
// C

We think of f ∗g : f ∗B → A as the inverse image of B along f . This terminology is
explained by looking at the pullback of a subset inclusion u : U ↪→ C along a function
f : A→ C in the category Set:

f ∗U //

��

U� _

u

��
A

f
// C

In this case the pullback is
{
⟨x, y⟩ ∈ A× U

∣∣ fx = y
} ∼= {

x ∈ A
∣∣ fx ∈ U} = f ∗U , the

inverse image of U along f .

Exercise A.6.5. Prove that in a category C, a morphism f : A→ B is mono if, and only
if, the following diagram is a pullback:

A
1A //

1A
��

A

f

��
A

f
// B

A.6.5 Limits

Let us now define the general notion of a limit.

A diagram of shape I in a category C is a functor D : I → C, where the category I is
called the index category. We use letters i, j, k, . . . for objects of an index category I, call
them indices, and write Di, Dj, Dk, . . . instead of Di, Dj, Dk, . . .

[DRAFT: September 15, 2024]

258 Category Theory

For example, if I is the category with three objects and three morphisms

1

13

��

12

��
2

23
// 3

where 13 = 23 ◦ 12 then a diagram of shape I is a commutative diagram

D1

d13

��

d12

~~
D2

d23
// D3

(A.9)

For each object A ∈ C, the constant A-valued diagram of shape I is given by the constant
functor ∆A : I → C, which maps every object to A and every morphism to 1A.

Let D : I → C be a diagram of shape I. A cone on D from an object A ∈ C is a
natural transformation α : ∆A =⇒ D. This means that for every index i ∈ I there is a
morphism αi : A→ Di such that whenever u : i→ j in I then αj = Du ◦ αi.

For a given diagram D : I → C, we can collect all cones on D into a category Cone(D)
whose objects are cones on D. A morphism between cones f : (A,α) → (B, β) is a
morphism f : A → B in C such that αi = βi ◦ f for all i ∈ I. Morphisms in Cone(D) are
composed as morphisms in C. A morphism f : (A,α)→ (B, β) is also called a factorization
of the cone (A,α) through the cone (B, β).

A limit of a diagram D : I → C is a terminal object in Cone(D). Explicitly, a limit
of D is given by a cone (L, λ) such that for every other cone (A,α) there exists a unique
morphism f : A→ L such that αi = λi ◦ f for all i ∈ I. We denote (the object part of) a
limit of D by one of the following:

limD limi∈I Di lim←−
i∈I

Di .

Limits are also called projective limits. We say that a category has limits of shape I when
every diagram of shape I in C has a limit.

Products, terminal objects, equalizers, and pullbacks are all special cases of limits:

• a product A×B is the limit of the functor D : 2→ C where 2 is the discrete category
on two objects 0 and 1, and D0 = A, D1 = B.

• a terminal object 1 is the limit of the (unique) functor D : 0 → C from the empty
category.

• an equalizer of f, g : A → B is the limit of the functor D : (·⇒ ·) → C which maps
one morphism to f and the other one to g.

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 259

• the pullback of f : A → C and g : B → C is the limit of the functor D : I → C
where I is the category

•
2
��

•
1
// •

with D1 = f and D2 = g.

It is clear how to define the product of an arbitrary family of objects{
Ai ∈ C

∣∣ i ∈ I} .

Such a family is a diagram of shape I, where I is viewed as a discrete category. A product∏
i∈I Ai is then given by an object P ∈ C and morphisms πi : P → Ai such that, when-

ever we have a family of morphisms
{
fi : B → Ai

∣∣ i ∈ I} there exists a unique morphism
⟨fi⟩i∈I : B → P such that fi = πi ◦ f for all i ∈ I.

A finite product is a product of a finite family. As a special case we see that a terminal
object is the product of an empty family. It is not hard to show that a category has finite
products precisely when it has a terminal object and binary products.

A diagram D : I → C is small when I is a small category. A small limit is a limit of a
small diagram. A finite limit is a limit of a diagram whose index category is finite.

Exercise A.6.6. Prove that a limit, when it exists, is unique up to isomorphism.

The following proposition and its proof tell us how to compute arbitrary limits from
simpler ones. We omit detailed proofs as they can be found in any standard textbook on
category theory.

Proposition A.6.7. The following are equivalent for a category C:

1. C has a terminal object and all pullbacks.

2. C has equalizers and all finite products.

3. C has all finite limits.

Proof. We only show how to get binary products from pullbacks and a terminal object.
For objects A and B, let P be the pullback of !A and !B:

P
π1 //

π0

��

B

!B
��

A
!A

// 1

Then (P, π0, π1) is a product of A and B because, for all f : X → A and g : X → B, it is
trivially the case that !A ◦ f = !B ◦ g.

[DRAFT: September 15, 2024]

260 Category Theory

Proposition A.6.8. The following are equivalent for a category C:

1. C has equalizers and all small products.

2. C has all small limits.

Proof. We indicate how to construct an arbitrary limit from a product and an equalizer.
Let D : I → C be a small diagram of an arbitrary shape I. First form an I0-indexed
product P and an I1-indexed product Q

P =
∏
i∈I0

Di , Q =
∏
u∈I1

Dcodu .

By the universal property of products, there are unique morphisms f : P → Q and
g : P → Q such that, for all morphisms u ∈ I1,

πQu ◦ f = Du ◦ πPdomu , πQu ◦ g = πPcodu .

Let E be the equalizer of f and g,

E e // P
f //

g
// Q

For every i ∈ I there is a morphism εi : E → Di, namely εi = πPi ◦ e. We claim that (E, ε)
is a limit of D. First, (E, ε) is a cone on D because, for all u : i→ j in I,

Du ◦ εi = Du ◦ πPi ◦ e = πQu ◦ f ◦ e = πQu ◦ g ◦ e = πPj ◦ e = εj .

