
Categorical Logic

Autumn School on Proof and Computation

Steve Awodey
(with input from Andrej Bauer)

Fischbachau, Germany
26.9.–1.10.2022

Contents

1 Category Theory 5
1.1 Categories . 5

1.1.1 Examples . 6
1.1.2 Categories of structures . 7
1.1.3 Basic notions . 8

1.2 Functors . 9
1.2.1 Functors between sets, monoids and posets 10
1.2.2 Forgetful functors . 10

1.3 Constructions of Categories and Functors 10
1.3.1 Product of categories . 10
1.3.2 Slice categories . 11
1.3.3 Arrow categories . 12
1.3.4 Opposite categories . 13
1.3.5 Representable functors . 13
1.3.6 Group actions . 14

1.4 Natural Transformations and Functor Categories 15
1.4.1 Directed graphs as a functor category 17
1.4.2 The Yoneda embedding . 18
1.4.3 Equivalence of categories . 20

1.5 Adjoint Functors . 22
1.5.1 Adjoint maps between preorders . 23
1.5.2 Adjoint functors . 25
1.5.3 The unit of an adjunction . 27
1.5.4 The counit of an adjunction . 29

1.6 Limits and Colimits . 30
1.6.1 Binary products . 30
1.6.2 Terminal objects . 31
1.6.3 Equalizers . 31
1.6.4 Pullbacks . 32
1.6.5 Limits . 33
1.6.6 Colimits . 37
1.6.7 Binary coproducts . 38

[DRAFT: September 17, 2022]

4 CONTENTS

1.6.8 Initial objects . 38
1.6.9 Coequalizers . 39
1.6.10 Pushouts . 39
1.6.11 Limits as adjoints . 40
1.6.12 Preservation of limits . 42

2 Propositional Logic 45
2.1 Propositional calculus . 45
2.2 Truth values . 47
2.3 Boolean algebra . 49
2.4 Lawvere duality for Boolean algebras . 51
2.5 Functorial semantics for propositional logic 54
2.6 Stone representation . 59
2.7 Stone duality . 62

3 λ-Calculus 67
3.1 Categorification and the Curry-Howard correspondence 67
3.2 Cartesian closed categories . 69
3.3 Positive propositional calculus . 73
3.4 Heyting algebras . 76
3.5 Frames and spaces . 86
3.6 Proper CCCs . 89
3.7 Simply typed λ-calculus . 92
3.8 Interpretation of λ-calculus in CCCs . 99
3.9 Functorial semantics . 101
3.10 The internal language of a CCC . 105
3.11 Embedding and completeness theorems . 109
3.12 Modal operators and monads . 112

[DRAFT: September 17, 2022]

Chapter 1

Category Theory

1.1 Categories

Definition 1.1.1. A category C consists of classes

C0 of objects A, B, C, . . .
C1 of morphisms f , g, h, . . .

such that:

• Each morphism f has uniquely determined domain dom f and codomain cod f , which
are objects. This is written:

f : dom f → cod f

• For any morphisms f : A → B and g : B → C there exists a uniquely determined
composition g ◦ f : A→ C. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

where domains are codomains are as follows:

A
f // B

g // C
h // D

• For every object A there exists the identity morphism 1A : A → A which is a unit
for composition,

1A ◦ f = f , g ◦ 1A = g ,

where f : B → A and g : A→ C.

Morphisms are also called arrows or maps. Note that morphisms do not actually have
to be functions, and objects need not be sets or spaces of any sort. We often write C
instead of C0.

[DRAFT: September 17, 2022]

6 Category Theory

Definition 1.1.2. A category C is small when the objects C0 and the morphisms C1 are sets
(as opposed to proper classes). A category is locally small when for all objects A,B ∈ C0
the class of morphisms with domain A and codomain B, written Hom(A,B) or C0(A,B),
is a set.

We normally restrict attention to locally small categories, so unless we specify otherwise
all categories are taken to be locally small. Next we consider several examples of categories.

1.1.1 Examples

The empty category 0 The empty category has no objects and no arrows.

The unit category 1 The unit category, also called the terminal category, has one object
⋆ and one arrow 1⋆:

⋆ 1⋆ee

Other finite categories There are other finite categories, for example the category with
two objects and one (non-identity) arrow, and the category with two parallel arrows:

⋆ // • ⋆ 88
&& •

Groups as categories Every group (G, ·), is a category with a single object ⋆ and each
element of G as a morphism:

⋆

b

�� a
pp

c

NN a, b, c, . . . ∈ G

The composition of arrows is given by the group operation:

a ◦ b = a · b

The identity arrow is the group unit e. This is indeed a category because the group
operation is associative and the group unit is the unit for the composition. In order to get
a category, we do not actually need to know that every element in G has an inverse. It
suffices to take a monoid, also known as semigroup, which is an algebraic structure with
an associative operation and a unit.

We can turn things around and define a monoid to be a category with a single object.
A group is then a category with a single object in which every arrow is an isomorphism
(in the sense of definition 1.1.5 below).

[DRAFT: September 17, 2022]

1.1 Categories 7

Posets as categories Recall that a partially ordered set, or poset (P,≤), is a set with a
reflexive, transitive, and antisymmetric relation:

x ≤ x (reflexive)

x ≤ y & y ≤ z ⇒ x ≤ z (transitive)

x ≤ y & y ≤ x ⇒ x = y (antisymmetric)

Each poset is a category whose objects are the elements of P , and there is a single arrow
p → q between p, q ∈ P if, and only if, p ≤ q. Composition of p → q and q → r is the
unique arrow p → r, which exists by transitivity of ≤. The identity arrow on p is the
unique arrow p→ p, which exists by reflexivity of ≤.

Antisymmetry tells us that any two isomorphic objects in P are equal.1 We do not
need antisymmetry in order to obtain a category, i.e., a preorder would suffice.

Again, we may define a preorder to be a category in which there is at most one arrow
between any two objects. A poset is a skeletal preorder, i.e. one in which the only isomor-
phisms are the identity arrows. We allow for the possibility that a preorder or a poset is
a proper class rather than a set.

A particularly important example of a poset category is the poset of open sets OX of
a topological space X, ordered by inclusion.

Sets as categories Any set S is a category whose objects are the elements of S and
whose only arrows are identity arrows. Such a category, in which the only arrows are the
identity arrows, is called a discrete category.

1.1.2 Categories of structures

In general, structures like groups, topological spaces, posets, etc., determine categories in
which the maps are structure-preserving functions, composition is composition of functions,
and identity morphisms are identity functions:

• Group is the category whose objects are groups and whose morphisms are group
homomorphisms.

• Top is the category whose objects are topological spaces and whose morphisms are
continuous maps.

• Set is the category whose objects are sets and whose morphisms are functions.2

• Graph is the category of (directed) graphs an graph homomorphisms.

• Poset is the category of posets and monotone maps.

1A category in which isomorphic object are equal is a skeletal category.
2A function between sets A and B is a relation f ⊆ A × B such that for every x ∈ A there exists a

unique y ∈ B for which ⟨x, y⟩ ∈ f . A morphism in Set is a triple ⟨A, f,B⟩ such that f ⊆ A × B is a
function.

[DRAFT: September 17, 2022]

8 Category Theory

Such categories of structures are generally large, but locally small. Note that it is not
necessary to check the associative and unit laws for such categories of functions (why?),
unlike the following example.

Exercise 1.1.3. The category of relations Rel has as objects all sets A,B,C, . . . and as
arrows A → B the relations R ⊆ A × B. The composite of R ⊆ A × B and S ⊆ B × C,
and the identity arrow on A, are defined by:

S ◦R =
{
⟨x, z⟩ ∈ A× C

∣∣ ∃ y ∈ B . xRy & ySz
}
,

1A =
{
⟨x, x⟩

∣∣ x ∈ A} .
Show that this is indeed a category!

1.1.3 Basic notions

We recall some further basic notions from category theory.

Definition 1.1.4. A subcategory C ′ of a category C is given by a subclass of objects C ′0 ⊆ C0
and a subclass of morphisms C ′1 ⊆ C1 such that f ∈ C ′1 implies dom f, cod f ∈ C ′0, 1A ∈ C ′1
for every A ∈ C ′0, and g ◦ f ∈ C ′1 whenever f, g ∈ C ′1 are composable.

A subcategory C ′ of C is full if for all A,B ∈ C ′0, we have C ′(A,B) = C(A,B), i.e. every
f : A→ B in C1 is also in C ′1.

Definition 1.1.5. An inverse of a morphism f : A→ B is a morphism f−1 : B → A such
that

f ◦ f−1 = 1B and f−1 ◦ f = 1A .

A morphism that has an inverse is an isomorphism, or iso. If there exists a pair of mutually
inverse morphisms f : A → B and f−1 : B → A we say that the objects A and B are
isomorphic, written A ∼= B.

The notation f−1 is justified because an inverse, if it exists, is unique. A left inverse is
a morphism g : B → A such that g ◦ f = 1A, and a right inverse is a morphism g : B → A
such that f ◦ g = 1B. A left inverse is also called a retraction, whereas a right inverse is
called a section.

Definition 1.1.6. A monomorphism, or mono, is a morphism f : A → B that can be
cancelled on the left: for all g : C → A, h : C → A,

f ◦ g = f ◦ h⇒ g = h .

An epimorphism, or epi, is a morphism f : A→ B that can be cancelled on the right: for
all g : B → C, h : B → A,

g ◦ f = h ◦ f ⇒ g = h .

[DRAFT: September 17, 2022]

1.2 Functors 9

In Set monomorphisms are the injective functions and epimorphisms are the surjective
functions. Isomorphisms in Set are the bijective functions. Thus, in Set a morphism is iso
if, and only if, it is both mono and epi. However, this example is misleading! In general,
a morphism can be mono and epi without being an iso. For example, the non-identity
morphism in the category consisting of two objects and one morphism between them is
both epi and mono, but it has no inverse. A more interesting example of morphisms that
are both epi and mono but are not iso occurs in the category Top of topological spaces and
continuous maps, where not every continuous bijection is a homeomorphism.

A diagram of objects and morphisms is a directed graph whose vertices are objects of
a category and edges are morphisms between them, for example:

A
f //

g

��

B h // C

j
��

D
k

//

m

??

E

Such a diagram is said to commute when the composition of morphisms along any two
paths with the same beginning and end gives equal morphisms. Commutativity of the
above diagram is equivalent to the following two equations:

f = m ◦ g , k = j ◦ h ◦m .

From these we can derive k ◦ g = j ◦ h ◦ f by a diagram chase.

1.2 Functors

Definition 1.2.1. A functor F : C → D from a category C to a category D consists of
functions

F0 : C0 → D0 and F1 : C1 → D1

such that, for all f : A→ B and g : B → C in C:

F1f : F0A→ F0B ,

F1(g ◦ f) = (F1g) ◦ (F1f) ,

F1(1A) = 1F0A .

We usually write F for both F0 and F1.

A functor is thus a homomorphism of the category structure; note that it maps com-
mutative diagrams to commutative diagrams because it preserves composition.

We may form the “category of categories” Cat whose objects are small categories and
whose morphisms are functors. Composition of functors is composition of the corresponding
functions, and the identity functor is one that is identity on objects and on morphisms.
The category Cat is large but locally small.

[DRAFT: September 17, 2022]

10 Category Theory

Definition 1.2.2. A functor F : C → D is faithful when it is “locally injective on mor-
phisms”, in the sense that for all f, g : A→ B, if Ff = Fg then f = g.

A functor F : C → D is full when it is “locally surjective on morphisms”: for every
g : FA→ FB there exists f : A→ B such that g = Ff .

We consider several examples of functors.

1.2.1 Functors between sets, monoids and posets

When sets, monoids, groups, and posets are regarded as categories, the functors turn out
to be the usual morphisms, for example:

• A functor between sets S and T is a function from S to T .

• A functor between groups G and H is a group homomorphism from G to H.

• A functor between posets P and Q is a monotone function from P to Q.

Exercise 1.2.3. Verify that the above claims are correct.

1.2.2 Forgetful functors

For categories of structures Group, Top, Graph, Poset, . . . , there is a forgetful functor U
which maps an object to the underlying set and a morphism to the underlying function.
For example, the forgetful functor U : Group → Set maps a group (G, ·) to the set G and
a group homomorphism f : (G, ·)→ (H, ⋆) to the function f : G→ H.

There are also forgetful functors that forget only part of the structure, for example
the forgetful functor U : Ring→ Group which maps a ring (R,+,×) to the additive group
(R,+) and a ring homomorphism f : (R,+R, ·S)→ (S,+S, ·S) to the group homomorphism
f : (R,+R)→ (S,+S). Note that there is another forgetful functor U ′ : Ring→ Mon from
rings to monoids.

Exercise 1.2.4. Show that taking the graph Γ(f) =
{
⟨x, f(x)⟩

∣∣ x ∈ A} of a function
f : A → B determines a functor Γ : Set → Rel, from sets and functions to sets and
relations, which is the identity on objects. Is this a forgetful functor?

1.3 Constructions of Categories and Functors

1.3.1 Product of categories

Given categories C and D, we form the product category C × D whose objects are pairs
of objects ⟨C,D⟩ with C ∈ C and D ∈ D, and whose morphisms are pairs of morphisms
⟨f, g⟩ : ⟨C,D⟩ → ⟨C ′, D′⟩ with f : C → C ′ in C and g : D → D′ in D. Composition is
given by ⟨f, g⟩ ◦ ⟨f ′, g′⟩ = ⟨f ◦ f ′, g ◦ g′⟩.

[DRAFT: September 17, 2022]

1.3 Constructions of Categories and Functors 11

There are evident projection functors

C × D
π0

}}

π1

""
C D

which act as indicated in the following diagrams:

⟨C,D⟩8
π0

||

� π1

##
C D

⟨f, g⟩;
π0

}}

� π1

!!
f g

Exercise 1.3.1. Show that, for any categories A, B, C, there are distinguished isos:

1× C ∼= C
B× C ∼= C× B

A× (B× C) ∼= (A× B)× C

Does this make Cat a (commutative) monoid?

