3. 2- Calculus

For propositional logic PL we now have 3 different kinds of models (say):

- Kripke : $PL \longrightarrow \hat{K} = 2^{K}$
- Topological : $PL \rightarrow OX$
- · Algebraic : PL -> DX 2 -

One also has the same for first-order (predicate) logic FOL, of all 3 kinds. coherent, intuition istic, and classical.

For example, there are both Kripke & topological semantics for IFOL and for OCFOL, as well as algebraic semantics for the latter.

* References in the notes!

Here we'll generalize in another way: from Propositions to Types. 1, x, +(0, +)STT1, x, +(0, +)T, x, +(1, v)PL - FOL = x + T, x, +(1, v)

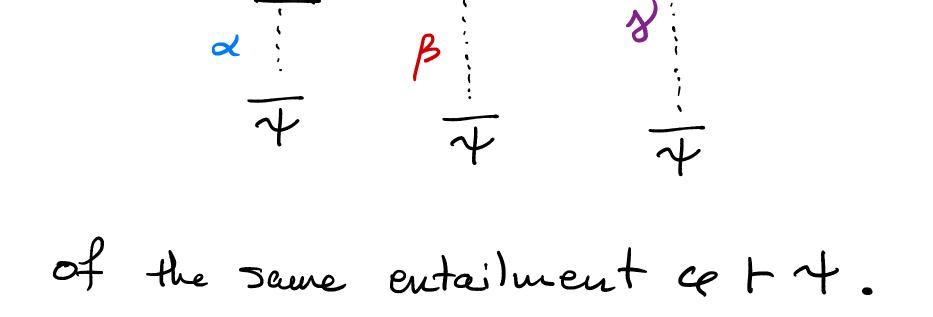
Here we'll generalize in another way: from Propositions to Types. $1, \times, \rightarrow$ 1, Σ, Π (0,2)(0, +)STI DTT A'E FOL 下, 1, 子 Ť,∧,⇒ (\bot, \lor) (\bot, \lor) For STT we also have all 3 Kinds of semantics: Set C " presheaves . Kripke : $Sh(\chi)$ sheare s · Topological :