If (A,α) is any cone on D there exists a unique t : A → P such that αi = πPi ◦ t for all
i ∈ I. For every u : i→ j in I we have

πQu ◦ g ◦ t = πPj ◦ t = tj = Du ◦ ti = Du ◦ πPi ◦ t = πQu ◦ f ◦ t ,

therefore g ◦ t = f ◦ t. This implies that there is a unique factorization k : A → E such
that t = e ◦ k. Now for every i ∈ I

εi ◦ k = πPi ◦ e ◦ k = πPi ◦ t = αi

so that k : A→ E is the required factorization of the cone (A,α) through the cone (E, ε).
To see that k is unique, suppose m : A→ E is another factorization such that αi = εi ◦m
for all i ∈ I. Since e is mono it suffices to show that e ◦m = e ◦ k, which is equivalent to
proving πPi ◦ e ◦m = πPi ◦ e ◦ k for all i ∈ I. This last equality holds because

πPi ◦ e ◦ k = πPi ◦ t = αi = εi ◦m = πPi ◦ e ◦m .

A category is (small) complete when it has all small limits, and it is finitely complete
(or left exact, briefly lex) when it has finite limits.

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 261

Limits of presheaves Let C be a locally small category. Then the presheaf category
Ĉ = SetC

op

has all small limits and they are computed pointwise, e.g., (P×Q)A = PA×QA
for P,Q ∈ Ĉ, A ∈ C. To see that this is really so, let I be a small index category and
D : I → Ĉ a diagram of presheaves. Then for every A ∈ C the diagram D can be
instantiated at A to give a diagram DA : I → Set, (DA)i = DiA. Because Set is small
complete, we can define a presheaf L by computing the limit of DA:

LA = limDA = lim←−
i∈I

DiA .

We should keep in mind that limDA is actually given by an object (limDA) and a natural
transformation δA : ∆(limDA) =⇒ DA. The value of LA is supposed to be just the object
part of limDA. From a morphism f : A → B we obtain for each i ∈ I a function
Dif ◦ (δA)i : LA → DiB, and thus a cone (LA,Df ◦ δA) on DB. Presheaf L maps the
morphism f : A→ B to the unique factorization Lf : LA =⇒ LB of the cone (LA,Df◦δA)
on DB through the limit cone LB on DB.

For every i ∈ I, there is a function Λi = (δA)i : LA → DiA. The family {Λi}i∈I is a
natural transformation from ∆LA to DA. This gives us a cone (L,Λ) on D, which is in
fact a limit cone. Indeed, if (S,Σ) is another cone on D then for every A ∈ C there exists
a unique function ϕA : SA → LA because SA is a cone on DA and LA is a limit cone
on DA. The family {ϕA}A∈C is the unique natural transformation ϕ : S =⇒ L for which
Σ = ϕ ◦ Λ.

A.6.6 Colimits

Colimits are the dual notion of limits. Thus, a colimit of a diagram D : I → C is a limit
of the dual diagram Dop : Iop → Cop in the dual (i.e., opposite) category Cop:

colim(D : I → C) = lim(Dop : Iop → Cop) .

Explicitly, the colimit of a diagram D : I → C is the initial object in the category of
cocones Cocone(D) on D. A cocone (A,α) on D is a natural transformation α : D =⇒ ∆A.
It is given by an object A ∈ C and, for each i ∈ I, a morphism αi : Di → A, such that
αi = αj ◦Du whenever u : i → j in I. A morphism between cocones f : (A,α) → (B, β)
is a morphism f : A→ B in C such that βi = f ◦ αi for all i ∈ I.

A colimit of D : I → C is then given by a cocone (C, ζ) on D such that, for every
cocone (A,α) on D there exists a unique morphism f : C → A such that αi = f ◦ ζi for all
i ∈ D. We denote a colimit of D by one of the following:

colimD colimi∈I Di lim−→
i∈I

Di .

Colimits are also called inductive limits.

Exercise A.6.9. Formulate the dual of Proposition A.6.7 and Proposition A.6.8 for col-
imits (coequalizers are defined in Section A.6.9).

[DRAFT: September 15, 2024]

262 Category Theory

A.6.7 Binary coproducts

In a category C, the (binary) coproduct of objects A and B is an object A + B together
with injections ι0 : A→ A+B and ι1 : B → A+B such that, for every object C ∈ C and
all morphisms f : A → C, g : B → C there exists a unique morphism h : A + B → C for
which the following diagram commutes:

A
ι0 //

f
""

A+B

h

��

B
ι1oo

g
||

C

The arrow h : A+B → C is denoted by [f, g].
The coproduct A+ B is the colimit of the diagram D : 2→ C, where I is the discrete

category on two objects 0 and 1, and D0 = A, D1 = B.
In Set the coproduct is the disjoint union, defined by

X + Y =
{
⟨0, x⟩

∣∣ x ∈ X}
∪
{
⟨1, y⟩

∣∣ x ∈ Y }
,

where 0 and 1 are distinct sets, for example ∅ and {∅}. Given functions f : X → Z and
g : Y → Z, the unique function [f, g] : X + Y → Z is the usual definition by cases :

[f, g]u =

{
fx if u = ⟨0, x⟩
gx if u = ⟨1, x⟩ .

Exercise A.6.10. Show that the categories of posets and of topological spaces both have
coproducts.

A.6.8 Initial objects

An initial object in a category C is an object 0 ∈ C such that for every A ∈ C there exists
a unique morphism oA : 0→ A.

An initial object is the colimit of the empty diagram.
In Set, the initial object is the empty set.