1.3.2 Slice categories

Given a category C and an object A ∈ C, the slice category C/A has as objects, morphisms
into A,

B

f
��
A

(1.1)

and as morphisms, commutative diagrams over A:

B

f ��

g // B′

f ′~~
A

(1.2)

That is, a morphism from f : B → A to f ′ : B′ → A is a morphism g : B → B′ such that
f = f ′ ◦ g. Composition of morphisms in C/A is composition of morphisms in C.

There is a forgetful functor UA : C/A→ C which maps an object (1.1) to its domain B,
and a morphism (1.2) to the morphism g : B → B′.

Furthermore, for each morphism h : A→ A′ in C there is a functor “composition by h”,

C/h : C/A→ C/A′

[DRAFT: September 17, 2022]

12 Category Theory

which maps an object (1.1) to the object h ◦ f : B → A′ and a morphisms (1.2) to the
morphism

B

h ◦ f

g // B′

h ◦ f ′~~
A′

The construction of slice categories is itself a functor

C/− : C → Cat

provided that C is small. This functor maps each A ∈ C to the category C/A and each
morphism h : A→ A′ to the composition functor C/h : C/A→ C/A′.

Since Cat is itself a category, we may form the slice category Cat/C for any small
category C. The slice functor C/− then factors through the forgetful functor UC : Cat/C →
Cat via a functor C : C → Cat/C,

C C //

C/−
!!

Cat/C

UC

��
Cat

where for A ∈ C, the object part CA is

C/A

UA

��
C

and for h : A→ A′ in C, the morphism part Ch is

C/A

UA

C/h
// C/A′

UA′}}
C

1.3.3 Arrow categories

Similar to the slice categories, an arrow category has arrows as objects, but without a fixed
codomain. Given a category C, the arrow category C→ has as objects the morphisms of C,

A

f
��
B

(1.3)

[DRAFT: September 17, 2022]

1.3 Constructions of Categories and Functors 13

and as morphisms f → f ′ the commutative squares,

A

f
��

g // A′

f ′
��

B
g′
// B′.

(1.4)

That is, a morphism from f : A → B to f ′ : A′ → B′ is a pair of morphisms g : A → A′

and g′ : B → B′ such that g′ ◦ f = f ′ ◦ g. Composition of morphisms in C→ is just
componentwise composition of morphisms in C.

There are two evident forgetful functors U1, U2 : C→ → C, given by the domain and
codomain operations. (Can you find a common section for these?)

1.3.4 Opposite categories

For a category C the opposite category Cop has the same objects as C, but all the morphisms
are turned around, that is, a morphism f : A → B in Cop is a morphism f : B → A in C.
The identity arrows in Cop are the same as in C, but the order of composition is reversed.
The opposite of the opposite of a category is clearly the original category.

A functor F : Cop → D is sometimes called a contravariant functor (from C to D), and
a functor F : C → D is a covariant functor.

For example, the opposite category of a preorder (P,≤) is the preorder P turned upside
down, (P,≥).

Exercise 1.3.2. Given a functor F : C → D, can you define a functor F op : Cop → Dop in
such a way that −op itself becomes a functor? On what category is it a functor?

1.3.5 Representable functors

Let C be a locally small category. Then for each pair of objects A,B ∈ C the collection of
all morphisms A→ B forms a set, written HomC(A,B), Hom(A,B) or C(A,B). For every
A ∈ C there is a functor

C(A,−) : C → Set

defined by

C(A,B) =
{
f ∈ C1

∣∣ f : A→ B
}

C(A, g) : f 7→ g ◦ f

where B ∈ C and g : B → C. In words, C(A, g) is composition by g. This is indeed a
functor because, for any morphisms

A
f // B

g // C h // D (1.5)

[DRAFT: September 17, 2022]

14 Category Theory

we have
C(A, h ◦ g)f = (h ◦ g) ◦ f = h ◦ (g ◦ f) = C(A, h)(C(A, g)f) ,

and C(A, 1B)f = 1A ◦ f = f = 1C(A,B)f .
We may also ask whether C(−, B) is a functor. If we define its action on morphisms to

be precomposition,
C(f,B) : g 7→ g ◦ f ,

it becomes a contravariant functor,

C(−, B) : Cop → Set .

The contravariance is a consequence of precomposition; for morphisms (1.5) we have

C(g ◦ f,D)h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f,D)(C(g,D)h) .

A functor of the form C(A,−) is a (covariant) representable functor, and a functor of the
form C(−, B) is a (contravariant) representable functor.

It follows that the hom-set is a functor

C(−,−) : Cop × C → Set

which maps a pair of objects A,B ∈ C to the set C(A,B) of morphisms from A to B, and
it maps a pair of morphisms f : A′ → A, g : B → B′ in C to the function

C(f, g) : C(A,B)→ C(A′, B′)

defined by
C(f, g) : h 7→ g ◦ h ◦ f .

(Why does it follow that this is a functor?)

1.3.6 Group actions

A group (G, ·) is a category with one object ⋆ and elements of G as the morphisms. Thus,
a functor F : G→ Set is given by a set F⋆ = S and for each a ∈ G a function Fa : S → S
such that, for all x ∈ S, a, b ∈ G,

(Fe)x = x , (F (a · b))x = (Fa)((Fb)x) .

Here e is the unit element of G. If we write a ·x instead of (Fa)x, the above two equations
become the familiar laws for a left group action on the set S:

e · x = x , (a · b) · x = a · (b · x) .

Exercise 1.3.3. A right group action by a group (G, ·) on a set S is an operation · :
S ×G→ S that satisfies, for all x ∈ S, a, b ∈ G,

x · e = x , x · (a · b) = (x · a) · b .

Exhibit right group actions as functors.

[DRAFT: September 17, 2022]

1.4 Natural Transformations and Functor Categories 15

1.4 Natural Transformations and Functor Categories

Definition 1.4.1. Let F : C → D and G : C → D be functors. A natural transformation
η : F =⇒ G from F to G is a map η : C0 → D1 which assigns to every object A ∈ C a
morphism ηA : FA→ GA, called the component of η at A, such that for every f : A→ B
in C we have ηB ◦ Ff = Gf ◦ ηA, i.e., the following diagram in D commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB ηB

// GB

A simple example is given by the “twist” isomorphism t : A × B → B × A (in Set).
Given any maps f : A→ A′ and g : B → B′, there is a commutative square:

A×B
tA,B //

f × g
��

B × A

g × f
��

A′ ×B′
tA′,B′

// B′ × A′

Thus naturality means that the two functors F (X, Y) = X × Y and G(X, Y) = Y × X
are related to each other (by t : F → G), and not simply their individual values A × B
and B × A. As a further example of a natural transformation, consider groups G and H
as categories and two homomorphisms f, g : G→ H as functors between them. A natural
transformation η : f =⇒ g is given by a single element η⋆ = b ∈ H such that, for every
a ∈ G, the following diagram commutes:

⋆
b //

fa
��

⋆

ga
��

⋆
b
// ⋆

This means that b · fa = (ga) · b, that is ga = b · (fa) · b−1. In other words, a natural
transformation f =⇒ g is a conjugation operation b−1 · − · b which transforms f into g.

For every functor F : C → D there exists the identity transformation 1F : F =⇒ F
defined by (1F)A = 1A. If η : F =⇒ G and θ : G =⇒ H are natural transformations, then
their composition θ ◦ η : F =⇒ H, defined by (θ ◦ η)A = θA ◦ ηA is also a natural transfor-
mation. Composition of natural transformations is associative because it is composition in
the codomain category D. This leads to the definition of functor categories.

[DRAFT: September 17, 2022]

16 Category Theory

Definition 1.4.2. Let C and D be categories. The functor category DC is the category
whose objects are functors from C to D and whose morphisms are natural transformations
between them.

A functor category may be quite large, too large in fact. In order to avoid problems
with size we normally require C to be a locally small category. The “hom-class” of all
natural transformations F =⇒ G is usually written as

Nat(F,G)

instead of the more awkward HomDC(F,G).
Suppose we have functors F , G, and H with a natural transformation θ : G =⇒ H, as

in the following diagram:

C F // D
G

''

H
77�� θ E

Then we can form a natural transformation θ ◦ F : G ◦ F =⇒ H ◦ F whose component at
A ∈ C is (θ ◦ F)A = θFA.

Similarly, if we have functors and a natural transformation

C
G

((

H
66�� θ D F // E

we can form a natural transformation (F ◦θ) : F ◦G =⇒ F ◦H whose component at A ∈ C
is (F ◦ θ)A = FθA. These operations are known as whiskering.

A natural isomorphism is an isomorphism in a functor category. Thus, if F : C → D
and G : C → D are two functors, a natural isomorphism between them is a natural
transformation η : F =⇒ G whose components are isomorphisms. In this case, the inverse
natural transformation η−1 : G =⇒ F is given by (η−1)A = (ηA)

−1. We write F ∼= G
when F and G are naturally isomorphic.

The definition of natural transformations is motivated in part by the fact that, for any
small categories A, B, C, we have

Cat(A× B,C) ∼= Cat(A,CB) . (1.6)

The isomorphism takes a functor F : A × B → C to the functor F̃ : A → CB defined on
objects A ∈ A, B ∈ B by

(F̃A)B = F ⟨A,B⟩

and on a morphism f : A→ A′ by

(F̃ f)B = F ⟨f, 1B⟩ .

The functor F̃ is called the transpose of F .

[DRAFT: September 17, 2022]

1.4 Natural Transformations and Functor Categories 17

The inverse isomorphism takes a functor G : A → CB to the functor G̃ : A × B → C,
defined on objects by

G̃⟨A,B⟩ = (GA)B

and on a morphism ⟨f, g⟩ : A×B → A′ ×B′ by

G̃⟨f, g⟩ = (Gf)B′ ◦ (GA)g = (GA′)g ◦ (Gf)B ,

where the last equation holds by naturality of Gf :

(GA)B
(Gf)B //

(GA)g

��

(GA′)B

(GA′)g

��
(GA)B′

(Gf)B′

// (GA′)B′

1.4.1 Directed graphs as a functor category

Recall that a directed graph G is given by a set of vertices GV and a set of edges GE. Each
edge e ∈ GE has a uniquely determined source srcG e ∈ GV and target trgG e ∈ GV . We
write e : a → b when a is the source and b is the target of e. A graph homomorphism
ϕ : G → H is a pair of functions ϕ0 : GV → HV and ϕ1 : GE → HE, where we usually
write ϕ for both ϕ0 and ϕ1, such that whenever e : a → b then ϕ1e : ϕ0a → ϕ0b. The
category of directed graphs and graph homomorphisms is denoted by Graph.

Now let ·⇒ · be the category with two objects and two parallel morphisms, depicted
by the following “sketch”:

E

t

77

s
''
V

An object of the functor category Set·⇒· is a functor G : (·⇒ ·) → Set, which consists
of two sets GE and GV and two functions Gs : GE → GV and Gt : GE → GV . But
this is precisely a directed graph whose vertices are GV , the edges are GE, the source of
e ∈ GE is (Gs)e and the target is (Gt)e. Conversely, any directed graph G is a functor
G : (·⇒ ·)→ Set, defined by

GE = GE , GV = GV , Gs = srcG , Gt = trgG .

Now category theory begins to show its worth, for the morphisms in Set·⇒· are precisely
the graph homomorphisms. Indeed, a natural transformation ϕ : G =⇒ H between graphs
is a pair of functions,

ϕE : GE → HE and ϕV : GV → HV

[DRAFT: September 17, 2022]

18 Category Theory

whose naturality is expressed by the commutativity of the following two diagrams:

GE

ϕE //

srcG

��

HE

srcH

��
GV

ϕV

// HV

GE

ϕE //

trgG

��

HE

trgH

��
GV

ϕV

// HV

This is precisely the requirement that e : a → b implies ϕEe : ϕV a → ϕV b. Thus, in sum,
we have,

Graph = Set·⇒·.

Exercise 1.4.3. Exhibit the arrow category C→ and the category of group actions Set(G)
as functor categories.

1.4.2 The Yoneda embedding

The example Graph = Set·⇒· leads one to wonder which categories C can be represented as
functor categories SetD for a suitably chosen D or, when that is not possible, at least as
full subcategories of SetD.

For a locally small category C, there is the hom-functor

C(−,−) : Cop × C → Set .

By transposing as in (1.6) we obtain the functor

y : C → SetC
op

which maps an object A ∈ C to the representable functor

yA = C(−, A) : B 7→ C(B,A)

and a morphism f : A → A′ in C to the natural transformation yf : yA =⇒ yA′ whose
component at B is

(yf)B = C(B, f) : g 7→ f ◦ g .

This functor y is called the Yoneda embedding.

Exercise 1.4.4. Show that this is a functor.

Theorem 1.4.5 (Yoneda embedding). For any locally small category C the Yoneda em-
bedding

y : C → SetC
op

is full and faithful and injective on objects. Therefore, C is a full subcategory of SetC
op

.

[DRAFT: September 17, 2022]

1.4 Natural Transformations and Functor Categories 19

The proof of the theorem uses the famous Yoneda Lemma.

Lemma 1.4.6 (Yoneda). Every functor F : Cop → Set is naturally isomorphic to the
functor Nat(y−, F). That is, for every A ∈ C,

Nat(yA,F) ∼= FA ,

and this isomorphism is natural in A.

Indeed, the displayed isomorphism is also natural in F .

Proof. The desired natural isomorphism θA maps a natural transformation η ∈ Nat(yA,F)
to ηA1A. The inverse θA

−1 maps an element x ∈ FA to the natural transformation (θA
−1x)

whose component at B maps f ∈ C(B,A) to (Ff)x. To summarize, for η : C(−, A) =⇒ F ,
x ∈ FA and f ∈ C(B,A), we have

θA : Nat(yA,F)→ FA , θA
−1 : FA→ Nat(yA,F) ,

θAη = ηA1A , (θA
−1x)Bf = (Ff)x .