(2

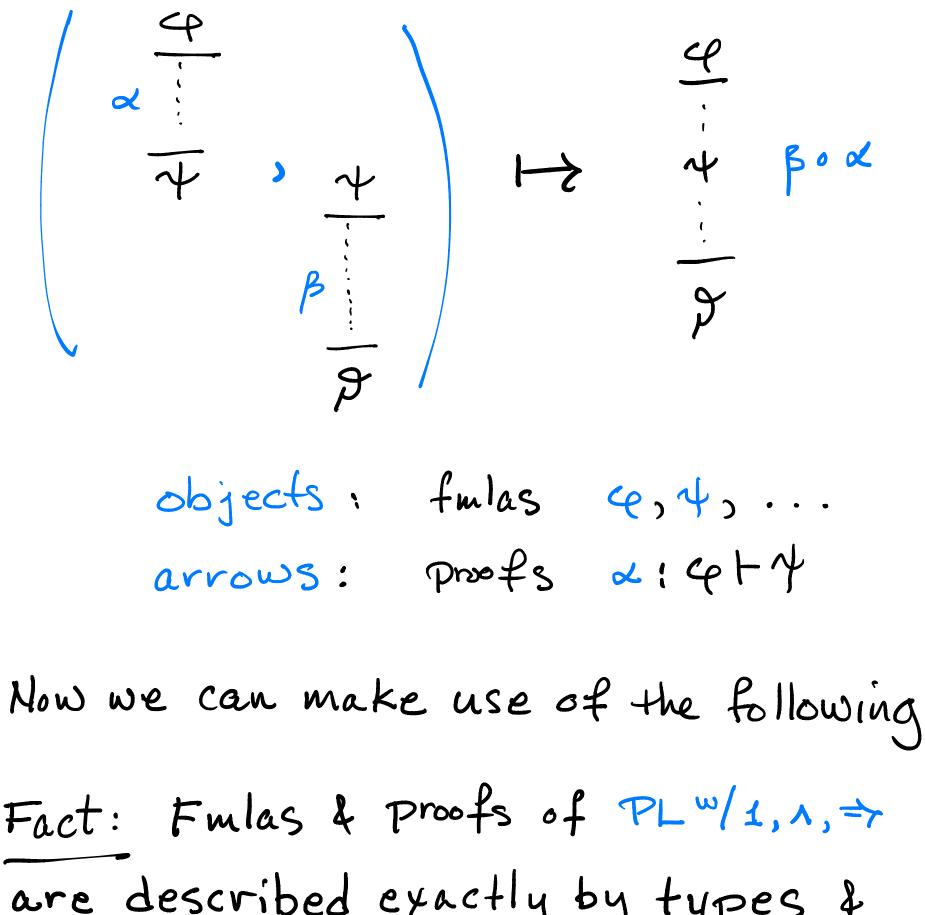
But first let's consider the idea of

The Curry-Howard-Scott-Lawvere -Tait-Martin-Löf Correspondence

As a cat, the poset PL of propositional furlas has as arrows mere entailments: qqif q+n But this discards some information, namely how cpty was established, 2 4 And there may be many different proofs <u>-</u>---4



In addition to the poset PL, there is also the evident Category of proofs:



E.g. Consider the entail ment:

$$p_{A}q \vdash (p \Rightarrow q) \Rightarrow q$$
and the two proofs:

$$\frac{p_{A}q}{p} (p \Rightarrow q)_{A} \qquad p_{A}q \qquad (p \Rightarrow q)_{A}$$

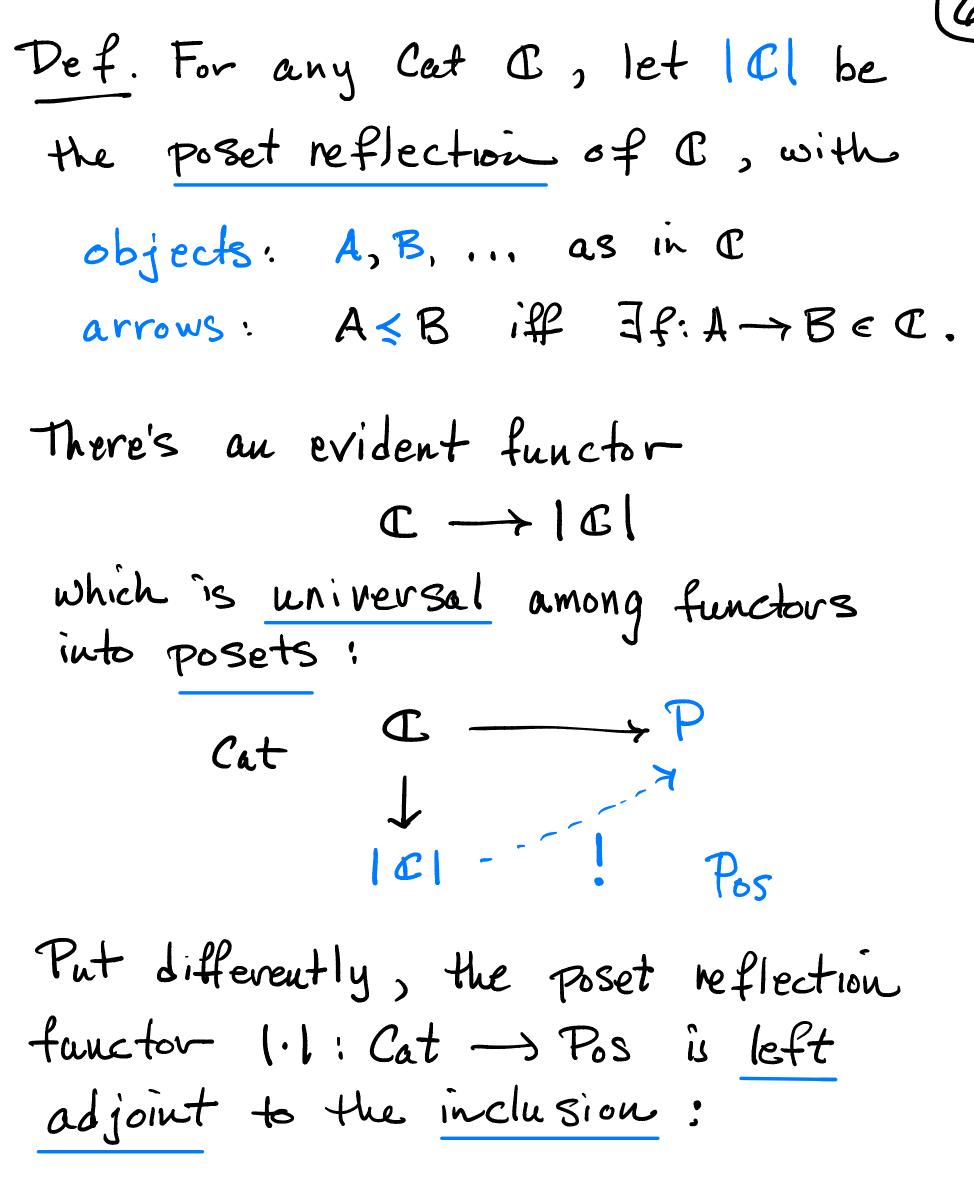
$$\frac{p}{q} \qquad (p \Rightarrow q)_{A} \qquad q \qquad (p \Rightarrow q)_{A}$$