Exercise A.6.11. What is the initial and what is the terminal object in the category of
groups?

A zero object is an object that is both initial and terminal.

Exercise A.6.12. Show that in the category of Abelian8 groups finite products and co-
products agree, that is 0 ∼= 1 and A×B ∼= A+B.

Exercise A.6.13. Suppose A and B are Abelian groups. Is there a difference between their
coproduct in the category Group of groups, and their coproduct in the category AbGroup
of Abelian groups?

8An Abelian group is one that satisfies the commutative law x · y = y · x.

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 263

A.6.9 Coequalizers

Given objects and morphisms

A
f //

g
// B

q // Q

we say that q coequalizes f and g when e◦f = e◦g. A coequalizer of f and g is a universal
coequalizing morphism; thus q : B → Q is a coequalizer of f and g when it coequalizes
them and, for all s : B → S, if s◦f = s◦ g then there exists a unique morphism r : Q→ S
such that s = r ◦ q:

A
f //

g
// B

q //

s
��

Q

r

��
S

In Set the coequalizer of parallel functions f : A → B and g : A → B is the quotient
set Q = B/∼ where ∼ is the least equivalence relation on B satisfying

fx = gy ⇒ x ∼ y .

The function q : B → Q is the canonical quotient map which assigns to each element x ∈ B
its equivalence class [x] ∈ B/∼. In general, a coequalizer can be thought of as the quotient
by the equivalence relation generated by the corresponding equation.

Exercise A.6.14. Show that a coequalizer is an epimorphism, i.e., if q : B → Q is a
coequalizer of f and g, then, for all u, v : Q → T , u ◦ q = v ◦ q implies u = v. [Hint: use
the duality between limits and colimits and Exercise A.6.3.]

Definition A.6.15. A morphism is a regular epi if it is a coequalizer.

The difference between epis and regular epis is also illustrated in the category Top: a
continuous map f : X → Y is epi when it is surjective, whereas it is a regular epi when it
is a topological quotient map.9

A.6.10 Pushouts

A pushout of f : A → B and g : A → C is an object Q with morphisms q0 : B → Q and
q1 : C → Q such that q0 ◦ f = q1 ◦ g, and whenever r0 : B → R, r1 : C → R are such that

9A continuous map f : X → Y is a topological quotient map when it is surjective and, for every U ⊆ Y ,
U is open if, and only if, f∗U is open.

[DRAFT: September 15, 2024]

264 Category Theory

r0 ◦ f = r1 ◦ g, then there exists a unique s : Q→ R such that r0 = s ◦ q0 and r1 = s ◦ q1:

A
g //

f

��

C

q1

�� r1

��

B q0
//

r0
,,

Q

s

��
R

We indicate that Q is a pushout by drawing a square corner next to it, as in the above
diagram. The above pushout Q is sometimes denoted by B +A C.

A pushout as above is a colimit of the diagram D : I → C where the index category I is

• 2 //

1
��

•

•

and D1 = f , D2 = g.
In Set, the pushout of f : A→ C and g : B → C is the quotient set

Q = (B + C)/∼

where B + C is the disjoint union of B and C, and ∼ is the least equivalence relation
on B + C such that, for all x ∈ A,

fx ∼ gx .

The functions q0 : B → Q, q1 : C → Q are the injections, q0x = [x], q1y = [y], where [x] is
the equivalence class of x.

A.6.11 Limits as adjoints

Limits and colimits can be defined as adjoints to certain very simple functors.
First, observe that an object A ∈ C can be viewed as a functor from the terminal

category 1 to C, namely the functor which maps the only object ⋆ of 1 to A. Since 1 is the
terminal object in Cat, there exists a unique functor !C : C → 1, which maps every object
of C to ⋆.

Now we can ask whether this simple functor !C : C → 1 has any adjoints. Indeed,
it has a right adjoint just if C has a terminal object 1C, for the corresponding functor
1C : 1 → C has the property that, for every A ∈ C we have a (trivially natural) bijective
correspondence:

!A : A→ 1C

1⋆ : !CA→ ⋆

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 265

Similarly, an initial object is a left adjoint to !C:

0C ⊣ !C ⊣ 1C .

Now consider the diagonal functor,

∆ : C → C × C,

defined by ∆A = ⟨A,A⟩, ∆f = ⟨f, f⟩. When does this have adjoints?
If C has all binary products, then they determine a functor

−×− : C × C → C

which maps ⟨A,B⟩ to A × B and a pair of morphisms ⟨f : A → A′, g : B → B′⟩ to
the unique morphism f × g : A × B → A′ × B′ for which π0 ◦ (f × g) = f ◦ π0 and
π1 ◦ (f × g) = g ◦ π1,

A

f

��

A×Bπ0oo π1 //

f × g
��

B

g

��
A′ A′ ×B′

π0
oo

π1
// B′

The product functor × is right adjoint to the diagonal functor ∆. Indeed, there is a natural
bijective correspondence:

⟨f, g⟩ : ⟨A,A⟩ → ⟨B,C⟩
f × g : A→ B × C

Similarly, binary coproducts are easily seen to be left adjoint to the diagonal functor,

+ ⊣ ∆ ⊣ × .

Now in general, consider limits of shape I in a category C. There is the constant
diagram functor

∆ : C → CI

that maps A ∈ C to the constant diagram ∆A : I → C. The limit construction is a functor

lim←− : CI → C

that maps each diagram D ∈ CI to its limit lim←−D. These two are adjoint, ∆ ⊣ lim←−, because
there is a natural bijective correspondence between cones α : ∆A =⇒ D on D, and their
factorizations through the limit of D,

α : ∆A =⇒ D

A→ lim←−D

An analogous correspondence holds for colimits, so that we obtain a pair of adjunctions,

lim−→ ⊣ ∆ ⊣ lim←− ,

which, of course, subsume all the previously mentioned cases.