To see that θA and θA
−1 really are inverses of each other, observe that

θA(θA
−1x) = (θA

−1x)A1A = (F1A)x = 1FAx = x ,

and also

(θA
−1(θAη))Bf = (Ff)(θAη) = (Ff)(ηA1A) = ηB(1A ◦ f) = ηBf ,

where the third equality holds by the following naturality square for η:

C(A,A)
ηA //

C(f, A)
��

FA

Ff

��
C(B,A) ηB

// FB

It remains to check that θ is natural, which amounts to establishing the commutativity of
the following diagram, with g : A→ A′:

Nat(yA,F)
θA // FA

Nat(yA′, F)
θA′

//

Nat(yg, F)

OO

FA′

Fg

OO

[DRAFT: September 17, 2022]

20 Category Theory

The diagram is commutative because, for any η : yA′ =⇒ F ,

(Fg)(θA′η) = (Fg)(ηA′1A′) = ηA(1A′ ◦ g) =
ηA(g ◦ 1A) = (Nat(yg, F)η)A1A = θA(Nat(yg, F)η) ,

where the second equality is justified by naturality of η.

Proof of Theorem 1.4.5. That the Yoneda embedding is full and faithful means that for all
A,B ∈ C the map

y : C(A,B)→ Nat(yA, yB)

which maps f : A→ B to yf : yA =⇒ yB is an isomorphism. But this is just the Yoneda
Lemma applied to the case F = yB. Indeed, with notation as in the proof of the Yoneda
Lemma and g : C → A, we see that the isomorphism

θ−1
A : C(A,B) = (yB)A→ Nat(yA, yB)

is in fact y:
(θA

−1f)Cg = ((yA)g)f = f ◦ g = (yf)Cg .

Furthermore, if yA = yB then 1A ∈ C(A,A) = (yA)A = (yB)A = C(B,A) which can only
happen if A = B. Therefore, y is injective on objects.

The following corollary is often useful.

Corollary 1.4.7. For A,B ∈ C, A ∼= B if, and only if, yA ∼= yB in SetC
op

.

Proof. Every functor preserves isomorphisms, and a full and faithful one also reflects them.
(A functor F : C → D is said to reflect isomorphisms when Ff : FA → FB being an
isomorphisms implies that f : A→ B is an isomorphism.)

Exercise 1.4.8. Prove that a full and faithful functor reflects isomorphisms.

Functor categories SetC
op

are important enough to deserve a name. They are called
presheaf categories, and a functor F : Cop → Set is called a presheaf on C. We also use the
notation Ĉ = SetC

op

.

1.4.3 Equivalence of categories

An isomorphism of categories C and D in Cat consists of functors

C
F

** D
G

jj

such that G◦F = 1C and F ◦G = 1D. This is often too restrictive a notion. A more general
notion which replaces the above identities with natural isomorphisms is more useful.

[DRAFT: September 17, 2022]

1.4 Natural Transformations and Functor Categories 21

Definition 1.4.9. An equivalence of categories is a pair of functors

C
F

** D
G

jj

such that there are natural isomorphisms

G ◦ F ∼= 1C and F ◦G ∼= 1D .

We say that C and D are equivalent categories and write C ≃ D.
A functor F : C → D is called an equivalence functor if there exists G : D → C such

that F and G form an equivalence.

The point of equivalence of categories is that it preserves almost all categorical prop-
erties, but ignores those concepts that are not of interest from a categorical point of view,
such as identity of objects.

The following proposition requires the Axiom of Choice as stated. However, in many
specific cases a canonical choice can be made without appeal to that axiom.

Proposition 1.4.10. A functor F : C → D is an equivalence functor if, and only if, F is
full and faithful, and essentially surjective on objects, meaning that for every B ∈ D there
exists A ∈ C such that FA ∼= B.

Proof. It is easily seen that the conditions are necessary, so we only show they are sufficient.
Suppose F : C → D is full and faithful, and essentially surjective on objects. For each
B ∈ D, choose an object GB ∈ C and an isomorphism ηB : F (GB)→ B. If f : B → C is
a morphism in D, let Gf : GB → GC be the unique morphism in C for which

F (Gf) = ηC
−1 ◦ f ◦ ηB . (1.7)

Such a unique morphism exists because F is full and faithful. This defines a functor G :
D → C, as can be easily checked. In addition, (1.7) ensures that η is a natural isomorphism
F ◦G =⇒ 1D.

It remains to show that G ◦ F ∼= 1C. For A ∈ C, let θA : G(FA) → A be the unique
morphism such that FθA = ηFA. Naturality of θA follows from functoriality of F and
naturality of η. Because F reflects isomorphisms, θA is an isomorphism for every A.

Example 1.4.11. As an example of equivalence of categories we consider the category of
sets and partial functions and the category of pointed sets.

A partial function f : A ⇀ B is a function defined on a subset supp f ⊆ A, called the
support3 of f , and taking values in B. Composition of partial functions f : A ⇀ B and
g : B ⇀ C is the partial function g ◦ f : A ⇀ C defined by

supp (g ◦ f) =
{
x ∈ A

∣∣ x ∈ supp f ∧ fx ∈ supp g
}

(g ◦ f)x = g(fx) for x ∈ supp (g ◦ f)
3The support of a partial function f : A ⇀ B is usually called its domain, but this terminology conflicts

with A being the domain of f as a morphism.

[DRAFT: September 17, 2022]

22 Category Theory

Composition of partial functions is associative. This way we obtain a category Par of sets
and partial functions.

A pointed set (A, a) is a set A together with an element a ∈ A. A pointed function
f : (A, a) → (B, b) between pointed sets is a function f : A → B such that fa = b. The
category Set• consists of pointed sets and pointed functions.

The categories Par and Set• are equivalent. The equivalence functor F : Set• → Par
maps a pointed set (A, a) to the set F (A, a) = A\{a}, and a pointed function f : (A, a)→
(B, b) to the partial function Ff : F (A, a)⇀ F (B, b) defined by

supp (Ff) =
{
x ∈ A

∣∣ fx ̸= b
}
, (Ff)x = fx .

The inverse equivalence functor G : Par → Set• maps a set A ∈ Par to the pointed set
GA = (A + {⊥A} ,⊥A), where ⊥A is an element that does not belong to A. A partial
function f : A ⇀ B is mapped to the pointed function Gf : GA→ GB defined by

(Gf)x =

{
fx if x ∈ supp f

⊥B otherwise .

A good way to think about the “bottom” point ⊥A is as a special “undefined value”. Let
us look at the composition of F and G on objects:

G(F (A, a)) = G(A \ {a}) = ((A \ {a}) +⊥A,⊥A) ∼= (A, a) .

F (GA) = F (A+ {⊥A} ,⊥A) = (A+ {⊥A}) \ {⊥A} = A .

The isomorphism G(F (A, a)) ∼= (A, a) is easily seen to be natural.

Example 1.4.12. Another example of an equivalence of categories arises when we take
the poset reflection of a preorder. Let (P,≤) be a preorder, If we think of P as a category,
then a, b ∈ P are isomorphic, when a ≤ b and b ≤ a. Isomorphism ∼= is an equivalence
relation, therefore we may form the quotient set P/∼=. The set P/∼= is a poset for the order
relation ⊑ defined by

[a] ⊑ [b] ⇐⇒ a ≤ b .

Here [a] denotes the equivalence class of a. We call (P/∼=,⊑) the poset reflection of P .
The quotient map q : P → P/∼= is a functor when P and P/∼= are viewed as categories.
By Proposition 1.4.10, q is an equivalence functor. Trivially, it is faithful and surjective on
objects. It is also full because qa ⊑ qb in P/∼= implies a ≤ b in P .

1.5 Adjoint Functors

The notion of adjunction is perhaps the most important concept revealed by category
theory. It is a fundamental logical and mathematical concept that occurs everywhere and
often marks an important and interesting connection between two constructions of interest.
In logic, adjoint functors are pervasive, although this is only recognizable through the lens
of category theory.

[DRAFT: September 17, 2022]

1.5 Adjoint Functors 23

1.5.1 Adjoint maps between preorders

Let us begin with a simple situation. We have already seen that a preorder (P,≤) is
a category in which there is at most one morphism between any two objects. A functor
between preorders is a monotone map. Suppose we have preorders P and Q with monotone
maps back and forth,

P
f

++
Q .

g
jj

We say that f and g are adjoint, and write f ⊣ g, when for all x ∈ P , y ∈ Q,

fx ≤ y ⇐⇒ x ≤ gy . (1.8)

Note that adjointness is not a symmetric relation. The map f is the left adjoint and g is
the right adjoint (note their positions with respect to ≤).

Equivalence (1.8) is more conveniently displayed as

fx ≤ y

x ≤ gy

The double line indicates the fact that this is a two-way rule: the top line implies the
bottom line, and vice versa.

Let us consider two examples.

Conjunction is adjoint to implication Consider a propositional calculus with logical
operations of conjunction ∧ and implication ⇒ (perhaps among others). The formulas of
this calculus are built from variables x0, x1, x2, . . . , the truth values ⊥ and ⊤, and the
logical connectives ∧,⇒, The logical rules are given in natural deduction style:

⊤
⊥
A

A B

A ∧B
A ∧B
A

A ∧B
B

A⇒ B A

B

[u : A]

...

B

A⇒ B
u

For example, we read the inference rules for ⇒ as, respectively, “from A ⇒ B and A we
infer B” and “if from assumption A we infer B, then (without any assumptions) we infer
A⇒ B”. Discharged assumptions are indicated by enclosing them in brackets, along with
a label [u : A] for the assumption, which is recorded along with the rule that discharges it,
as above.

[DRAFT: September 17, 2022]

24 Category Theory

Logical entailment ⊢ between formulas of the propositional calculus is the relation A ⊢
B which holds if, and only if, from assuming A we can infer B (by using only the inference
rules of the calculus). It is trivially the case that A ⊢ A, and also

if A ⊢ B and B ⊢ C then A ⊢ C .

In other words, ⊢ is a reflexive and transitive relation on the set P of all propositional
formulas, so that (P,⊢) is a preorder.

Let A be a propositional formula. Define f : P→ P and g : P→ P to be the maps

fB = (A ∧B) , gB = (A⇒ B) .

To see that the maps f and g are functors we need to show they respect entailment. Indeed,
if B ⊢ B′ then A ∧B ⊢ A ∧B′ and A⇒ B ⊢ A⇒ B′ by the following two derivations.

A ∧B
A

A ∧B
B
...

B′

A ∧B′

A⇒ B [u : A]

B
...

B′

A⇒ B′ u

We claim that f ⊣ g. For this we need to prove that A∧B ⊢ C if, and only if, B ⊢ A⇒ C.
The following two derivations establish the required equivalence.

[u : A] B

A ∧B
...

C

A⇒ C
u

A ∧B
B
...

A⇒ C
A ∧B
A

C

Therefore, conjunction is left adjoint to implication.

Topological interior as an adjoint Recall that a topological space (X,OX) is a set X
together with a family OX ⊆ PX of subsets of X which contains ∅ and X, and is closed
under finite intersections and arbitrary unions. The elements of OX are called the open
sets.

The topological interior of a subset S ⊆ X is the largest open set contained in S,
namely,

intS =
⋃{

U ∈ OX
∣∣ U ⊆ S

}
.

Both OX and PX are posets ordered by subset inclusion. The inclusion i : OX → PX is
thus a monotone map, and so indeed is the interior int : PX → OX, as follows immediately
from its construction. So we have:

OX
i ,, PX
int

ll

[DRAFT: September 17, 2022]

1.5 Adjoint Functors 25

Moreover, for U ∈ OX and S ∈ PX we plainly also have

iU ⊆ S

U ⊆ intS

since intS is the largest open set contained in S. Thus topological interior is right adjoint
to the inclusion of OX into PX.

1.5.2 Adjoint functors

Let us now generalize the notion of adjoint monotone maps from posets to the situation

C
F

** D
G

jj

with arbitrary categories and functors. For monotone maps f ⊣ g, the adjunction condition
is a bijection

fx→ y

x→ gy

between morphisms of the form fx → y and morphisms of the form x → gy. This is
the notion that generalizes the special case; for any A ∈ C, B ∈ D we require a bijection
between the sets D(FA,B) and C(A,GB):

FA→ B

A→ GB

Definition 1.5.1. An adjunction F ⊣ G between the functors

C
F

** D
G

jj

is a natural isomorphism θ between functors

D(F−,−) : Cop ×D → Set and C(−, G−) : Cop ×D → Set .

This means that for every A ∈ C and B ∈ D there is a bijection

θA,B : D(FA,B) ∼= C(A,GB) ,

and naturality of θ means that for f : A′ → A in C and g : B → B′ in D the following
diagram commutes:

D(FA,B)
θA,B //

D(Ff, g)
��

D(A,GB)

C(f,Gg)
��

D(FA′, B′)
θA′,B′

// C(A′, GB′)

[DRAFT: September 17, 2022]

26 Category Theory

Equivalently, for every h : FA→ B in D,

Gg ◦ (θA,Bh) ◦ f = θA′,B′(g ◦ h ◦ Ff) .

We say that F is the left adjoint and G is the right adjoint.

We have already seen examples of adjoint functors. For any category B we have functors
(−)× B and (−)B from Cat to Cat. Recall the isomorphism (1.6),

Cat(A× B,C) ∼= Cat(A,CB) .

This isomorphism is in fact natural in A and C, so that

(−)× B ⊣ (−)B .

Similarly, for any set B ∈ Set there are functors

(−)×B : Set→ Set , (−)B : Set→ Set ,

where A×B is the cartesian product of A and B, and CB is the set of all functions from B
to C. For morphisms, f × B = f × 1B and fB = f ◦ (−). We then indeed have a natural
isomorphism, for all A,C ∈ Set,

Set(A×B,C) ∼= Set(A,CB) ,

which maps a function f : A×B → C to the function (f̃x)y = f⟨x, y⟩. Therefore,

(−)×B ⊣ (−)B .

Exercise 1.5.2. Verify that the definition (1.8) of adjoint monotone maps between pre-
orders is a special case of Definition 1.5.1. What happened to the naturality condition?