$$\frac{q}{(p \Rightarrow q) \Rightarrow q}$$
We can record the difference by
Annotating them with proof-terms:

$$x:p_{A}q \qquad y:p \Rightarrow q \qquad x:p_{A}q \qquad y:p \Rightarrow q$$

$$\frac{x:p_{A}q}{y(\pi,x):q} \qquad x:p_{A}q \qquad y:p \Rightarrow q$$

$$\frac{y(\pi,x):q}{y(\pi,x):(p \Rightarrow q) \Rightarrow q}$$
These determine 2 different arrows



Cat T Pos

Prop. (C-H)

|CSTT| = CPL

Digression on HoTT

the 2 levels of Propositions as Types are thus related to ones in CT: Type Cat Prop Pos The idea of proof-relevance also has an analogue in CT, called: Categorification: A higher categorical structure with

a lower categorical one as its truncated form:

 $P \xrightarrow{i_1} P + Q \xleftarrow{i_2} Q$ Cat

3. Cat
1
2. Cat
$$\mathcal{D} \oplus \mathcal{Q} \simeq \mathcal{Q} \oplus \mathcal{P}$$

1
Cat $\mathcal{P} + \mathcal{Q} \cong \mathcal{Q} + \mathcal{P}$
1
Pos $\mathcal{P} \vee q = q \vee p$

In Hott we have learned that this also happens in TT: sotype Type 2 type 1 type otype

{

Trop

So a better slogan might be:

Homotopy Propositions as Types

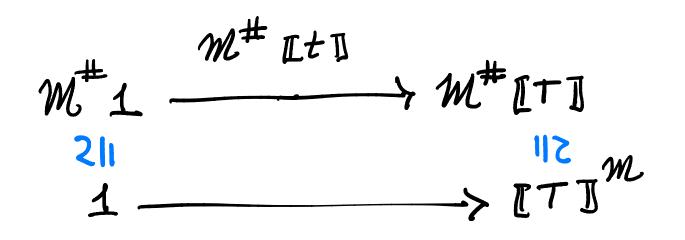
Def.s In a CCC C :
(10) A T-model M consists of
objects [B,], [B_2], ...,
arrows [b,]:
$$1 \rightarrow [X,I]$$
, ...,
where $I \times YI = I \times I \times IYI$
 $I \times \rightarrow YI = IYI^{IXI}$
 $S.th.$
(4) A model M inhabits a type T :
 $M \models T := \exists 1 \rightarrow ITI \text{ in } C$.
A model M satisfies an equation :
 $M \models s = t$
 $:= IsI = ItI : 1 \rightarrow IEI$.
Examples
(4) If $T = Groups$, $C = Set$, then

a TF-model is just a group. (2) A model of II in É is a presheaf of groups. (3) A model in Sh(X) for a space X is a sheaf of groups.