[DRAFT: September 15, 2024]

266 Category Theory

Exercise A.6.16. How are the functors ∆ : C → CI , lim−→ : CI → C, and lim←− : CI → C
defined on morphisms?

A.6.12 Preservation of limits

We say that a functor F : C → D preserves products when, given a product

A A×Bπ0oo π1 // B

its image in D,

FA F (A×B)
Fπ0oo Fπ1 // FB

is a product of FA and FB. If D has chosen binary products, F preserves binary products
if, and only if, the unique morphism f : F (A×B)→ FA×FB which makes the following
diagram commutative is an isomorphism: 10

F (A×B)

f

��

Fπ0

zz

Fπ1

$$
FA FA× FBπ0

oo
π1

// FB

In general, a functor F : C → D is said to preserve limits of shape I when it maps
limit cones to limit cones: if (L, λ) is a limit of D : I → C then (FL, F ◦ λ) is a limit of
F ◦D : I → D.

Analogously, a functor F : C → D is said to preserve colimits of shape I when it maps
colimit cocones to colimit cocones: if (C, ζ) is a colimit of D : I → C then (FC, F ◦ ζ) is
a colimit of F ◦D : I → D.

Proposition A.6.17. (a) A functor preserves finite (small) limits if, and only if, it pre-
serves equalizers and finite (small) products. (b) A functor preserves finite (small) colimits
if, and only if, it preserves coequalizers and finite (small) coproducts.

Proof. This follows from the fact that limits are constructed from equalizers and products,
cf. Proposition A.6.8, and that colimits are constructed from coequalizers and coproducts,
cf. Exercise A.6.9.

Proposition A.6.18. For a locally small category C, the Yoneda embedding y : C → Ĉ
preserves all limits that exist in C.

10Products are determined up to isomorphism only, so it would be too restrictive to require F (A×B) =
FA× FB. When that is the case, however, we say that the functor F strictly preserves products.

[DRAFT: September 15, 2024]

A.6 Limits and Colimits 267

Proof. Suppose (L, λ) is a limit of D : I → C. The Yoneda embedding maps D to the

diagram y ◦D : I → Ĉ, defined by

(y ◦D)i = yDi = C(−, Di) .

and it maps the limit cone (L, λ) to the cone (yL, y ◦ λ) on y ◦D, defined by

(y ◦ λ)i = yλi = C(−, λi) .

To see that (yL, y ◦ λ) is a limit cone on y ◦ D, consider a cone (M,µ) on y ◦ D. Then
µ : ∆M =⇒ D consists of a family of functions, one for each i ∈ I and A ∈ C,

(µi)A :MA→ C(A,Di) .

For every A ∈ C and m ∈MA we get a cone on D consisting of morphisms

(µi)Am : A→ Di . (i ∈ I)

There exists a unique morphism ϕAm : A→ L such that (µi)Am = λi ◦ ϕAm. The family
of functions

ϕA :MA→ C(A,L) = (y ◦ L)A (A ∈ C)

forms a factorization ϕ : M =⇒ yL of the cone (M,µ) through the cone (L, λ). This
factorization is unique because each ϕAm is unique.

In effect we showed that a covariant representable functor C(A,−) : C → Set preserves
existing limits,

C(A, lim←−
i∈I

Di) ∼= lim←−
i∈I
C(A,Di) .

By duality, the contravariant representable functor C(−, A) : Cop → Set maps existing
colimits to limits,

C(lim−→
i∈I

Di, A) ∼= lim←−
i∈I
C(Di, A) .

Exercise A.6.19. Prove the above claim that a contravariant representable functor C(−, A) :
Cop → Set maps existing colimits to limits. Use duality between limits and colimits. Does
it also follow by a simple duality argument that a contravariant representable functor
C(−, A) maps existing limits to colimits? How about a covariant representable functor
C(A,−) mapping existing colimits to limits?

Exercise A.6.20. Prove that a functor F : C → D preserves monos if it preserves limits.
In particular, the Yoneda embedding preserves monos. Hint: Exercise A.6.5.

Proposition A.6.21. Right adjoints preserve limits, and left adjoints preserve colimits.

[DRAFT: September 15, 2024]

268 Category Theory

Proof. Suppose we have adjoint functors

C
F

((
⊥ D
G

gg

and a diagram D : I → D whose limit exists in D. We would like to use the following slick
application of Yoneda Lemma to show that G preserves limits: for every A ∈ C,

C(A,G(lim←−D)) ∼= D(FA, lim←−D) ∼= lim←−
i∈I
D(FA,Di)

∼= lim←−
i∈I
C(A,GDi) ∼= C(A, lim←−(G ◦D)) .

Therefore G(limD) ∼= lim(G ◦D). However, this argument only works if we already know
that the limit of G ◦D exists.

We can also prove the stronger claim that whenever the limit of D : I → D exists then
the limit of G ◦D exists in C and its limit is G(limD). So suppose (L, λ) is a limit cone
of D. Then (GL,G ◦ λ) is a cone on G ◦D. If (A,α) is another cone on G ◦D, we have
by adjunction a cone (FA, γ) on D,

αi : A→ GDi

γi : FA→ Di

There exists a unique factorization f : FA → L of this cone through (L, λ). Again by
adjunction, we obtain a unique factorization g : A → GL of the cone (A,α) through the
cone (GL,G ◦ λ):

f : FA→ L

g : A→ GL

The factorization g is unique because γ is uniquely determined from α, f uniquely from α,
and g uniquely from f .

By a dual argument, a left adjoint preserves colimits.