For another example, consider the forgetful functor

U : Cat→ Graph ,

which maps a category to the underlying directed graph. It has a left adjoint P ⊣ U .
The functor P is the free construction of a category from a graph; it maps a graph G to
the category of paths P (G). The objects of P (G) are the vertices of G. The morphisms
of P (G) are the finite paths

v0
e1 // v1

e2 // · · · en // vn

of edges in G, composition is concatenation of paths, and the identity morphism on a
vertex v is the empty path starting and ending at v.

By using the Yoneda Lemma we can easily prove that adjoints are unique up to natural
isomorphism.

[DRAFT: September 17, 2022]

1.5 Adjoint Functors 27

Proposition 1.5.3. Let F : C → D and G : D → C be adjoint functors, with F ⊣ G. If
also G′ : D → C with F ⊣ G′, then G ∼= G′.

Proof. Since the Yoneda embedding is full and faithful, we have GB ∼= G′B if, and only
if, C(−, GB) ∼= C(−, G′B). But this indeed holds, because, for any A ∈ C, we have

C(A,GB) ∼= D(FA,B) ∼= C(A,G′B) ,

naturally in A.

Left adjoints are of course also unique up to isomorphism, by duality.

1.5.3 The unit of an adjunction

Let F : C → D and G : D → C be adjoint functors, F ⊣ G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object A ∈ C
there is a distinguished morphism ηA = θA,FA1FA : A→ G(FA),

1FA : FA→ FA

ηA : A→ G(FA)

Since θ is natural in A, we have a natural transformation η : 1C =⇒ G ◦ F , which is
called the unit of the adjunction F ⊣ G. In fact, we can recover θ from η as follows. For
f : FA→ B, we have

θA,Bf = θA,B(f ◦ 1FA) = Gf ◦ θA,FA(1FA) = Gf ◦ ηA ,

where we used naturality of θ in the second step. Schematically, given any f : FA → B,
the following diagram commutes:

A
ηA //

θA,Bf
""

G(FA)

Gf

��
GB

Since θA,B is a bijection, it follows that every morphism g : A → GB has the form
g = Gf ◦ ηA for a unique f : FA → B. We say that ηA : A → G(FA) is a universal
morphism to G, or that η has the following universal mapping property : for every A ∈ C,
B ∈ D, and g : A→ GB, there exists a unique f : FA→ B such that g = Gf ◦ ηA:

A
ηA //

g
""

G(FA)

Gf

��

FA

f

��
GB B

[DRAFT: September 17, 2022]

28 Category Theory

This means that an adjunction can be given in terms of its unit. The isomorphism θ :
D(F−,−)→ C(−, G−) is then recovered by

θA,Bf = Gf ◦ ηA .

Proposition 1.5.4. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

η : 1C =⇒ G ◦ F ,

called the unit of the adjunction, such that, for all A ∈ C and B ∈ D the map θA,B :
D(FA,B)→ C(A,GB), defined by

θA,Bf = Gf ◦ ηA ,

is an isomorphism.

Let us demonstrate how the universal mapping property of the unit of an adjunction
appears as a well known construction in algebra. Consider the forgetful functor from
monoids to sets,

U : Mon→ Set .

Does it have a left adjoint F : Set → Mon? In order to obtain one, we need a “most
economical” way of making a monoid FX from a given set X. Such a construction readily
suggests itself, namely the free monoid on X, consisting of finite sequences of elements
of X,

FX =
{
x1 . . . xn

∣∣ n ≥ 0 & x1, . . . , xn ∈ X
}
.

The monoid operation is concatenation of sequences

x1 . . . xm · y1 . . . yn = x1 . . . xmy1 . . . yn ,

and the empty sequence is the unit of the monoid. In order for F to be a functor, it should
also map morphisms to morphisms. If f : X → Y is a function, define Ff : FX → FY by

Ff : x1 . . . xn 7→ (fx1) . . . (fxn) .

There is an inclusion ηX : X → U(FX) which maps every element x ∈ X to the singleton
sequence x. This gives a natural transformation η : 1Set =⇒ U ◦ F .

The monoid FX is “free” in the sense that it “satisfies only the equations required
by the monoid laws”; we make this precise as follows. For every monoid M and function
f : X → UM there exists a unique monoid homomorphism f : FX → M such that the
following diagram commutes:

X
ηX //

f
""

U(FX)

Uf

��
UM

[DRAFT: September 17, 2022]

1.5 Adjoint Functors 29

This is precisely the condition required by Proposition 1.5.4 for η to be the unit of the
adjunction F ⊣ U . In this case, the universal mapping property of η is just the usual
characterization of the free monoid FX generated by the setX: a homomorphism from FX
is uniquely determined by its values on the generators.

1.5.4 The counit of an adjunction

Let F : C → D and G : D → C be adjoint functors with F ⊣ G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object B ∈ D
we have a distinguished morphism εB = θ−1

GB,B1GB : F (GB)→ B by:

1GB : GB → GB

εB : F (GB)→ B

The natural transformation ε : F ◦G =⇒ 1D is called the counit of the adjunction F ⊣ G.
It is the dual notion to the unit of an adjunction. We state briefly the basic properties
of the counit, which are easily obtained by “turning around” all the morphisms in the
previous section and exchanging the roles of the left and right adjoints.

The bijection θ−1
A,B can be recovered from the counit. For g : A→ GB in C, we have

θ−1
A,Bg = θ−1

A,B(1GB ◦ g) = θ−1
A,B1GB ◦ Fg = εB ◦ Fg .

The universal mapping property of the counit is this: for every A ∈ C, B ∈ D, and
f : FA→ B, there exists a unique g : A→ GB such that f = εB ◦ Fg:

B F (GB)
εBoo GB

FA

Fg

OO

f

bb

A

g

OO

The following is the dual of Proposition 1.5.4.

Proposition 1.5.5. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

ε : F ◦G =⇒ 1D ,

called the counit of the adjunction, such that, for all A ∈ C and B ∈ D the map θ−1
A,B :

C(A,GB)→ D(FA,B), defined by

θ−1
A,Bg = εB ◦ Fg ,

is an isomorphism.

[DRAFT: September 17, 2022]

30 Category Theory

Let us consider again the forgetful functor U : Mon → Set and its left adjoint F :
Set → Mon, the free monoid construction. For a monoid (M, ⋆) ∈ Mon, the counit of the
adjunction F ⊣ U is a monoid homomorphism εM : F (UM)→M , defined by

εM(x1x2 . . . xn) = x1 ⋆ x2 ⋆ · · · ⋆ xn .

It has the following universal mapping property: for X ∈ Set, (M, ⋆) ∈ Mon, and a
homomorphism f : FX → M there exists a unique function f : X → UM such that
f = εM ◦ Ff , namely

fx = fx ,

where in the above definition x ∈ X is viewed as an element of the set X on the left-hand
side, and as an element of the free monoid FX on the right-hand side. To summarize,
the universal mapping property of the counit ε is the familiar piece of wisdom that a
homomorphism f : FX → M from a free monoid is already determined by its values on
the generators.

1.6 Limits and Colimits

The following limits and colimits are all special cases of adjoint functors, as we shall see.

1.6.1 Binary products

In a category C, the (binary) product of objects A and B is an object A × B together
with projections π0 : A × B → A and π1 : A × B → B such that, for every object C ∈ C
and every pair of morphisms f : C → A, g : C → B there exists a unique morphism
h : C → A×B for which the following diagram commutes:

C

f

||

h

��

g

""
A A×Bπ0
oo

π1
// B

We normally refer to the product (A×B, π0, π1) just by its objectA×B, but you should keep
in mind that a product is given by an object and two projections. The arrow h : C → A×B
is denoted by ⟨f, g⟩. The property

for all C, for all f : C → A, for all g : C → B,

there is a unique h : C → A×B,

with π0 ◦ h = f & π1 ◦ h = g

is the universal mapping property of the product A×B. It characterizes the product of A
and B uniquely up to isomorphism in the sense that if (P, p0 : P → A, p1 : P → B) is

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 31

another product of A and B, then there is a unique isomorphism r : P
∼→ A×B such that

p0 = π0 ◦ r and p1 = π1 ◦ r.
If in a category C every two objects have a product, we can turn binary products into an

operation4 by choosing a product A×B for each pair of objects A,B ∈ C. In general this
requires the Axiom of Choice, but in many specific cases a particular choice of products can
be made without appeal to that axiom. When we view binary products as an operation,
we say that “C has chosen products”. The same holds for other instances of limits and
colimits.

For example, in Set the usual cartesian product of sets is a product. In categories of
structures, products are the usual construction: the product of topological spaces in Top
is their topological product, the product of directed graphs in Graph is their cartesian
product, the product of categories in Cat is their product category, and so on.

1.6.2 Terminal objects

A terminal object in a category C is an object 1 ∈ C such that for every A ∈ C there exists
a unique morphism !A : A→ 1.

For example, in Set an object is terminal if, and only if, it is a singleton. The terminal
object in Cat is the unit category 1 consisting of one object and one morphism.

Exercise 1.6.1. Prove that if 1 and 1′ are terminal objects in a category then they are
isomorphic.

Exercise 1.6.2. Let Field be the category whose objects are fields and morphisms are field
homomorphisms.5 Does Field have a terminal object? What about the category Ring of
rings?

1.6.3 Equalizers

Given objects and morphisms

E e // A
f //

g
// B

we say that e equalizes f and g when f ◦ e = g ◦ e.6 An equalizer of f and g is a universal
equalizing morphism; thus e : E → A is an equalizer of f and g when it equalizes them
and, for all k : K → A, if f ◦ k = g ◦ k then there exists a unique morphism m : K → E

4More precisely, binary product is a functor from C × C to C, cf. Section 1.6.11.
5A field (F,+, ·,−1, 0, 1) is a ring with a unit in which all non-zero elements have inverses. We also

require that 0 ̸= 1. A homomorphism of fields preserves addition and multiplication, and consequently
also 0, 1 and inverses.

6Note that this does not mean the diagram involving f , g and e is commutative!

[DRAFT: September 17, 2022]

32 Category Theory

such that k = e ◦m:

E
e // A

f //

g
// B

K

m

OO

k

??

In Set the equalizer of parallel functions f : A→ B and g : A→ B is the set

E =
{
x ∈ A

∣∣ fx = gx
}

with e : E → A being the subset inclusion E ⊆ A, ex = x. In general, equalizers can be
thought of as those subobjects (subsets, subgroups, subspaces, . . .) that can be defined by
an equation.

Exercise 1.6.3. Show that an equalizer is a monomorphism, i.e., if e : E → A is an
equalizer of f and g, then, for all r, s : C → E, e ◦ r = e ◦ s implies r = s.

Definition 1.6.4. A morphism is a regular mono if it is an equalizer.

The difference between monos and regular monos is best illustrated in the category Top:
a continuous map f : X → Y is mono when it is injective, whereas it is a regular mono
when it is a topological embedding.7

1.6.4 Pullbacks

A pullback of f : A → C and g : B → C is an object P with morphisms p0 : P → A and
p1 : P → B such that f ◦ p0 = g ◦ p1, and whenever Q, q0 : Q → A, and q1 : Q → B are
such that f ◦ q0 = g ◦ q1, there then exists a unique h : Q → P such that q0 = p0 ◦ h and
q1 = p1 ◦ h:

Q
q1

!!

h

��

q0

��

P
p1 //

p0

��

B

g

��
A

f
// C

We indicate that P is a pullback by drawing a square corner next to it, as in the above
diagram. The pullback is sometimes written A ×C B, since it is indeed a product in the
slice category over C.

7A continuous map f : X → Y is a topological embedding when, for every U ∈ OX, the image f [U] is
an open subset of the image im(f); this means that there exists V ∈ OY such that f [U] = V ∩ im(f).

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 33

In Set, the pullback of f : A→ C and g : B → C is the set

P =
{
⟨x, y⟩ ∈ A×B

∣∣ fx = gy
}

and the functions p0 : P → A, p1 : P → B are the projections, p0⟨x, y⟩ = x, p1⟨x, y⟩ = y.

When we form the pullback of f : A → C and g : B → C we may also say that we
pull g back along f and draw the diagram

f ∗B //

f ∗g

��

B

g

��
A

f
// C

We think of f ∗g : f ∗B → A as the inverse image of B along f . This terminology is
explained by looking at the pullback of a subset inclusion u : U ↪→ C along a function
f : A→ C in the category Set:

f ∗U //

��

U� _

u

��
A

f
// C

In this case the pullback is
{
⟨x, y⟩ ∈ A× U

∣∣ fx = y
} ∼= {

x ∈ A
∣∣ fx ∈ U} = f ∗U , the

inverse image of U along f .

Exercise 1.6.5. Prove that in a category C, a morphism f : A→ B is mono if, and only
if, the following diagram is a pullback:

A
1A //

1A
��

A

f

��
A

f
// B

1.6.5 Limits

Let us now define the general notion of a limit.

A diagram of shape I in a category C is a functor D : I → C, where the category I is
called the index category. We use letters i, j, k, . . . for objects of an index category I, call
them indices, and write Di, Dj, Dk, . . . instead of Di, Dj, Dk, . . .

[DRAFT: September 17, 2022]

34 Category Theory

For example, if I is the category with three objects and three morphisms

1

13

��

12

��
2

23
// 3

where 13 = 23 ◦ 12 then a diagram of shape I is a commutative diagram

D1

d13

��

d12

~~
D2

d23
// D3

(1.9)

For each object A ∈ C, the constant A-valued diagram of shape I is given by the constant
functor ∆A : I → C, which maps every object to A and every morphism to 1A.

Let D : I → C be a diagram of shape I. A cone on D from an object A ∈ C is a
natural transformation α : ∆A =⇒ D. This means that for every index i ∈ I there is a
morphism αi : A→ Di such that whenever u : i→ j in I then αj = Du ◦ αi.

For a given diagram D : I → C, we can collect all cones on D into a category Cone(D)
whose objects are cones on D. A morphism between cones f : (A,α) → (B, β) is a
morphism f : A → B in C such that αi = βi ◦ f for all i ∈ I. Morphisms in Cone(D) are
composed as morphisms in C. A morphism f : (A,α)→ (B, β) is also called a factorization
of the cone (A,α) through the cone (B, β).

