
3. d- Calculus

#

For propositional logic PL we now have

3 different kinds of models (say ) :

• Kripke : PL→ £ = 4K
• Topological : PL → OX

• Algebraic : PL→ DX?☐

One also has the same for first - order

(predicate) logic FOL , of all 3 kinds :
coherent

,
intuitionistic

,
and classical .

For example , there are both Kripke
& topological semantics for I FOL
and for ☐GFOL , as well as algebraic
semantics for the latter?

* References in the notes !



⇐

Here we'll generalize in another way :
from Propositions to types .

1-
,
X
,
→

( 0 , t )

%
PL - FOL

T
, 1 ,⇒ 7 ,✓

( 1- , V )
T
, 1 ,⇒
( 1- , V )



⇐

Here we'll generalize in another way :
from Propositions to types .

1-
,
X
,
→ 1

, 2,1T

( 0 , t ) (0,2)

STT - D.TT

I 1
PL - FOL 7.VT

, 1 ,⇒ T
, 1 ,⇒

( 1- , V ) ( 1- , V )

For STT we also have all 3 kinds

of semantics :

• Kripke : Sete
"

presheaves

• Topological : SHCX) sheaves

• Algebraic : Seth ? tie coalgebras

But first let's consider the idea of

Propositions as Types

from a categorical point of view .



e

the Curry - Howard - Scott - LawVere
-Tait - Martin - Leif Correspondence

As a cat
,
the poset PL of propositional

fmlas has as arrows mere entail meats :

4£ 4 if 41-4

But this discards some information ,

namely how 4 1- it was established ,

÷
✗

:

I •

And there may be many different proofs

÷a

a
8
:Pi

:

:

=L I É

of the same entailment ce t 4 .



⇐
In addition to the poset PL ,

there is

also the evident category of proofs :

4
4

T -

✗
: i

+( F '

1¥ ) ↳ .

Pod

9

o

objects : fmlas 4,4 , ◦ . .

arrows : proofs x : 41-4

Now we can make use of the following

F-act.fm/as & Proofs of PLW/1,1 ,⇒

are described exactly by types &

terms of simply - typed -1 - calculus :

Proofs E X -Terms
•



EE.g. Consider the entailment
:

pig 1- (p⇒g) ⇒ q

and the two proofs :

pig ↳⇒ g) , peg ⇐⇒9)
,

P 9

9 (P ⇒9) ⇒ 9
^

(P ⇒9) ⇒ q
"

we can record the difference by
annotating them with proof-termS_ :

× :P 19 y :P⇒9 × :P 19 y :P⇒9

IT, ✗ :P TEX : 9

y(tix) : 9 by .TT2X :(P ⇒9) ⇒ 9

dy . ylttix) :(P ⇒9) ⇒ 9

These determine 2 different arrows

ty.ly (MX)

pig
→ (p ⇒ g)⇒ q
→
> g. 11-24

in the category of proofs Cstt
.



Def. For any cat ① , let 161 be
⇐

the poset reflection of Q , with

objects : A
,
B

, . . . as in Q

arrows : A ≤ B iff Ff: A→ Be ¢ .

There's an evident functor

e → 101

which is universal
among functors

into posets :

1C→ P
Cat

↓
161 -

-

-
-

g-
-

-
→

Pos

Put differently , the poset reflection
functor 1.1 : Cat → Pos is left

adjoint to the inclusion :

Cat
-

Pos •

÷

Prop
.

(C-H)

I Cstt / = CPL
.



⇐
Digression on HOTT

{ the 2 levels of Propositions as Types
are thus related to ones in CT :

Type~ Cat

I 1
Prop ~Pos

The idea of proof_ relevance also

has an analogue in CT , called :

Categorificatioir :

A higher categorical structure with
a lower categorical one as its
truncated form :

Cat P-%P+Q Q

p

-
PV9

Pos



☐

Categorificatioir occurs also in

higher dimensions :

✗Cat

:
•

3-Cat
I

2-fat P⊕B ≈ D.⊕ P

Cat Pt Q ± Qtp

Pots pvq = qvp

In Holt we have learned that this

also happens in TT :
• type
:
☆

Type
/
2 type

/ \ 1 type
◦type

Prop

so a better slogan might be :

Homotopy
Propositions as

/Types ! }



C
Def In STT with 1

, ✗ ,→ :

a) A b- theory # consists of
'

• Basic types B , > Bas • • •

• Basic terms b
,
:X , , baila , • _ .

• Equations S
,
-_t

,
: Ei
,
52--1-2 : Eas . . .

(2) # 1- 1- it means • 1- t :T in#
.

Fts -_ t :P means • 1- s=t:E in-1T
.

Examp
(e) Groups : Ee

,
lb :&

m : GXG → G
Mcu >g) = 9 :& i :G→G

• • •

(2) Reflexive : D , S :(D →D) →D

Domain r :D → (☐ →D)

ros = 1-☐ ,
Sor = 1-

☐→☐

(3) HOL : Rs 1- it :D

( Htt equations) iii. ⇒ :D→52

( Lambek -Scott ) 3-× ,-4, :(✗→A)→r
equations f. a. ✗



Defs In a CCCC :
C

(3)A Ttmodel M consists of

• objects [Bill , 81327 , - - -

• arrows [ b.Tj : 1 → [1×11]
,

. - -

where E- ✗ ✗YI = 9×1×441

[1×-371] = [14111×1]
• 8.the .