[DRAFT: September 15, 2024]

Appendix B

Logic

B.1 Concrete and abstract syntax

By syntax we generally mean manipulation of finite strings of symbols according to given
grammatical rules. For instance, the strings “7)6 + /(8” and “(6 + 8)/7” both consist of
the same symbols but you will recognize one as junk and the other as well formed because
you have (implicitly) applied the grammatical rules for arithmetical expressions.

Grammatical rules are usually quite complicated, as they need to prescribe associativity
of operators (does “5 + 6 + 7” mean “(5 + 6) + 7” or “5 + (6 + 7)”?) and their precedence
(does “6 + 8/7” mean “(6 + 8)/7” or “6 + (8/7)”?), the role of white space (empty space
between symbols and line breaks), rules for nesting and balancing parentheses, etc. It is
not our intention to dwell on such details, but rather to focus on the mathematical nature
of well-formed expressions, namely that they represent inductively generated finite trees.1

Under this view the string “(6+8)/7” is just a concrete representation of the tree depicted
in Figure B.1.

+ 7

86

/

Figure B.1: The tree represented by (6 + 8)/7

Concrete representation of expressions as finite strings of symbols is called concrete
syntax, while in abstract syntax we view expressions as finite trees. The passage from the

1We are limiting attention to the so-called context-free grammar, which are sufficient for our purposes.
More complicated grammars are rarely used to describe formal languages in logic and computer science.

[DRAFT: September 15, 2024]

270 Logic

former to the latter is called parsing and is beyond the scope of this book. We will always
specify only abstract syntax and assume that the corresponding concrete syntax follows
the customary rules for parentheses, associativity and precedence of operators.

As an illustration we give rules for the (abstract) syntax of propositional calculus in
Backus-Naur form:

Propositional variable p ::= p1 | p2 | p3 | · · ·
Propositional formula ϕ ::= p | ⊥ | ⊤ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ¬ϕ

The vertical bars should be read as “or”. The first rule says that a propositional variable
is the constant p1, or the constant p2, or the constant p3, etc.

2 The second rule tells us
that there are seven inductive rules for building a propositional formula:

• a propositional variable is a formula,

• the constants ⊥ and ⊤ are formulas,

• if ϕ1, ϕ2, and ϕ are formulas, then so are ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, and ¬ϕ.

Even though abstract syntax rules say nothing about parentheses or operator associativity
and precedence, we shall rely on established conventions for mathematical notation and
write down concrete representations of propositional formulas, e.g., p4∧(p1∨¬p1)∧p4∨p2.

A word of warning: operator associativity in syntax is not to be confused with the usual
notion of associativity in mathematics. We say that an operator ⋆ is left associative when
an expression x ⋆ y ⋆ z represents the left-hand tree in Figure B.2, and right associative
when it represents the right-hand tree. Thus the usual operation of subtraction − is left

* z

yx

*x

y z

* *

Figure B.2: Left and right associativity of x ⋆ y ⋆ z

associative, but is not associative in the usual mathematical sense.

2In an actual computer implementation we would allow arbitrary finite strings of letters as propositional
variables. In logic we only care about the fact that we can never run out of fresh variables, i.e., that there
are countably infinitely many of them.

[DRAFT: September 15, 2024]

B.2 Free and bound variables 271

B.2 Free and bound variables

Variables appearing in an expression may be free or bound. For example, in expressions∫ 1

0

sin(a · x) dx, x 7→ ax2 + bx+ c, ∀x . (x < a ∨ b < x)

the variables a, b and c are free, while x is bound by the integral operator
∫
, the function

formation 7→, and the universal quantifier ∀, respectively. To be quite precise, it is an oc-
currence of a variable that is free or bound. For example, in expression ϕ(x)∨∃x .Aψ(x, x)
the first occurrence of x is free and the remaining ones are bound.

In this book the following operators bind variables:

• quantifiers ∃ and ∀, cf. ??,

• λ-abstraction, cf. ??,

• search for others ??.

When a variable is bound we may always rename it, provided the renaming does not
confuse it with another variable. In the integral above we could rename x to y, but not to
a because the binding operation would capture the free variable a to produce the unintended∫ 1

0
sin(a2) da. Renaming of bound variables is called α-renaming.
We consider two expressions equal if they only differ in the names of bound variables,

i.e., if one can be obtained from the other by α-renaming. Furthermore, we adhere to
Barendregt’s variable convention [?, p. 2], which says that bound variables are always
chosen so as to differ from free variables. Thus we would never write ϕ(x) ∨ ∃x .Aψ(x, x)
but rather ϕ(x)∨∃ y .Aψ(y, y). By doing so we need not worry about capturing or otherwise
confusing free and bound variables.

In logic we need to be more careful about variables than is customary in traditional
mathematics. Specifically, we always specify which free variables may appear in an expres-
sion.3 We write

x1 : A1, . . . , xn : An | t

to indicate that expression t may contain only free variables x1, . . . , xn of types A1, . . . , An.
The list

x1 : A1, . . . , xn : An

is called a context in which t appears. To see why this is important consider the different
meaning that the expression x2 + y2 ≤ 1 recevieves in different contexts:

• x : Z, y : Z | x2 + y2 ≤ 1 denotes the set of tuples {(−1, 0), (0, 1), (1, 0), (0,−1)},

• x : R, y : R | x2 + y2 ≤ 1 denotes the closed unit disc in the plane, and

3This is akin to one of the guiding principles of good programming language design, namely, that all
variables should be declared before they are used.

[DRAFT: September 15, 2024]

272 Logic

• x : R, y : R, z : R | x2 + y2 ≤ 1 denotes the infinite cylinder in space whose base is
the closed unit disc.