A limit of a diagram D : I → C is a terminal object in Cone(D). Explicitly, a limit
of D is given by a cone (L, λ) such that for every other cone (A,α) there exists a unique
morphism f : A→ L such that αi = λi ◦ f for all i ∈ I. We denote (the object part of) a
limit of D by one of the following:

limD limi∈I Di lim←−
i∈I

Di .

Limits are also called projective limits. We say that a category has limits of shape I when
every diagram of shape I in C has a limit.

Products, terminal objects, equalizers, and pullbacks are all special cases of limits:

• a product A×B is the limit of the functor D : 2→ C where 2 is the discrete category
on two objects 0 and 1, and D0 = A, D1 = B.

• a terminal object 1 is the limit of the (unique) functor D : 0 → C from the empty
category.

• an equalizer of f, g : A → B is the limit of the functor D : (·⇒ ·) → C which maps
one morphism to f and the other one to g.

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 35

• the pullback of f : A → C and g : B → C is the limit of the functor D : I → C
where I is the category

•
2
��

•
1
// •

with D1 = f and D2 = g.

It is clear how to define the product of an arbitrary family of objects{
Ai ∈ C

∣∣ i ∈ I} .

Such a family is a diagram of shape I, where I is viewed as a discrete category. A product∏
i∈I Ai is then given by an object P ∈ C and morphisms πi : P → Ai such that, when-

ever we have a family of morphisms
{
fi : B → Ai

∣∣ i ∈ I} there exists a unique morphism
⟨fi⟩i∈I : B → P such that fi = πi ◦ f for all i ∈ I.

A finite product is a product of a finite family. As a special case we see that a terminal
object is the product of an empty family. It is not hard to show that a category has finite
products precisely when it has a terminal object and binary products.

A diagram D : I → C is small when I is a small category. A small limit is a limit of a
small diagram. A finite limit is a limit of a diagram whose index category is finite.

Exercise 1.6.6. Prove that a limit, when it exists, is unique up to isomorphism.

The following proposition and its proof tell us how to compute arbitrary limits from
simpler ones. We omit detailed proofs as they can be found in any standard textbook on
category theory.

Proposition 1.6.7. The following are equivalent for a category C:

1. C has a terminal object and all pullbacks.

2. C has equalizers and all finite products.

3. C has all finite limits.

Proof. We only show how to get binary products from pullbacks and a terminal object.
For objects A and B, let P be the pullback of !A and !B:

P
π1 //

π0

��

B

!B
��

A
!A

// 1

Then (P, π0, π1) is a product of A and B because, for all f : X → A and g : X → B, it is
trivially the case that !A ◦ f = !B ◦ g.

[DRAFT: September 17, 2022]

36 Category Theory

Proposition 1.6.8. The following are equivalent for a category C:

1. C has equalizers and all small products.

2. C has all small limits.

Proof. We indicate how to construct an arbitrary limit from a product and an equalizer.
Let D : I → C be a small diagram of an arbitrary shape I. First form an I0-indexed
product P and an I1-indexed product Q

P =
∏
i∈I0

Di , Q =
∏
u∈I1

Dcodu .

By the universal property of products, there are unique morphisms f : P → Q and
g : P → Q such that, for all morphisms u ∈ I1,

πQ
u ◦ f = Du ◦ πP

domu , πQ
u ◦ g = πP

codu .

Let E be the equalizer of f and g,

E e // P
f //

g
// Q

For every i ∈ I there is a morphism εi : E → Di, namely εi = πP
i ◦ e. We claim that (E, ε)

is a limit of D. First, (E, ε) is a cone on D because, for all u : i→ j in I,

Du ◦ εi = Du ◦ πP
i ◦ e = πQ

u ◦ f ◦ e = πQ
u ◦ g ◦ e = πP

j ◦ e = εj .

If (A,α) is any cone on D there exists a unique t : A → P such that αi = πP
i ◦ t for all

i ∈ I. For every u : i→ j in I we have

πQ
u ◦ g ◦ t = πP

j ◦ t = tj = Du ◦ ti = Du ◦ πP
i ◦ t = πQ

u ◦ f ◦ t ,

therefore g ◦ t = f ◦ t. This implies that there is a unique factorization k : A → E such
that t = e ◦ k. Now for every i ∈ I

εi ◦ k = πP
i ◦ e ◦ k = πP

i ◦ t = αi

so that k : A→ E is the required factorization of the cone (A,α) through the cone (E, ε).
To see that k is unique, suppose m : A→ E is another factorization such that αi = εi ◦m
for all i ∈ I. Since e is mono it suffices to show that e ◦m = e ◦ k, which is equivalent to
proving πP

i ◦ e ◦m = πP
i ◦ e ◦ k for all i ∈ I. This last equality holds because

πP
i ◦ e ◦ k = πP

i ◦ t = αi = εi ◦m = πP
i ◦ e ◦m .

A category is (small) complete when it has all small limits, and it is finitely complete
(or left exact, briefly lex) when it has finite limits.

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 37

Limits of presheaves Let C be a locally small category. Then the presheaf category
Ĉ = SetC

op

has all small limits and they are computed pointwise, e.g., (P×Q)A = PA×QA
for P,Q ∈ Ĉ, A ∈ C. To see that this is really so, let I be a small index category and
D : I → Ĉ a diagram of presheaves. Then for every A ∈ C the diagram D can be
instantiated at A to give a diagram DA : I → Set, (DA)i = DiA. Because Set is small
complete, we can define a presheaf L by computing the limit of DA:

LA = limDA = lim←−
i∈I

DiA .

We should keep in mind that limDA is actually given by an object (limDA) and a natural
transformation δA : ∆(limDA) =⇒ DA. The value of LA is supposed to be just the object
part of limDA. From a morphism f : A → B we obtain for each i ∈ I a function
Dif ◦ (δA)i : LA → DiB, and thus a cone (LA,Df ◦ δA) on DB. Presheaf L maps the
morphism f : A→ B to the unique factorization Lf : LA =⇒ LB of the cone (LA,Df◦δA)
on DB through the limit cone LB on DB.

For every i ∈ I, there is a function Λi = (δA)i : LA → DiA. The family {Λi}i∈I is a
natural transformation from ∆LA to DA. This gives us a cone (L,Λ) on D, which is in
fact a limit cone. Indeed, if (S,Σ) is another cone on D then for every A ∈ C there exists
a unique function ϕA : SA → LA because SA is a cone on DA and LA is a limit cone
on DA. The family {ϕA}A∈C is the unique natural transformation ϕ : S =⇒ L for which
Σ = ϕ ◦ Λ.

1.6.6 Colimits

Colimits are the dual notion of limits. Thus, a colimit of a diagram D : I → C is a limit
of the dual diagram Dop : Iop → Cop in the dual (i.e., opposite) category Cop:

colim(D : I → C) = lim(Dop : Iop → Cop) .

Explicitly, the colimit of a diagram D : I → C is the initial object in the category of
cocones Cocone(D) on D. A cocone (A,α) on D is a natural transformation α : D =⇒ ∆A.
It is given by an object A ∈ C and, for each i ∈ I, a morphism αi : Di → A, such that
αi = αj ◦Du whenever u : i → j in I. A morphism between cocones f : (A,α) → (B, β)
is a morphism f : A→ B in C such that βi = f ◦ αi for all i ∈ I.

A colimit of D : I → C is then given by a cocone (C, ζ) on D such that, for every
cocone (A,α) on D there exists a unique morphism f : C → A such that αi = f ◦ ζi for all
i ∈ D. We denote a colimit of D by one of the following:

colimD colimi∈I Di lim−→
i∈I

Di .

Colimits are also called inductive limits.

Exercise 1.6.9. Formulate the dual of Proposition 1.6.7 and Proposition 1.6.8 for colimits
(coequalizers are defined in Section 1.6.9).

[DRAFT: September 17, 2022]

38 Category Theory

1.6.7 Binary coproducts

In a category C, the (binary) coproduct of objects A and B is an object A + B together
with injections ι0 : A→ A+B and ι1 : B → A+B such that, for every object C ∈ C and
all morphisms f : A → C, g : B → C there exists a unique morphism h : A + B → C for
which the following diagram commutes:

A
ι0 //

f
""

A+B

h

��

B
ι1oo

g
||

C

The arrow h : A+B → C is denoted by [f, g].
The coproduct A+ B is the colimit of the diagram D : 2→ C, where I is the discrete

category on two objects 0 and 1, and D0 = A, D1 = B.
In Set the coproduct is the disjoint union, defined by

X + Y =
{
⟨0, x⟩

∣∣ x ∈ X}
∪
{
⟨1, y⟩

∣∣ x ∈ Y }
,

where 0 and 1 are distinct sets, for example ∅ and {∅}. Given functions f : X → Z and
g : Y → Z, the unique function [f, g] : X + Y → Z is the usual definition by cases :

[f, g]u =

{
fx if u = ⟨0, x⟩
gx if u = ⟨1, x⟩ .

Exercise 1.6.10. Show that the categories of posets and of topological spaces both have
coproducts.

1.6.8 Initial objects

An initial object in a category C is an object 0 ∈ C such that for every A ∈ C there exists
a unique morphism oA : 0→ A.

An initial object is the colimit of the empty diagram.
In Set, the initial object is the empty set.

Exercise 1.6.11. What is the initial and what is the terminal object in the category of
groups?

A zero object is an object that is both initial and terminal.

Exercise 1.6.12. Show that in the category of Abelian8 groups finite products and co-
products agree, that is 0 ∼= 1 and A×B ∼= A+B.

Exercise 1.6.13. Suppose A and B are Abelian groups. Is there a difference between their
coproduct in the category Group of groups, and their coproduct in the category AbGroup
of Abelian groups?

8An Abelian group is one that satisfies the commutative law x · y = y · x.

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 39

1.6.9 Coequalizers

Given objects and morphisms

A
f //

g
// B

q // Q

we say that q coequalizes f and g when e◦f = e◦g. A coequalizer of f and g is a universal
coequalizing morphism; thus q : B → Q is a coequalizer of f and g when it coequalizes
them and, for all s : B → S, if s◦f = s◦ g then there exists a unique morphism r : Q→ S
such that s = r ◦ q:

A
f //

g
// B

q //

s
��

Q

r

��
S

In Set the coequalizer of parallel functions f : A → B and g : A → B is the quotient
set Q = B/∼ where ∼ is the least equivalence relation on B satisfying

fx = gy ⇒ x ∼ y .

The function q : B → Q is the canonical quotient map which assigns to each element x ∈ B
its equivalence class [x] ∈ B/∼. In general, a coequalizer can be thought of as the quotient
by the equivalence relation generated by the corresponding equation.

Exercise 1.6.14. Show that a coequalizer is an epimorphism, i.e., if q : B → Q is a
coequalizer of f and g, then, for all u, v : Q → T , u ◦ q = v ◦ q implies u = v. [Hint: use
the duality between limits and colimits and Exercise 1.6.3.]

Definition 1.6.15. A morphism is a regular epi if it is a coequalizer.

The difference between epis and regular epis is also illustrated in the category Top: a
continuous map f : X → Y is epi when it is surjective, whereas it is a regular epi when it
is a topological quotient map.9

1.6.10 Pushouts

A pushout of f : A → B and g : A → C is an object Q with morphisms q0 : B → Q and
q1 : C → Q such that q0 ◦ f = q1 ◦ g, and whenever r0 : B → R, r1 : C → R are such that

9A continuous map f : X → Y is a topological quotient map when it is surjective and, for every U ⊆ Y ,
U is open if, and only if, f∗U is open.

[DRAFT: September 17, 2022]

40 Category Theory

r0 ◦ f = r1 ◦ g, then there exists a unique s : Q→ R such that r0 = s ◦ q0 and r1 = s ◦ q1:

A
g //

f

��

C

q1

�� r1

��

B q0
//

r0
,,

Q

s

��
R

We indicate that Q is a pushout by drawing a square corner next to it, as in the above
diagram. The above pushout Q is sometimes denoted by B +A C.

A pushout as above is a colimit of the diagram D : I → C where the index category I is

• 2 //

1
��

•

•

and D1 = f , D2 = g.
In Set, the pushout of f : A→ C and g : B → C is the quotient set

Q = (B + C)/∼

where B + C is the disjoint union of B and C, and ∼ is the least equivalence relation
on B + C such that, for all x ∈ A,

fx ∼ gx .

The functions q0 : B → Q, q1 : C → Q are the injections, q0x = [x], q1y = [y], where [x] is
the equivalence class of x.

1.6.11 Limits as adjoints

Limits and colimits can be defined as adjoints to certain very simple functors.
First, observe that an object A ∈ C can be viewed as a functor from the terminal

category 1 to C, namely the functor which maps the only object ⋆ of 1 to A. Since 1 is the
terminal object in Cat, there exists a unique functor !C : C → 1, which maps every object
of C to ⋆.

Now we can ask whether this simple functor !C : C → 1 has any adjoints. Indeed,
it has a right adjoint just if C has a terminal object 1C, for the corresponding functor
1C : 1 → C has the property that, for every A ∈ C we have a (trivially natural) bijective
correspondence:

!A : A→ 1C

1⋆ : !CA→ ⋆

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 41

Similarly, an initial object is a left adjoint to !C:

0C ⊣ !C ⊣ 1C .

Now consider the diagonal functor,

∆ : C → C × C,

defined by ∆A = ⟨A,A⟩, ∆f = ⟨f, f⟩. When does this have adjoints?
If C has all binary products, then they determine a functor

−×− : C × C → C

which maps ⟨A,B⟩ to A × B and a pair of morphisms ⟨f : A → A′, g : B → B′⟩ to
the unique morphism f × g : A × B → A′ × B′ for which π0 ◦ (f × g) = f ◦ π0 and
π1 ◦ (f × g) = g ◦ π1,

A

f

��

A×Bπ0oo π1 //

f × g
��

B

g

��
A′ A′ ×B′

π0
oo

π1
// B′

The product functor × is right adjoint to the diagonal functor ∆. Indeed, there is a natural
bijective correspondence:

⟨f, g⟩ : ⟨A,A⟩ → ⟨B,C⟩
f × g : A→ B × C

Similarly, binary coproducts are easily seen to be left adjoint to the diagonal functor,

+ ⊣ ∆ ⊣ × .