[six = Et , ]1 : 1 → [1%1]
• a •

(4) A model M inhabits a type T :

MET := 71→ ETI in C
.

A model Ms satisfies an equation :

Mt s -- t

:= Est] = Et ]1 : 1-→ IED .

Examples-
(e) If # = Groups , C = Set , then

a F- model is just a group .

(2) A model of # in £ is a

presheaf of groups .

(3) A model in SHCX) for a

space ✗ is a sheaf of groups .



Thy (Scott 1980) (Presheaf completeness)

For any
-1 - theory # we have :

(e) # 1- t :T ⇔ MET

f. all & and all

* models Min

(2) IF 1- s=t : E ⇔ Mt s=t

f. all & and all

* models Min
Pf : •

1. Build the syntactic CCC C# >

consisting of types & terms , nnodequ'S .

2 . C#
has a canonical model 2h

,

consisting of the basic types & terms .

3. U is generic , in the sense :
* 1- t.it ⇔ U f- T

IF 1- s=t : E ⇔ U f- s=t
•

4. C#
is the free CCC on a F. model :

M
#

_Vm7!m# : C#→ e Cee

U→ Me
.



⇐
Next we need the following generalization
of the main lemma fromPL for ↓ :P→Ñ.

Lemma For
any small cat 1C , the cat

= Set

of presheaves on G is Cartesian closed
,

and the Yoneda embedding
y : ¢c-

preserves any CCC structure in 1C
.

pf . For P, Q c- Ñ what should QP be ?

( QPIC ± É(ya , ) Yoneda

± É(ye xp , Q) Ccc

so let QP : = ÉCYHXP , Q) .

✓

Given c. de & ,

g. Cdc ) = CIC- add ) def

= ① ( - xc , d) Ccc

± É(yl- ✗c) , yd ) Yoneda

⇒ É( YG) ✗ yc , yd ) UMP of ×

= (yd )
"

✓ def
•



43To finish the proof of the thin :

if # 1- t it , then U f- T , namely

(*) Eta : 1 → ETI in C
# .

Given
any # model M in any

Ñ
,

since Cft is free on U we have :

m
#

E#→ C

U 1→ Me .

So from ( *) we obtain :

m
#
Ett]

ME# M
#
[11-1]

211 112

1-> ETIM

where the ± 's are because M# is Cee
.

Thus indeed :
MKT .

Conversely , if MFT for all M ,
then in particular UFT .

Whence :
# 1-T g

since U is generic . (1) ✓
(2) %



14
Finally , we can specialize from

general eats ¢ to posets K :

Thy / Kripke completeness of d- Calculus)

For any
-1 - theory # we have ?

(e) # 1- t :T ⇔ MET

f. all posetsk and

F-models think

(2) IF 1- s=t : E ⇔ ME s=t

f. all posetsk aid
F- models Mink

•

The proof
*
uses a theorem from

topsthery (due to Joyal &Tierney)
to move from É to for a poset ①

*

.

Remark : One can also go
between the

-
Scott style

"

je EAI and the

"

Kripke style
"

JHA for -1 - theories

(see AGH 2021 ) .
* In (AR 2011) .



⇐What is a Kripke model

of the X - calculus ?

B !
%

→
bi
→

bk
→ . . .

k¥",
I

K Hb :B f. a. KEK



46What is a Kripke model

of the X - calculus ?

Bi

%!→÷!"
K→iz

k Hb :B f. a. KEK

Kltb :B



What is a Kripke model ⇐

of the X - calculus ?

AskA ∅ → → •

Ai Ak
Aj

B
%

→
bi
→

bk
→ . . .

K→I

jlta : A ⇒ Kita :*

K# a :-X



What is a Kripke model 18

of the X - calculus ?

AskA ∅ → → •

Ai

Aj
Ak

× £%→ᵗ#Bi→¥ʰ→ . . .

K→I
Kltf :#→ B

⇔ jltfa-bf.ae , i≤j



What is a Kripke model µ

of the X - calculus ?

AskA ∅ → → •

Ai

Aj
Ak

g- \ fi↓
fj ↓

"
% ¥

is.
B

→
bi
→! → . . .

K→I

i.* 9 :B→A

⇒ kltfg :B→ A



2C
OpenProblems

1) As in PL
,
one should be

able to add 0 & A +B to

the d- calculus and still get
(both Scott É and Kripke E)
completeness theorems .

2) The use of Jyaévj to get
from £ to I is probably Overkill .
It actually produces a sheaf model

over a space ✗ ¢ , and then

K = @✗
¢

(cf . A 20001 .

Perhaps there is a more direct

proof , following the idea of
the PL case ?

-

3) can one add 0 & A +B in the

topological case ?
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