In single-sorted theories there is only one type or sort A. In this case we abbreviate a
context by listing just the variables, x1, . . . , xn.

B.3 Substitution

Substitution is a basic syntactic operation which replaces (free occurrences of) distinct
variables x1, . . . , xn in an expression t with expressions t1, . . . , tn, which is written as

t[t1/x1, . . . , tn/xn].

We sometimes abbreviate this as t[⃗t/x⃗] where x⃗ = (x1, . . . , xn) and t⃗ = (t1, . . . , tn). Here
are several examples:

(x2 + x+ y)[(2 + 3)/x] = (2 + 3)2 + (2 + 3) + y

(x2 + y)[y/x, x/y] = y2 + x(
∀x .

(
x2 < y + x3

))
[x+ y/y] = ∀ z .

(
z2 < (x+ y) + z3

)
.

Notice that in the third example we first renamed the bound variable x to z in order to
avoid a capture by ∀.

Substitution is simple to explain in terms of trees. Assuming Barendregt’s convention,
the substitution t[u/x] means that in the tree t we replace the leaves labeled x by copies
of the tree u. Thus a substitution never changes the structure of the tree–it only “grows”
new subtrees in places where the substituted variables occur as leaves.

Substitution satisfies the distributive law

(t[u/x])[v/y] = (t[v/y])[u[v/y]/x],

provided x and y are distinct variables. There is also a corresponding multivariate version
which is written the same way with a slight abuse of vector notation:

(t[u⃗/x⃗])[v⃗/y⃗] = (t[v⃗/y⃗])[u⃗[v⃗/y⃗]/x⃗].

B.4 Judgments and deductive systems

A formal system, such as first-order logic or type theory, concerns itself with judgments.
There are many kinds of judgments, such as:

• The most common judgments are equations and other logical statements. We distin-
guish a formula ϕ and the judgment “ϕ holds” by writing the latter as

⊢ ϕ .

The symbol ⊢ is generally used to indicate judgments.

[DRAFT: September 15, 2024]

B.4 Judgments and deductive systems 273

• Typing judgments
⊢ t : A

expressing the fact that a term t has type A. This is not to be confused with the
set-theoretic statement t ∈ u which says that individuals t and u (of type “set”) are
in relation “element of” ∈.

• Judgments expressing the fact that a certain entity is well formed. A typical example
is a judgment

⊢ x1 : A1, . . . , xn : An ctx

which states that x1 : A1, . . . , xn : An is a well-formed context. This means that
x1, . . . , xn are distinct variables and that A1, . . . , An are well-formed types. This
kind of judgement is often omitted and it is tacitly assumed that whatever entities
we deal with are in fact well-formed.

A hypothetical judgement has the form

H1, . . . , Hn ⊢ C

and means that hypotheses H1, . . . , Hn entail consequence C (with respect to a given
decuctive system). We may also add a typing context to get a general form of judgment

x1 : A1, . . . , xn : An | H1, . . . , Hm ⊢ C.

This should be read as: “if x1, . . . , xn are variables of types A1, . . . , An, respectively, then
hypotheses H1, . . . , Hm entail conclusion C.” For our purposes such contexts will suffice,
but you should not be surprised to see other kinds of judgments in logic.

A deductive system is a set of inference rules for deriving judgments. A typical inference
rule has the form

J1 J2 · · · Jn
J

C

This means that we can infer judgment J if we have already derived judgments J1, . . . , Jn,
provided that the optional side-condition C is satisfied. An axiom is an inference rule of
the form

J

A two-way rule
J1 J2 · · · Jn

K1 K2 · · · Km

is a combination of n+m inference rules stating that we may infer each Ki from J1, . . . , Jn
and each Ji from K1, . . . , Km.

A derivation of a judgment J is a finite tree whose root is J , the nodes are inference
rules, and the leaves are axioms. An example is presented in the next subsection.

The set of all judgments that hold in a given deductive system is generated inductively
by starting with the axioms and applying inference rules.

[DRAFT: September 15, 2024]

274 Logic

B.5 Example: Equational reasoning

Equational reasoning is so straightforward that one almost doesn’t notice it, consisting
mainly, as it does, of “substituting equals for equals”. The only judgements are equations
between terms, s = t, which consist of function symbols, constants, and variables. The
inference rules are just the usual ones making s = t a congruence relation on the terms.
More formally, we have the following specification of what may be called the equational
calculus.

Variable v ::= x | y | z | · · ·
Constant symbol c ::= c1 | c2 | · · ·
Function symbol fk ::= fk11 | fk22 | · · ·

Term t ::= v | c | fk(t1, . . . , tk)

The superscript on the function symbol fk indicates the arity.

The equational calculus has just one form of judgement

x1, . . . , xn | t1 = t2

where x1, . . . , xn is a context consisting of distinct variables, and the variables in the equa-
tion must occur among the ones listed in the context.

There are four inference rules for the equational calculus. They may be assumed to
leave the contexts unchanged, which may therefore be omitted.

t = t

t1 = t2
t2 = t1

t1 = t2, t2 = t3
t1 = t3

t1 = t2, t3 = t4
t1[t3/x] = t2[t4/x]

An equational theory T consists of a set of constant and function symbols (with arities),
and a set of equations, called axioms. We write

T ⊢ t1 = t2

to mean that the equation t1 = t2 has a derivation from the axioms of T using the equational
calculus.

B.6 Example: Predicate calculus

We spell out the details of single-sorted predicate calculus and first-order theories. This is
the most common deductive system taught in classical courses on logic.