11 Thm (Scott 1980) (Presheaf Completeness) ve have: For any 1-theory # MFT い) サトセ: T 令 f.all C and all IT models M in B MESt (2) TFL S=t:E 令 f.all & and all I models M in C Pf: 1. Build the syntactic CCC CTF > consisting of types & terms, mod equ's. 2. Con has a canonical model 12, consisting of the basic types & terms. 3. Unis generic, in the sense: UFT $T \vdash t:T$ 47

Next we need the following generalization
of the main lemma from PL for
$$V:P \rightarrow \hat{P}$$
.
Lemma For any small cat C, the cat
 $\hat{C} = Set^{CP}$
of presheaves on C is cartesian closed,
and the Yoneda embedding
 $Y: C \longrightarrow \hat{C}$
preserves any CCC structure in C.
pf. For $P, Q \in \hat{C}$ what should Q^P be?
 $(Q^P)C \cong \hat{C}(YC, Q^P)$ Yoneda
 $\cong \hat{C}(YCXP, Q)$ CCC
so let $Q^P := \hat{C}(YIXP, Q)$. \checkmark
Given $c, d \in \hat{C}$,
 $Y(d^C) = C(-3d^C)$ def
 $\equiv \hat{C}(YCXC), yd)$ Yoneda
 $\cong \hat{C}(YCXC), yd)$ Yoneda
 $\cong \hat{C}(YCXC), yd)$ Yoneda

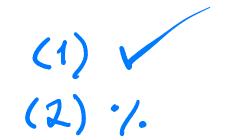
To finish the proof of the thm: if $\# \vdash t:T$, then $2l \vdash T$, namely (*) $\mathbb{E}t \mathbb{I} : 1 \rightarrow \mathbb{E}T \mathbb{I}$ in $C_{\#}$. Given any # model \mathcal{M} in any \widehat{C} , since $C_{\#}$ is free on 1l we have: $C_{\#} \xrightarrow{\mathcal{M}^{\#}} C$ $U \longmapsto \mathcal{M}$. So from (*) we obtain :



where the \cong 's are because $M^{\#}$ is CCC. Thus indeed: $M \models T$.

Conversely, if MFT for all M, then in particular UFT. Whence: $\pi \vdash T$,

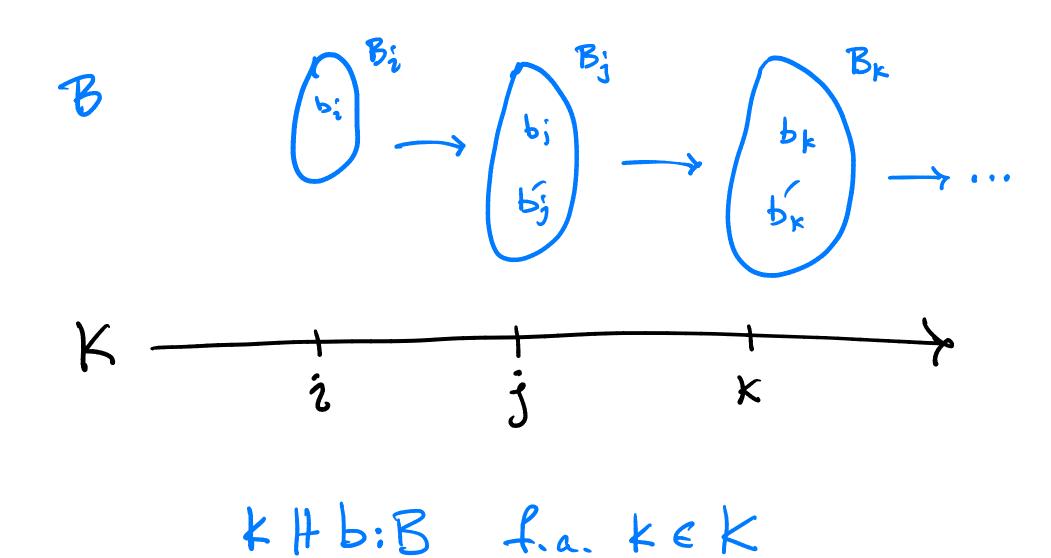
since 11 is generic.