Now in general, consider limits of shape I in a category C. There is the constant
diagram functor

∆ : C → CI

that maps A ∈ C to the constant diagram ∆A : I → C. The limit construction is a functor

lim←− : CI → C

that maps each diagram D ∈ CI to its limit lim←−D. These two are adjoint, ∆ ⊣ lim←−, because
there is a natural bijective correspondence between cones α : ∆A =⇒ D on D, and their
factorizations through the limit of D,

α : ∆A =⇒ D

A→ lim←−D

An analogous correspondence holds for colimits, so that we obtain a pair of adjunctions,

lim−→ ⊣ ∆ ⊣ lim←− ,

which, of course, subsume all the previously mentioned cases.

[DRAFT: September 17, 2022]

42 Category Theory

Exercise 1.6.16. How are the functors ∆ : C → CI , lim−→ : CI → C, and lim←− : CI → C
defined on morphisms?

1.6.12 Preservation of limits

We say that a functor F : C → D preserves products when, given a product

A A×Bπ0oo π1 // B

its image in D,

FA F (A×B)
Fπ0oo Fπ1 // FB

is a product of FA and FB. If D has chosen binary products, F preserves binary products
if, and only if, the unique morphism f : F (A×B)→ FA×FB which makes the following
diagram commutative is an isomorphism: 10

F (A×B)

f

��

Fπ0

zz

Fπ1

$$
FA FA× FBπ0

oo
π1

// FB

In general, a functor F : C → D is said to preserve limits of shape I when it maps
limit cones to limit cones: if (L, λ) is a limit of D : I → C then (FL, F ◦ λ) is a limit of
F ◦D : I → D.

Analogously, a functor F : C → D is said to preserve colimits of shape I when it maps
colimit cocones to colimit cocones: if (C, ζ) is a colimit of D : I → C then (FC, F ◦ ζ) is
a colimit of F ◦D : I → D.

Proposition 1.6.17. (a) A functor preserves finite (small) limits if, and only if, it pre-
serves equalizers and finite (small) products. (b) A functor preserves finite (small) colimits
if, and only if, it preserves coequalizers and finite (small) coproducts.

Proof. This follows from the fact that limits are constructed from equalizers and products,
cf. Proposition 1.6.8, and that colimits are constructed from coequalizers and coproducts,
cf. Exercise 1.6.9.

Proposition 1.6.18. For a locally small category C, the Yoneda embedding y : C → Ĉ
preserves all limits that exist in C.

10Products are determined up to isomorphism only, so it would be too restrictive to require F (A×B) =
FA× FB. When that is the case, however, we say that the functor F strictly preserves products.

[DRAFT: September 17, 2022]

1.6 Limits and Colimits 43

Proof. Suppose (L, λ) is a limit of D : I → C. The Yoneda embedding maps D to the

diagram y ◦D : I → Ĉ, defined by

(y ◦D)i = yDi = C(−, Di) .

and it maps the limit cone (L, λ) to the cone (yL, y ◦ λ) on y ◦D, defined by

(y ◦ λ)i = yλi = C(−, λi) .

To see that (yL, y ◦ λ) is a limit cone on y ◦ D, consider a cone (M,µ) on y ◦ D. Then
µ : ∆M =⇒ D consists of a family of functions, one for each i ∈ I and A ∈ C,

(µi)A :MA→ C(A,Di) .

For every A ∈ C and m ∈MA we get a cone on D consisting of morphisms

(µi)Am : A→ Di . (i ∈ I)

There exists a unique morphism ϕAm : A→ L such that (µi)Am = λi ◦ ϕAm. The family
of functions

ϕA :MA→ C(A,L) = (y ◦ L)A (A ∈ C)

forms a factorization ϕ : M =⇒ yL of the cone (M,µ) through the cone (L, λ). This
factorization is unique because each ϕAm is unique.

In effect we showed that a covariant representable functor C(A,−) : C → Set preserves
existing limits,

C(A, lim←−
i∈I

Di) ∼= lim←−
i∈I
C(A,Di) .

By duality, the contravariant representable functor C(−, A) : Cop → Set maps existing
colimits to limits,

C(lim−→
i∈I

Di, A) ∼= lim←−
i∈I
C(Di, A) .

Exercise 1.6.19. Prove the above claim that a contravariant representable functor C(−, A) :
Cop → Set maps existing colimits to limits. Use duality between limits and colimits. Does
it also follow by a simple duality argument that a contravariant representable functor
C(−, A) maps existing limits to colimits? How about a covariant representable functor
C(A,−) mapping existing colimits to limits?

Exercise 1.6.20. Prove that a functor F : C → D preserves monos if it preserves limits.
In particular, the Yoneda embedding preserves monos. Hint: Exercise 1.6.5.

Proposition 1.6.21. Right adjoints preserve limits, and left adjoints preserve colimits.

[DRAFT: September 17, 2022]

44 Category Theory

Proof. Suppose we have adjoint functors

C
F

((
⊥ D
G

gg

and a diagram D : I → D whose limit exists in D. We would like to use the following slick
application of Yoneda Lemma to show that G preserves limits: for every A ∈ C,

C(A,G(lim←−D)) ∼= D(FA, lim←−D) ∼= lim←−
i∈I
D(FA,Di)

∼= lim←−
i∈I
C(A,GDi) ∼= C(A, lim←−(G ◦D)) .

Therefore G(limD) ∼= lim(G ◦D). However, this argument only works if we already know
that the limit of G ◦D exists.

We can also prove the stronger claim that whenever the limit of D : I → D exists then
the limit of G ◦D exists in C and its limit is G(limD). So suppose (L, λ) is a limit cone
of D. Then (GL,G ◦ λ) is a cone on G ◦D. If (A,α) is another cone on G ◦D, we have
by adjunction a cone (FA, γ) on D,

αi : A→ GDi

γi : FA→ Di

There exists a unique factorization f : FA → L of this cone through (L, λ). Again by
adjunction, we obtain a unique factorization g : A → GL of the cone (A,α) through the
cone (GL,G ◦ λ):

f : FA→ L

g : A→ GL

The factorization g is unique because γ is uniquely determined from α, f uniquely from α,
and g uniquely from f .

By a dual argument, a left adjoint preserves colimits.

[DRAFT: September 17, 2022]

Chapter 2

Propositional Logic

Propositional logic is the logic of propositional connectives like p ∧ q and p ⇒ q. As
was the case for algebraic theories, the general approach will be to determine suitable
categorical structures to model the logical operations, and then use categories with such
structure to represent (abstract) propositional theories. Adjoints will play a special role, as
we will describe the basic logical operations as such. We again show that the semantics is
“functorial”, meaning that the models of a theory are functors that preserve the categorical
structure. We will show that there are classifying categories for all propositional theories,
as was the case for the algebraic theories that we have already met.

A more abstract, algebraic perspective will then relate the propositional case of syntax-
semantics duality with classical Stone duality for Boolean algebras, and related results from
lattice theory will provide an algebraic treatment of Kripke semantics for intuitionistic (and
modal) propositional logic.

2.1 Propositional calculus

Before going into the details of the categorical approach, we first briefly review the propo-
sitional calculus from a conventional point of view, as we did for algebraic theories. We
focus first on the classical propositional logic, before considering the intuitionistic case in
Section 3.4.

In the style of Section ??, we have the following (abstract) syntax for (propositional)
formulas:

Propositional variable p ::= p1 | p2 | p3 | · · ·
Propositional formula ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2

An example of a formula is therefore
(
p3 ⇔ ((((¬p1) ∨ (p2 ∧ ⊥)) ∨ p1) ⇒ p3)

)
. We will

make use of the usual conventions for parenthesis, with binding order ¬,∧,∨,⇒,⇔. Thus
e.g. the foregoing may also be written unambiguously as p3 ⇔ ¬p1 ∨ p2 ∧ ⊥ ∨ p1 ⇒ p3.

[DRAFT: September 17, 2022]

46 Propositional Logic

Natural deduction

The system of natural deduction for propositional logic has one form of judgement

p1, . . . , pn | ϕ1, . . . , ϕm ⊢ ϕ

where p1, . . . , pn is a context consisting of distinct propositional variables, the formulas
ϕ1, . . . , ϕm are the hypotheses and ϕ is the conclusion. The variables in the hypotheses and
the conclusion must occur among those listed in the context. The hypotheses are regarded
as a (finite) set; so they are unordered, have no repetitions, and may be empty. We may
abbreviate the context of variables by Γ, and we often omit it.

Deductive entailment (or derivability) Φ ⊢ ϕ is thus a relation between finite sets of
formulas Φ and single formulas ϕ. It is defined as the smallest such relation satisfying the
following rules:

1. Hypothesis:

Φ ⊢ ϕ
if ϕ occurs in Φ

2. Truth:

Φ ⊢ ⊤

3. Falsehood:
Φ ⊢ ⊥
Φ ⊢ ϕ

4. Conjunction:
Φ ⊢ ϕ Φ ⊢ ψ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ψ

5. Disjunction:

Φ ⊢ ϕ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ψ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ϕ ∨ ψ Φ, ϕ ⊢ θ Φ, ψ ⊢ θ
Φ ⊢ θ

6. Implication:
Φ, ϕ ⊢ ψ

Φ ⊢ ϕ⇒ ψ

Φ ⊢ ϕ⇒ ψ Φ ⊢ ϕ
Φ ⊢ ψ

For the purpose of deduction, we define ¬ϕ := ϕ⇒ ⊥ and ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).
To obtain classical logic we need only include one of the following additional rules.

7. Classical logic:

Φ ⊢ ϕ ∨ ¬ϕ
Φ ⊢ ¬¬ϕ
Φ ⊢ ϕ

[DRAFT: September 17, 2022]

2.2 Truth values 47

A proof of Φ ⊢ ϕ is a finite tree built from the above inference rules whose root is
Φ ⊢ ϕ. For example, here is a proof of ϕ ∨ ψ ⊢ ψ ∨ ϕ using the disjunction rules:

ϕ ∨ ψ ⊢ ϕ ∨ ψ
ϕ ∨ ψ, ϕ ⊢ ϕ

ϕ ∨ ψ, ϕ ⊢ ψ ∨ ϕ
ϕ ∨ ψ, ψ ⊢ ψ

ϕ ∨ ψ, ψ ⊢ ψ ∨ ϕ
ϕ ∨ ψ ⊢ ψ ∨ ϕ

A judgment Φ ⊢ ϕ is provable if there exists a proof of it. Observe that every proof has at
its leaves either the rule for ⊤ or a hypothesis.

Exercise 2.1.1. Derive each of the two classical rules (2.1), called excluded middle and
double negation, from the other.

2.2 Truth values

The idea of an axiomatic system of deductive, logical reasoning goes to back to Frege, who
gave the first such system for propositional calculus (and more) in his Begriffsschrift of
1879. The question soon arose whether Frege’s rules (or rather, their derivable consequences
– it was clear that one could chose the primitive basis in different but equivalent ways)
were correct, and if so, whether they were all the correct ones. An ingenious solution was
proposed by Russell’s student Wittgenstein, who came up with an entirely different way of
singling out a set of “valid” propositional formulas in terms of assignments of truth values
to the variables occurring in them. He interpreted this as showing that logical validity
was really a matter of the logical structure of a proposition, and not depedent on any
particular system of derivations. The same idea seems to have been had independently by
Post, who proved that the valid propositional formulas coincide with the ones derivable
in Whitehead and Russell’s Principia Mathematica (which is propositionally equivalent
to Frege’s system), a fact that we now refer to as the soundness and completeness of
propositional logic.

In more detail, let a valuation v be an assignment of a “truth-value” 0, 1 to each
propositional variable, v(pn) ∈ {0, 1}. We can then extend the valuation to all propositional
formulas [[ϕ]]v by the recursion,

[[pn]]
v = v(pn)

[[⊤]]v = 1

[[⊥]]v = 0

[[¬ϕ]]v = 1− [[ϕ]]v

[[ϕ ∧ ψ]]v = min([[ϕ]]v, [[ψ]]v)

[[ϕ ∨ ψ]]v = max([[ϕ]]v, [[ψ]]v)

[[ϕ⇒ ψ]]v = 1 iff [[ϕ]]v ≤ [[ψ]]v

[[ϕ⇔ ψ]]v = 1 iff [[ϕ]]v = [[ψ]]v

[DRAFT: September 17, 2022]

48 Propositional Logic

This is sometimes expressed using the “semantic consequence” notation v ⊨ ϕ to mean
that [[ϕ]]v = 1. Then the above specification takes the form:

v ⊨ ⊤ always

v ⊨ ⊥ never

v ⊨ ¬ϕ iff v ⊭ ϕ
v ⊨ ϕ ∧ ψ iff v ⊨ ϕ and v ⊨ ψ

v ⊨ ϕ ∨ ψ iff v ⊨ ϕ or v ⊨ ψ

v ⊨ ϕ⇒ ψ iff v ⊨ ϕ implies v ⊨ ψ

v ⊨ ϕ⇔ ψ iff v ⊨ ϕ iff v ⊨ ψ

Finally, ϕ is valid, written ⊨ ϕ, is defined by,

⊨ ϕ iff v ⊨ ϕ for all v.

And, more generally, we define ϕ1, ..., ϕn semantically entails ϕ, written

ϕ1, ..., ϕn ⊨ ϕ, (2.1)

to mean that for all valuations v such that v ⊨ ϕk for all k, also v ⊨ ϕ.
Given a formula in context Γ | ϕ and a valuation v for the variables in Γ, one can check

whether v ⊨ ϕ using a truth table, which is a systematic way of calculating the value of
[[ϕ]]v. For example, under the assignment v(p1) = 1, v(p2) = 0, v(p3) = 1 we can calculate
[[ϕ]]v for ϕ =

(
p3 ⇔ ((((¬p1) ∨ (p2 ∧ ⊥)) ∨ p1)⇒ p3)

)
as follows.

p1 p2 p3 p3 ⇔ ¬ p1 ∨ p2 ∧ ⊥ ∨ p1 ⇒ p3
1 0 1 1 1 0 1 0 0 0 0 1 1 1 1

The value of the formula ϕ under the valuation v is then the value in the column under
the main connective, in this case ⇔, and thus [[ϕ]]v = 1.