[DRAFT: September 15, 2024]

B.6 Example: Predicate calculus 275

The predicate calculus has the following syntax:

Variable v ::= x | y | z | · · ·
Constant symbol c ::= c1 | c2 | · · ·

Function symbol4 fk ::= fk11 | fk22 | · · ·
Term t ::= v | c | fk(t1, . . . , tk)

Relation symbol Rm ::= Rm1
1 | Rm2

2 | · · ·
Formula ϕ ::=⊥ | ⊤ | Rm(t1, . . . , tm) | t1 = t2 |

ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ¬ϕ | ∀x . ϕ | ∃x . ϕ.
The variable x is bound in ∀x . ϕ and ∃x . ϕ.

The predicate calculus has one form of judgement

x1, . . . , xn | ϕ1, . . . , ϕm ⊢ ϕ

where x1, . . . , xn is a context consisting of distinct variables, ϕ1, . . . , ϕm are hypotheses
and ϕ is the conclusion. The free variables in the hypotheses and the conclusion must
occur among the ones listed in the context. We abbreviate the context with Γ and Φ with
hypotheses. Because most rules leave the context unchanged, we omit the context unless
something interesting happens with it.

The following inference rules are given in the form of adjunctions. See Appendix ?? for
the more usual formulation in terms of introduction an elimination rules.

ϕ1, . . . , ϕm ⊢ ϕi Φ ⊢ ⊤ Φ,⊥ ⊢ ϕ

Φ ⊢ ϕ1 Φ ⊢ ϕ2

Φ ⊢ ϕ1 ∧ ϕ2

Φ, ϕ1 ⊢ ψ Φ, ϕ2 ⊢ ψ
Φ, ϕ1 ∨ ϕ2 ⊢ ψ

Φ, ϕ1 ⊢ ϕ2

Φ ⊢ ϕ1 ⇒ ϕ2

Γ, x, y | Φ, x = y ⊢ ϕ
Γ, x | Φ ⊢ ϕ[x/y]

Γ, x | Φ, ϕ ⊢ ψ
Γ | Φ,∃x . ϕ ⊢ ψ

Γ, x | Φ ⊢ ϕ
Γ | Φ ⊢ ∀x . ϕ

The equality rule implicitly requires that y does not appear in Φ, and the quantifier rules
implicitly require that x does not occur freely in Φ and ψ because the judgments below
the lines are supposed to be well formed.

Negation ¬ϕ is defined to be ϕ⇒ ⊥. To obtain classical logic we also need the law of
excluded middle,

Φ ⊢ ϕ ∨ ¬ϕ
Comment on the fact that contraction and weakening are admissible.
Give an example of a derivation.
A first-order theory T consists of a set of constant, function and relation symbols with

corresponding arities, and a set of formulas, called axioms.
Give examples of a first-order theories.

[DRAFT: September 15, 2024]

276 Logic

[DRAFT: September 15, 2024]

Appendix C

Formalities

Pages upon pages of formal rules.

[DRAFT: September 15, 2024]

Bibliography

[AF13] S. Awodey and H. Forssell. First-order logical duality. Annals of Pure and
Applied Logic, 164(3):319–348, 2013.

[AGH21] S. Awodey, N. Gambino, and S. Hazratpour. Kripke-Joyal forcing for type theory
and uniform fibrations, October 2021. Preprint available as https://arxiv.

org/abs/2110.14576.

[ALR03] J. Adamek, F. W. Lawvere, and J. Rosiky. On the duality between varieties and
algebraic theories. Algebra Universalis, 49:35–49, 2003.

[AR94] Jiri Adamek and Jiri Rosicky. Locally Presentable and Accessible Categories.
Number 189 in London Mathematical Society Lecture Notes. Cambridge Uni-
versity Press, 1994.

[AR11] S. Awodey and F. Rabe. Kripke semantics for Martin-Löf’s extensional type
theory. Logical Methods in Computer Science, 7(3):1–25, 2011.

[ARV10] J. Adamek, J. Rosicky, and E.M. Vitale. Algebraic Theories. Cambridge Uni-
versity Press, 2010.

[Awo10] Steve Awodey. Category Theory. Number 52 in Oxford Logic Guides. Oxford
University Press, 2010.

[Awo16] Steve Awodey. Natural models of homotopy type theory. Mathematical Struc-
tures in Computer Science, 28:1–46, 11 2016.

[Awo21] Steve Awodey. Sheaf representations and duality in logic. In C. Casadio and
P.J. Scott, editors, Joachim Lambek: The Interplay of Mathematics, Logic, and
Linguistics. Springer, 2021. arXiv:2001.09195.

[Bir35] Garrett Birkhoff. On the structure of abstract algebras. Proc. Camb. Philos.
Soc., 31:433–454, 1935.

[Bor94] F. Borceux. Handbook of Categorical Algebra II. Categories and Structures, vol-
ume 51 of Encyclopedia of Mathematics and Its Applications. Cambridge Uni-
versity Press, 1994.

[DRAFT: September 15, 2024]

https://arxiv.org/abs/2110.14576
https://arxiv.org/abs/2110.14576

280 BIBLIOGRAPHY

[But98] C. Butz. Regular categories and regular logic. BRICS Lecture Series, 1998.

[Dyb96] P. Dybjer. Internal type theory. LNCS, 1158:120–134, 1996.

[Fre72] Peter Freyd. Aspects of topoi. Bulletin of the Australian Mathematical Society,
7:1–76, 1072.

[GER96] Houman Zolfaghari Gonzalo E. Reyes. Bi-heyting algebras, toposes and modal-
ities. J. Phi. Logic, 25:25–43, 1996.

[Hof] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and
logics of computation.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory (Venice, 1995), vol-
ume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York,
1998.

[Joh82] P.T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in advanced
mathematics. Cambridge University Press, 1982.

[Joh03] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, 2 vol.s.
Number 43 in Oxford Logic Guides. Oxford University Press, 2003.