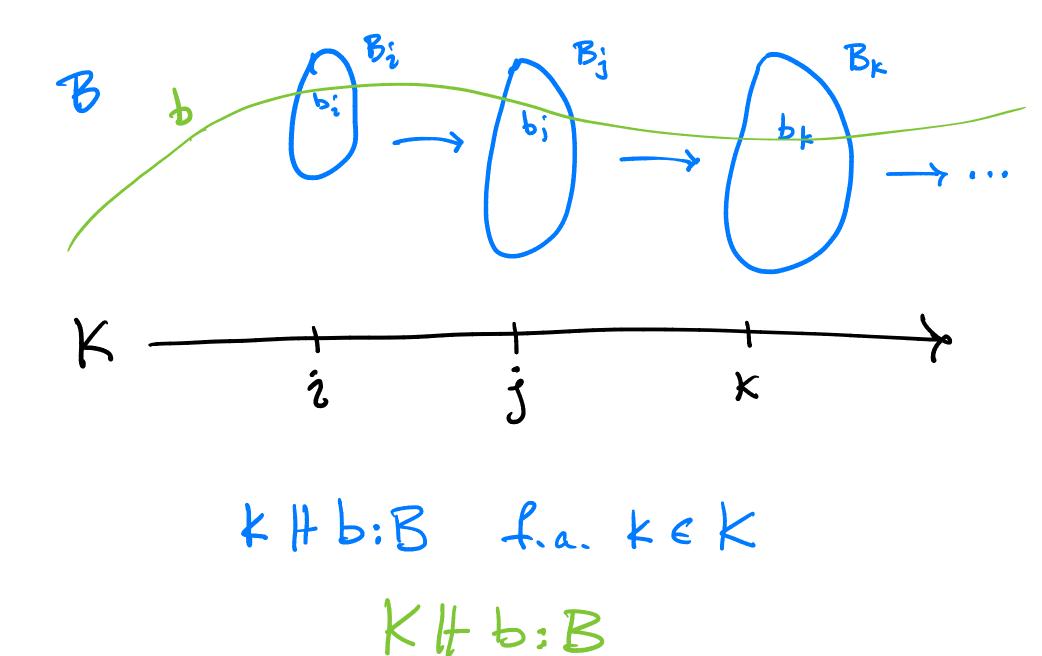
14 Finally, we can specialize from general cats I to posets K: Thm (Kripke Completeness of 2-Calculus) For any I-theory IF we have ! MFT いサトセン 令 f.all posets K and TE-models MinK MESt (2) TFL S:t:E 会 f. all posets K and TF-models M in K The proof uses a theorem from topos theory (due to Joyal & Tierney) to move from $\widehat{\mathbb{C}}$ to $\widehat{\mathbb{C}^*}$ for a poset \mathbb{C}^* .