Displaying all 23 valuations for the context Γ = p1, p2, p3, therefore results in a table
that checks for validity of ϕ,

p1 p2 p3 p3 ⇔ ¬ p1 ∨ p2 ∧ ⊥ ∨ p1 ⇒ p3
1 1 1 . 1 . . .
1 1 0 . 1 . . .
1 0 1 1 1 0 1 0 0 0 0 1 1 1 1
1 0 0 . 1 . . .
0 1 1 . 1 . . .
0 1 0 . 1 . . .
0 0 1 . 1 . . .
0 0 0 . 1 . . .

In this case, working out the other rows shows that ϕ is indeed valid, thus ⊨ ϕ.

[DRAFT: September 17, 2022]

2.3 Boolean algebra 49

Theorem 2.2.1 (Soundness and Completeness of Propositional Calculus). Let Φ be any
set of formulas and ψ any formula, then

Φ ⊢ ψ ⇐⇒ Φ ⊨ ψ.

In particular, for any propositional formula ϕ we have

⊢ ϕ ⇐⇒ ⊨ ϕ.

Thus derivability and validity coincide.

Proof. Let us sketch the usual proof, for later reference.
(Soundness :) First assume Φ ⊢ ψ, meaning there is a finite derivation of ψ, all of the

hypotheses of which are in the set Φ. Take a valuation v such that v ⊨ Φ, meaning that
v ⊨ ϕ for all ϕ ∈ Φ. Observe that for each rule of inference, for any valuation v, if v ⊨ ϑ
for all the hypotheses of the rule, then v ⊨ γ for the conclusion. By induction on the
derivations therefore v ⊨ ϕ.

(Competeness :) Suppose that Φ ⊬ ψ, then Φ,¬ψ ⊬ ⊥ (using double negation elimi-
nation). By Lemma 2.2.2 below, there is a valuation v such that v ⊨ {Φ,¬ψ}. Thus in
particular v ⊨ Φ and v ⊭ ψ, therefore Φ ⊭ ψ.

The key lemma is this:

Lemma 2.2.2 (Model Existence). A set Φ of formulas is consistent, Φ ⊬ ⊥, just if it has
a model, i.e. a valuation v such that v ⊨ Φ.

Proof. Let Φ be any consistent set of formulas. We extend Φ ⊆ Ψ to one that is maximally
consistent, meaning that for every formula ψ, either ψ ∈ Ψ or ¬ψ ∈ Ψ and not both.
Enumerate the formulas ϕ0, ϕ1, ..., and let,

Φ0 = Φ,

Φn+1 = Φn ∪ ϕn if consistent, else Φn,

Ψ =
⋃

nΦn.

Now for each propositional variable p, define v(p) = 1 just if p ∈ Ψ.

2.3 Boolean algebra

There is of course another apporach to propositional logic, which also goes back to the
19th century, namely that of Boolean algebra, which draws on the analogy between the
propositional operations and the arithmetical ones.

Definition 2.3.1. A Boolean algebra is a set B equipped with the operations:

0, 1 : 1→ B

¬ : B → B

∧,∨ : B ×B → B

[DRAFT: September 17, 2022]

50 Propositional Logic

satisfying the following equations:

x ∨ x = x x ∧ x = x

x ∨ y = y ∨ x x ∧ y = y ∧ x
x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
0 ∨ x = x 1 ∧ x = x

1 ∨ x = 1 0 ∧ x = 0

¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∧ y) = ¬x ∨ ¬y
x ∨ ¬x = 1 x ∧ ¬x = 0

This is of course an algebraic theory, like those considered in the previous chapter.
Familiar examples of Boolean algebras are 2 = {0, 1}, with the usual operations, and more
generally, any powerset PX, with the set-theoretic operations A∨B = A∪B, etc. (indeed,
2 = P1 is a special case.).

Exercise 2.3.2. Show that the free Boolean algebra B(n) on n-many generators is the
double powerset PP(n), and determine the free functor on finite sets.

One can use equational reasoning in Boolean algebra as an alternative to the deductive
propositional calculus as follows. For a propositional formula in context Γ | ϕ, let us say
that ϕ is equationally provable if we can prove ϕ = 1 by equational reasoning (Section ??),
from the laws of Boolean algebras above. More generally, for a set of formulas Φ and a
formula ψ let us define the ad hoc relation of equational provability,

Φ ⊢= ψ (2.2)

to mean that ψ = 1 can be proven equationally from (the Boolean equations and) the set
of all equations ϕ = 1, for ϕ ∈ Φ. Since we don’t have any laws for the connectives ⇒ or
⇔, let us replace them with their Boolean equivalents, by adding the equations:

ϕ⇒ ψ = ¬ϕ ∨ ψ ,
ϕ⇔ ψ = (¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ) .

For example, here is an equational proof of (ϕ⇒ ψ) ∨ (ψ ⇒ ϕ).

(ϕ⇒ ψ) ∨ (ψ ⇒ ϕ) = (¬ϕ ∨ ψ) ∨ (¬ψ ∨ ϕ)
= ¬ϕ ∨ (ψ ∨ (¬ψ ∨ ϕ))
= ¬ϕ ∨ ((ψ ∨ ¬ψ) ∨ ϕ)
= ¬ϕ ∨ (1 ∨ ϕ)
= ¬ϕ ∨ 1

= 1 ∨ ¬ϕ
= 1

[DRAFT: September 17, 2022]

2.4 Lawvere duality for Boolean algebras 51

Thus,

⊢= (ϕ⇒ ψ) ∨ (ψ ⇒ ϕ) .

We now ask: What is the relationship between equational provability Φ ⊢= ϕ, deductive
entailment Φ ⊢ ϕ, and semantic entailment Φ ⊨ ϕ?

Exercise 2.3.3. Using equational reasoning, show that every propositional formula ϕ has
both a conjunctive ϕ∧ and a disjunctive ϕ∨ Boolean normal form such that:

1. The formula ϕ∨ is an n-fold disjunction of m-fold conjunctions of positive pi or
negative ¬pj propositional variables,

ϕ∨ = (q11 ∧ ... ∧ q1m1) ∨ ... ∨ (qn1 ∧ ... ∧ qnmn) , qij ∈ {pij,¬pij} ,

and ϕ∧ is the same, but with the roles of ∨ and ∧ reversed.

2. Both

⊢= ϕ⇔ ϕ∨ and ⊢= ϕ⇔ ϕ∧ .

Exercise 2.3.4. Using Exercise 2.3.3, show that for every propositional formula ϕ, equa-
tional provability is equivalent to semantic validity,

⊢= ϕ ⇐⇒ ⊨ ϕ .

Hint: Put ϕ into conjunctive normal form and read off a truth valuation that falsifies it, if
there is one.

Exercise 2.3.5. A Boolean algebra can be partially ordered by defining x ≤ y as

x ≤ y ⇐⇒ x ∨ y = y or equivalently x ≤ y ⇐⇒ x ∧ y = x .

Thus a Boolean algebra is a (poset) category. Show that as a category, a Boolean algebra
has all finite limits and colimits and is cartesian closed, and that a finitely complete and
cocomplete cartesian closed poset is a Boolean algebra just if it satisfies x = (x⇒ 0)⇒ 0,
where, as before, we define x⇒ y := ¬x∨y. Finally, show that homomorphisms of Boolean
algebras f : B → B′ are the same thing as functors (i.e. monotone maps) that preserve all
finite limits and colimits.

2.4 Lawvere duality for Boolean algebras

Let us apply the machinery of algebraic theories from Chapter ?? to the algebraic theory
of Boolean algebras and see what we get. The algebraic theory B of Boolean algebras is
a finite product (FP) category with objects 1, B,B2, ..., containing a Boolean algebra B,
with underlying object |B| = B. By Theorem ??, B has the universal property that finite

[DRAFT: September 17, 2022]

52 Propositional Logic

product preserving (FP) functors from B into any FP-category C correspond (pseudo-
)naturally to Boolean algebras in C,

HomFP(B,C) ≃ BA(C) . (2.3)

The correspondence is mediated by evaluating an FP functor F : B→ C at (the underlying
structure of) the Boolean algebra B to get a Boolean algebra F (B) = BA(F)(B) in C:

F : B −→ C FP

F (B) BA(C)

We call B the universal Boolean algebra. Given a Boolean algebra A in C, we write

A♯ : B −→ C

for the associated classifying functor. By the equivalence of categories (2.3), we have isos,

A♯(B) ∼= A, F (B)♯ ∼= F .

And in particular, B♯ ∼= 1B : B→ B.
By Lawvere duality, Corollary ??, we know that Bop can be identified with a full

subcategory mod(B) of B-models in Set (i.e. Boolean algebras),

Bop = mod(B) ↪→ Mod(B) = BA(Set) , (2.4)

namely, that consisting of the finitely generated free Boolean algebras F (n). Composing
(2.4) and (2.3), we have an embedding of Bop into the functor category,

Bop ↪→ BA(Set) ≃ HomFP(B, Set) ↪→ SetB , (2.5)

which, up to isomorphism, is just the (contravariant) Yoneda embedding, taking Bn ∈ B
to the covariant representable functor yB(Bn) = HomB(B

n,−) (cf. Theorem ??).
Now consider provability of equations between terms ϕ : Bk → B in the theory B,

which are essentially the same as propositional formulas in context (p1, ..., pk | ϕ) modulo
B-provable equality. The universal Boolean algebra B is logically generic, in the sense that
for any such formulas ϕ, ψ, we have B ⊨ ϕ = ψ just if B ⊢ ϕ = ψ (Proposition ??). The
latter condition is equational provability from the axioms for Boolean algebras, which is
just what was used in the definition of ⊢= ϕ (cf. 2.2). Thus, in particular,

⊢= ϕ ⇐⇒ B ⊢ ϕ = 1 ⇐⇒ B ⊨ ϕ = 1 .

As we showed in Proposition ??, the image of the universal model B under the (FP)
covariant Yoneda embedding,

yB : B→ SetB
op

is also a logically generic model, with underlying object |yB(B)| = HomB(−, B). By Propo-
sition ?? we can use that fact to restrict attention to Boolean algebras in Set, and in

[DRAFT: September 17, 2022]

2.4 Lawvere duality for Boolean algebras 53

particular, to the finitely generated free ones F (n), when testing for equational provability.
Specifically, using the (FP) evaluation functors evalBn : SetB

op → Set for all objects Bn ∈ B,
we can extend the above reasoning as follows:

⊢= ϕ ⇐⇒ B ⊢ ϕ = 1

⇐⇒ B ⊨ ϕ = 1

⇐⇒ yB(B) ⊨ ϕ = 1

⇐⇒ evalBnyB(B) ⊨ ϕ = 1 for all Bn ∈ B
⇐⇒ F (n) ⊨ ϕ = 1 for all n.

The last step holds because the image of yB(B) under evalBn is the free Boolean algebra
F (n) (cf. Exercise ??). Indeed, for the underlying objects we have

|evalBnyB(B)| ∼= evalBn |yB(B)| ∼= evalBnyB(|B|) ∼= evalBnyB(B) ∼= yB(B)(Bn)
∼= HomB(B

n, B) ∼= HomBAop(F (n), F (1)) ∼= HomBA(F (1), F (n)) ∼= |F (n)| .

Thus to test for equational provability it suffices to check the equations in the free algebras
F (n) (which makes sense, since these are usually defined in terms of equational provability).
We have therefore shown:

Lemma 2.4.1. A formula in context p1, ..., pk | ϕ is equationally provable ⊢= ϕ just in
case, for every free Boolean algebra F (n), we have F (n) ⊨ ϕ = 1.

The condition F (n) ⊨ ϕ = 1 means that the equation ϕ = 1 holds generally in F (n),
i.e. for any elements f1, ..., fk ∈ F (n), we have ϕ[f1/p1, ..., fk/pk] = 1, where the expression
ϕ[f1/p1, ..., fk/pk] denotes the element of F (n) resulting from interpreting the propositional
variables pi as the elements fi and evaluating the resulting expression using the Boolean
operations of F (n). But now observe that the recipe:

for any elements f1, ..., fk ∈ F (n), let the expression

ϕ[f1/p1, ..., fk/pk] (2.6)

denote the element of F (n) resulting from interpreting the propositional vari-
ables pi as the elements fi and evaluating the resulting expression using the
Boolean operations of F (n)

describes the unique Boolean homomorphism

F (1)
ϕ // F (k)

(f1, ..., fk) // F (n) ,

where (f1, ..., fk) : F (k) → F (n) is determined by the elements f1, ..., fk ∈ F (n), and
ϕ : F (1) → F (k) by the corresponding element (p1, ..., pk | ϕ) ∈ F (k). It is therefore
equivalent to check the case k = n and fi = pi, i.e. the “universal case”

(p1, ..., pk | ϕ) = 1 in F (k) . (2.7)

Finally, we then have:

[DRAFT: September 17, 2022]

54 Propositional Logic

Proposition 2.4.2 (Completeness of the equational propositional calculus). Equational
propositional calculus is sound and complete with respect to boolean-valued models in Set,
in the sense that a propositional formula ϕ is equationally provable from the laws of Boolean
algebra,

⊢= ϕ ,
just if it holds generally in any Boolean algebra (in Set).

Proof. By “holding generally” is meant the universal quantification of the equation over
elements of a given Boolean algebra B, which is of course equivalent to saying that it
holds for all elements of B, in the sense stated after the Lemma. But, as above, this is
equivalent to the condition that for all b1, ..., bk ∈ B, for (b1, ..., bk) : F (k) → B we have
(b1, ..., bk)(ϕ) = 1 in B, which in turn is clearly equivalent to the previously determined
“universal” condition (2.7) that ϕ = 1 in F (k).