[Lan71] Saunders Mac Lane. Categories for the Working Mathematician. Springer-
Verlag, New York, 1971.

[Law63a] F. W. Lawvere. Functorial semantics of algebraic theories. Ph.D. thesis,
Columbia University, 1963.

[Law63b] F. W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci.,
50:869–872, 1963.

[Law65] F. W. Lawvere. Algebraic theories, algebraic categories, and algebraic functors.
In The Theory of Models, pages 413–418. North-Holland, 1965.

[Law69] F.W. Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969.

[Law70] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. Proceedings of the AMS Symposium on Pure Mathematics XVII,
pages 1–14, 1970.

[Law91] F. W. Lawvere. Intrinsic co-heyting boundaries and the leibniz rule in certain
toposes. In G. Rosolini A. Carboni, M. Pedicchio, editor, Category Theory -
Como 1990, number 1488 in LNM. Springer-Verlag, Heidelberg, 1991.

[Mak87] Michael Makkai. Stone duality for first order logic. Adv. Math., 65:97–170, 1987.

[DRAFT: September 15, 2024]

BIBLIOGRAPHY 281

[Mak93] Michael Makkai. Duality and Definability, volume 503. AMS, 1993.

[McC93] W. McCune. Single axioms for groups and abelian groups with various opera-
tions. Journal of Automated Reasoning, 10(1):1–13, 1993.

[MH92] Michael Makkai and Victor Harnik. Lambek’s categorical proof theory and
Läuchli’s abstract realizability. Journal of Symbolic Logic, 57(1):200–230, 1992.

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984.

[MM92] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduc-
tion to Topos Theory. Springer-Verlag, New York, 1992.

[MR91] Ieke Moerdijk and Gonzalo Reyes. Models for Smooth Infinitesimal Analysis.
Springer-Verlag, New York, 1991.

[MR95] Michael Makkai and Gonzalo Reyes. Completeness results for intuitionistic and
modal logic in a categorical setting. Annals of Pure and Applied Logic, 72:25–101,
1995.

[Pal03] Erik Palmgren. Groupoids and local cartesian closure. 08 2003. unpublished.

[PV07] E. Palmgren and S.J. Vickers. Partial horn logic and cartesian categories. Annals
of Pure and Applied Logic, 145(3):314–353, 2007.

[Sco70] Dana S. Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, volume
125, pages 237–275. Springer-Verlag, 1970.

[Sco80] Dana S. Scott. Relating theories of the lambda calculus. In J. Roger Seldin,
Jonathan P.; Hindley, editor, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 403–450. Academic Press, 1980.

[See84] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical
Proceedings of the Cambridge Philosophical Society, 95(1):33, 1984.

[Tai68] William W. Tait. Constructive reasoning. In Logic, Methodology and Philos. Sci.
III (Proc. Third Internat. Congr., Amsterdam, 1967), pages 185–199. North-
Holland, Amsterdam, 1968.

[DRAFT: September 15, 2024]

	Algebraic Theories
	Syntax and semantics
	Models of algebraic theories
	Theories as categories
	Models as functors
	Soundness and completeness
	Functorial semantics

	Lawvere duality
	Logical duality
	Lawvere algebraic theories
	Algebraic categories
	Algebraic functors
	Dualities for algebraic theories
	Definability*

	Propositional Logic
	Propositional calculus
	Truth values
	Boolean algebra
	Lawvere duality for Boolean algebras
	Functorial semantics for propositional logic
	Stone representation
	Stone duality
	Cartesian closed posets
	Heyting algebras
	Frames and locales

	First-Order Logic
	Predicate logic
	Theories
	Subobjects
	Cartesian logic
	Quantifiers as adjoints

	Regular and coherent logic
	Regular categories
	Images and existential quantifiers
	Regular theories
	The classifying category of a regular theory
	Coherent logic
	Freyd embedding theorem

	Heyting and Boolean categories
	Heyting logic
	First-order logic
	Examples
	Kripke-Joyal semantics
	Joyal embedding theorem
	Kripke completeness

	Hyperdoctrines

	Type Theory
	The Curry-Howard correspondence
	Cartesian closed categories
	Simple type theory
	Interpretation of -calculus in a CCC
	Functorial semantics of STT in CCCs
	The internal language of a CCC
	Embedding and completeness theorems
	Kripke models
	Dependent type theory
	Locally cartesian closed categories
	Functorial semantics of DTT in LCCCs
	Coherence and natural models
	Universes
	Induction and W-types

	Dependent Type Theory
	Dependent type theory
	Inductive types
	Initial algebras for endofunctors
	Inductive and coinductive types
	Bracket types

	Dependent type theory with FOL

	Category Theory
	Categories
	Examples
	Categories of structures
	Basic notions

	Functors
	Functors between sets, monoids and posets
	Forgetful functors

	Constructions of Categories and Functors
	Product of categories
	Slice categories
	Arrow categories
	Opposite categories
	Representable functors
	Group actions

	Natural Transformations and Functor Categories
	Directed graphs as a functor category
	The Yoneda embedding
	Equivalence of categories

	Adjoint Functors
	Adjoint maps between preorders
	Adjoint functors
	The unit of an adjunction
	The counit of an adjunction

	Limits and Colimits
	Binary products
	Terminal objects
	Equalizers
	Pullbacks
	Limits
	Colimits
	Binary coproducts
	Initial objects
	Coequalizers
	Pushouts
	Limits as adjoints
	Preservation of limits

	Logic
	Concrete and abstract syntax
	Free and bound variables
	Substitution
	Judgments and deductive systems
	Example: Equational reasoning
	Example: Predicate calculus

	Formalities
	Bibliography