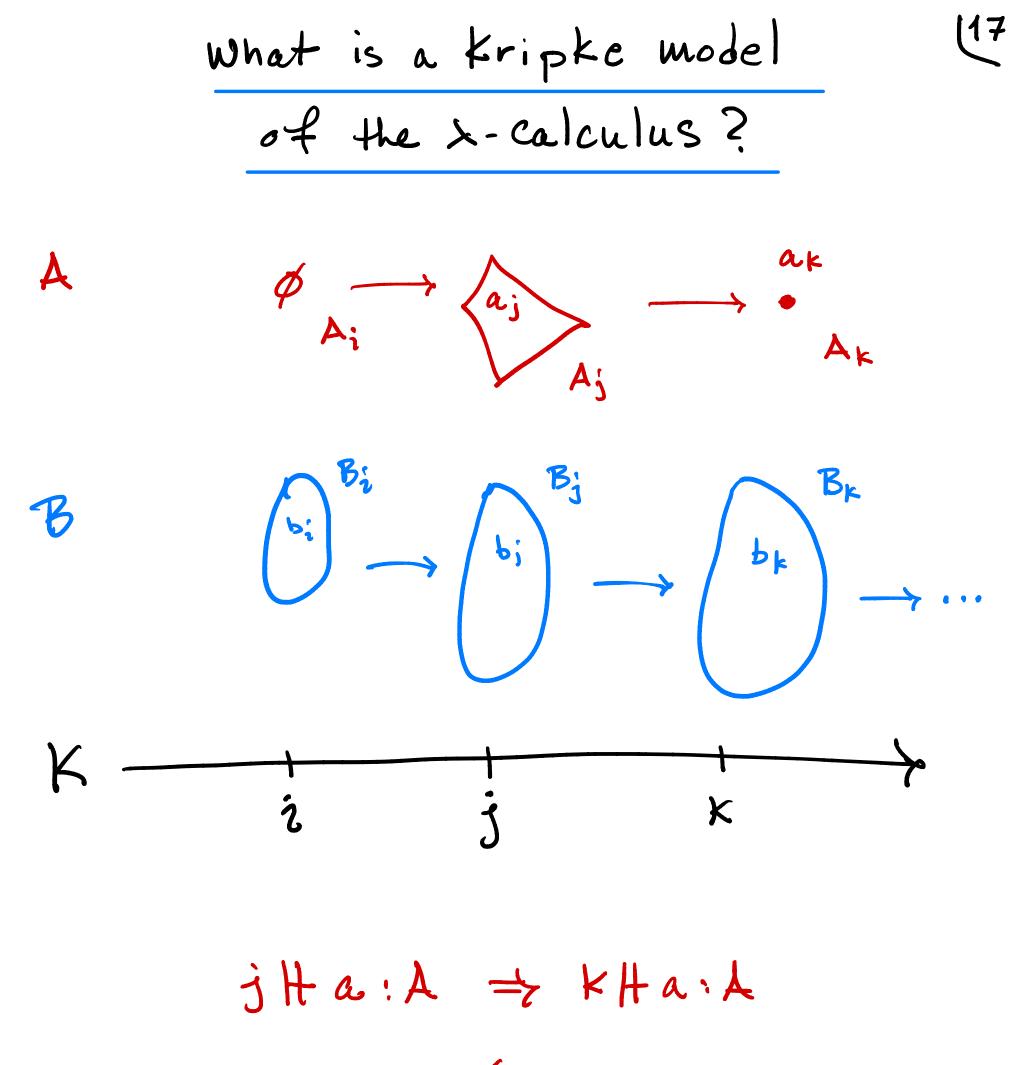
Remark: One can also go between the "Scott style" $j \in \llbracket A \rrbracket$ and the "Kripke Style" jHA for X-theories (see AGH 2021). * In (AR 2011).

what is a kripke model of the x-calculus?



16 What is a Kripke model of the x-calculus?





K#a:A

18 What is a Kripke model of the x-calculus? ak A aj $f_i \int_{i}^{A_i}$ f_j A_j Ak f_k } Bj Bi Br bi ۶ķ てえ K $KHf: A \longrightarrow B$ jHfa=b fa, i < j $\langle \Rightarrow \rangle$

19 what is a kripke model of the x-calculus? f_{j} ak A $f_i \downarrow^{A_i}$ f_{k} £ Bi Bj Bĸ bi pk トイ てえ K i₩ g: γΑ $\rightarrow K \not \vdash g: B \rightarrow A$

Open Problems

 As in PL, one should be able to add O & A+B to the λ-calculus and still get (both Scott c and Kripke k) completeness theorems.

20

2) The use of Joyal-Tierney to get from \hat{C} to \hat{K} is probably <u>overkill</u>. It actually produces a <u>sheaf model</u> over a space $X_{\mathcal{C}}$, and then $K = OX_{\mathcal{C}}$ (cf. A2000). Perhaps there is a more direct proof, following the idea of the PL case?

3) Can one add O&A+B in the topological case?

References

Scott, D.S., Relating theories of the λ-Calculus,
 Curry Festschrift, 1980.

- Awodeg, S., Topological representation of the X-Calculus. MSCS 2000.
- Awodey & Rabe, Kripke Semantics for Martin-Löf type theory. LMCS 2011.
- Awodey, Gambino, Hazratpour,
 Kripke Joyal forcing for type theory
 and uniform fibrations.
 arxiv 2110.14576, 2021.

. Awodey & Kishida, Topology and Modelity: The topological interpretation of first-order modal logic. RSL 1, 2008.