The analogous statement for equational entailment Φ ⊢= ϕ is left as an exercise.
Corollary 2.4.2 is a (very) special case of the Gödel completeness theorem for first-

order logic, for just the equational fragment of just the specific theory of Boolean algebras
(although, an analogous result of course holds for any other algebraic theory, and many
other systems of logic can be reduced to the algebraic case). Nonetheless, it suggests
another approach to the semantics of propositional logic based upon the idea of a Boolean
valuation, generalizing the traditional truth-value semantics from Section 2.2. We pursue
this idea systematically in the following section.

Exercise 2.4.3. For a formula in context p1, ..., pk | ϑ and a Boolean algebra A, let
the expression ϑ[a1/p1, ..., ak/pk] denote the element of A resulting from interpreting the
propositional variables pi in the context as the elements ai ofA, and evaluating the resulting
expression using the Boolean operations of A. For any finite set of propositional formulas
Φ and any formula ψ, let Γ = p1, ..., pk be a context for (the formulas in) Φ∪{ψ}. Finally,
recall that Φ ⊢= ψ means that ψ = 1 is equationally provable from the set of equations
{ϕ = 1 | ϕ ∈ Φ}. Show that Φ ⊢= ψ just if for all finitely generated free Boolean algebras
F (n), the following condition holds:

For any elements f1, ..., fk ∈ F (n), if ϕ[f1/p1, ..., fk/pk] = 1 for all ϕ ∈ Φ, then
ψ[f1/p1, ..., fk/pk] = 1.

Is it sufficient to just take F (k) and its generators p1, ..., pk as the f1, ..., fk? Is it equiv-
alent to take all Boolean algebras B, rather than the finitely generated free ones F (n)?
Determine a condition that is equivalent to Φ ⊢= ψ for not necessarily finite sets Φ.

2.5 Functorial semantics for propositional logic

Considering the algebraic theory of Boolean algebras suggests the idea of a Boolean valu-
ation of propositional logic, generalizing the truth valuations of section 2.2. This can be
seen as applying the framework of functorial semantics to a different system of logic than

[DRAFT: September 17, 2022]

2.5 Functorial semantics for propositional logic 55

that of finite product categories, namely that represented categorically by poset categories
with finite products ∧ and coproducts ∨ (each of these specializations could, of course, also
be considered separately, giving ∧-semi-lattices and categories with finite products × and
coproducts +, respectively). Thus we are moving from the top right corner to the bottom
center position in the following Hasse diagram of structured categories:

+ ×

+ ,×

∨ ∧

∨ ,∧

In Chapter ?? we shall see how first-order logic results categorically from these two cases
by “indexing the lower one over the upper one”.

Definition 2.5.1. A propositional theory T consists of a set VT of propositional variables,
called the basic or atomic propositions, and a set AT of propositional formulas (over VT),
called the axioms. The consequences Φ ⊢T ϕ are those judgements that are derivable by
natural deduction (as in Section 2.1), from the axioms AT.

Definition 2.5.2. Let T = (VT, AT) be a propositional theory and B a Boolean algebra.
A model of T in B, also called a Boolean valuation of T is an interpretation function
v : VT → |B| such that, for every α ∈ AT, we have [[α]]v = 1B in B, where the extension
[[−]]v of v from VT to all formulas (over VT) is defined in the expected way, namely:

[[p]]v = v(p), p ∈ VT
[[⊤]]v = 1B

[[⊥]]v = 0B

[[¬ϕ]]v = ¬B[[ϕ]]v

[[ϕ ∧ ψ]]v = [[ϕ]]v ∧B [[ψ]]v

[[ϕ ∨ ψ]]v = [[ϕ]]v ∨B [[ψ]]v

[[ϕ⇒ ψ]]v = ¬B[[ϕ]]v ∨B [[ψ]]v

Finally, let Mod(T,B) be the set of all T-models in B. Given a Boolean homomorphism
f : B → B′, there is an induced mapping Mod(T, f) : Mod(T,B)→ Mod(T,B′), determined
by setting Mod(T, f)(v) = f ◦ v, which is clearly functorial.

[DRAFT: September 17, 2022]

56 Propositional Logic

Theorem 2.5.3. The functor Mod(T) : BA → Set is representable, with representing
Boolean algebra BT, called the Lindenbaum-Tarski algebra of T.

Proof. We construct BT in two steps:
Step 1: Suppose first that AT is empty, so T is just a set V of propositional variables.

Define the Lindenbaum-Tarski algebra B[V] by

B[V] = {ϕ | ϕ is a formula in context V }/∼

where the equivalence relation ∼ is (deductively) provable bi-implication,

ϕ ∼ ψ ⇐⇒ ⊢ ψ ⇔ ψ.

The operations are (well-)defined on equivalence classes by setting,

[ϕ] ∧ [ψ] = [ϕ ∧ ψ],

and so on. (The reader who has not seen this construction before should fill in the details!)
Step 2: In the general case T = (VT, AT), let

BT = B[VT]/∼T ,

where the equivalence relation ∼T is now AT-provable bi-implication,

ϕ ∼T ψ ⇐⇒ AT ⊢ ψ ⇔ ψ.

The operations are defined as before, but now on equivalence classes [ϕ] modulo AT.
Now observe that the construction of BT is a variation on that of the syntactic category

CT of the algebraic theory T in the sense of the previous chapter, and the statement of the
theorem is its universal property as the classifying category of T-models, namely

Mod(T,B) ∼= HomBA(BT,B) , (2.8)

naturally in B. (Indeed, sinceMod(T,B) is now a set rather than a category, we can classify
it up to isomorphism rather than equivalence of categories.) The proof of this fact is a
variation on the proof of the corresponding theorem ?? from Chapter 1. Further details
are given in the following Remark 2.5.4 for the interested reader.

Remark 2.5.4 (Adjoint Rules for Propositional Calculus). For the construction of the
Lindenbaum-Tarski algebra BT, it is convenient to reformulate the rules of inference for
the propositional calculus in the following equivalent adjoint form:

Contexts Γ may be omitted, since the rules leave them unchanged (there is no variable
binding). We may also omit hypotheses that remain unchanged. Thus e.g. the hypothesis
rule may be written in any of the following equivalent ways.

Γ | ϕ1, . . . , ϕm ⊢ ϕi ϕ1, . . . , ϕm ⊢ ϕi ϕ ⊢ ϕ

[DRAFT: September 17, 2022]

2.5 Functorial semantics for propositional logic 57

The structural rules can then be stated as follows:

ϕ ⊢ ϕ
ϕ ⊢ ψ ψ ⊢ ϑ

ϕ ⊢ ϑ

ϕ ⊢ ϑ
ψ, ϕ ⊢ ϑ

ϕ, ϕ ⊢ ϑ
ϕ ⊢ ϑ

ϕ, ψ ⊢ ϑ
ψ, ϕ ⊢ ϑ

The rules for the propositional connectives can be given in the following adjoint form,
where the double line indicates a two-way rule (with the obvious two instances when there
are two conclusions).

ϕ ⊢ ⊤ ⊥ ⊢ ϕ

ϑ ⊢ ϕ ϑ ⊢ ψ
ϑ ⊢ ϕ ∧ ψ

ϕ ⊢ ϑ ψ ⊢ ϑ
ϕ ∨ ψ ⊢ ϑ

ϑ, ϕ ⊢ ψ
ϑ ⊢ ϕ⇒ ψ

For the purpose of deduction, negation ¬ϕ is again treated as defined by ϕ ⇒ ⊥ and
bi-implication ϕ ⇔ ψ by (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). For classical logic we also include the rule
of double negation:

¬¬ϕ ⊢ ϕ
(2.9)

It is now obvious that the set of formulas is preordered by ϕ ⊢ ψ, and that the poset
reflection agrees with the deducibility equivalence relation,

ϕ ⊣⊢ ψ ⇐⇒ ϕ ∼ ψ .

Moreover, BT clearly has all finite limits ⊤,∧ and colimits ⊥,∨, is cartesian closed ∧ ⊣ ⇒,
and is therefore a Heyting algebra (see Section ?? below). The rule of double negation
then makes it a Boolean algebra.

The proof of the universal property of BT is essentially the same as that for CT.

Exercise 2.5.5. Fill in the details of the proof that BT is a well-defined Boolean algebra,
with the universal property stated in (2.8).

Just as for the case of algebraic theories and FP categories, we now have the following
corollary of the classifying theorem 2.5.3. (Note that the recipe at (2.6) for a Boolean
valuation in F (n) of the formula in context p1, ..., pk | ϕ is exactly a model in F (n) of the
theory T = {p1, ..., pk}.)

Corollary 2.5.6. For any set of formulas Φ and formula ϕ, derivability Φ ⊢ ϕ is equivalent
to validity under all Boolean valuations. Therefore by Proposition 2.4.2 (and Exercise
2.4.3), we also have

Φ ⊢ ϕ ⇐⇒ Φ ⊢= ϕ .

[DRAFT: September 17, 2022]

58 Propositional Logic

Remark 2.5.7. If AT is non-empty, but finite, then let

αT :=
∧

α∈AT

α .

We then have
BT = B[VT]/αT ,

where as usual B/b denotes the slice category of the Boolean algebra B over an element
b ∈ B.
Remark 2.5.8. Our definition of the Lindenbaum-Tarski algebra is given in terms of
provability, rather than the more familiar semantic definition using (truth) valuations. The
two are, of course, equivalent in light of Theorem 2.2.1, but since we intend to prove that
theorem, this definition will be more useful, as it parallels that of the syntactic category
CT of an algebraic theory.

Inspecting the universal property (2.8) of BT for the case B[V] where there are no
axioms, we now have the following.

Corollary 2.5.9. The Lindenbaum-Tarski algebra B[V] is the free Boolean algebra on the
set V . In particular, B[p1, ..., pn] is the finitely generated, free Boolean algebra F (n).

The isomorphism B[p1, ..., pn] ∼= F (n) expresses the fact recorded in Corollary 2.5.6
that the relations of derivability by natural deduction Φ ⊢ ϕ and equational provability
Φ ⊢= ϕ agree — answering part of the question at the end of Section ??.

Exercise 2.5.10. Show that the Boolean algebras BT for finite sets VT of variables and
AT of formulas are exactly the finitely presented ones.

Finally, we can use the following to finish the comparison of ⊢ ϕ and ⊨ ϕ.

Lemma 2.5.11. Let B be a finitely presented Boolean algebra in which 0 ̸= 1. Then there
is a Boolean homomorphism

h : B → 2 .

Proof. By Exercise 2.5.10, we can assume that B = B[p1...pn]/α classifying the theory
T = (p1...pn, α). By the assumption that 0 ̸= 1 in B = B[p1...pn]/α, we have α ̸= 0 in the
free Boolean algebra F (n) ∼= B[p1...pn], whence α ⊬ ⊥. Since F (n) ∼= PP(n), there is a
valuation ϑ : {p1...pn} → 2 such that [[α]]ϑ = 1. This is exactly a Boolean homomorphism
B[p1...pn]/α→ 2, as required.

Corollary 2.5.12. For any set of formulas Φ and formula ϕ, derivability Φ ⊢ ϕ is equiv-
alent to semantic entailment,

Φ ⊨ ϕ ⇐⇒ Φ ⊢ ϕ .
Proof. By 2.5.6, it suffices to show that Φ ⊨ ϕ is equivalent to Φ ⊢= ϕ, but the latter we
know to be equivalent to holding in all Boolean valuations in free Boolean algebras F (n),
and the former to holding in all truth valuations, i.e. Boolean valuations in 2. Thus it will
suffice to embed F (n) as a Boolean algebra into a powerset PX = 2

X , for a set X. By
Lemma 2.5.11 we can take X = 2n.

[DRAFT: September 17, 2022]

2.6 Stone representation 59

2.6 Stone representation

Regarding a Boolean algebra B as a category with finite products, consider its Yoneda
embedding y : B ↪→ SetB

op

. Since the hom-set B(x, y) is 2-valued, we have a factorization,

B ↪→ 2
Bop

↪→ SetB
op

in which each factor still preserves the finite products (note that the products in 2 are
preserved by the inclusion 2 ↪→ Set, and the products in the functor categories are taken
pointwise). Indeed, this is an instance of a general fact. In the category Cat× of finite
product categories (and ×-preserving functors), the inclusion of the full subcategory of
posets with ∧ (the ∧-semilattices) has a right adjoint R, in addition to the left adjoint L
of poset reflection.

Cat×

L

R
~~

Pos∧
?�
i

OO

For a finite product category C, the poset RC is the subcategory Sub(1) ↪→ C of subobjects
of the terminal object 1 (equivalently, the category of monos m : M ↣ 1). The reason
for this is that a ×-preserving functor f : A → C from a poset A with meets takes every
object a ∈ A to a mono f(a) ↣ 1 in C, since the following is a product diagram in A.

a // 1

a

OO

// a

OO

Exercise 2.6.1. Prove this, and use it to verify that R = Sub(1) is indeed a right adjoint
to the inclusion of ∧-semilattices into finite-product categories.

Now the functor category 2Bop
= Pos(Bop,2) of all contravariant, monotone maps Bop →

2 (which indeed is Sub(1) ↪→ SetC
op

) is easily seen to be isomorphic to the poset ↓B of all
sieves (or “downsets”) in B: subsets S ⊆ B that are downward closed, x ≤ y ∈ S ⇒ x ∈ S,
ordered by subset inclusion S ⊆ T . Explicitly, the isomorphism

Pos(Bop,2) ∼= ↓B (2.10)

is given by taking f : Bop → 2 to f−1(1) and S ⊆ B to the function fS : Bop → 2 with
fS(b) = 1 ⇔ b ∈ S. Under this isomorphism, the Yoneda embedding takes an element
b ∈ B covariantly to the principal downset ↓b ⊆ B of all x ≤ b.

Exercise 2.6.2. Show that (2.10) is indeed an isomorphism of posets, and that it takes
the Yoneda embedding to the principal sieve mapping, as claimed.

For algebraic theories A, we used the Yoneda embedding to give a completeness theorem
for equational logic with respect to Set-valued models, by composing the (faithful functor)

[DRAFT: September 17, 2022]

60 Propositional Logic

y : A ↪→ SetA
op

with the (jointly faithful) evaluation functors evalA : SetA
op → Set, for

all objects A ∈ A. This amounts to considering all covariant representables evalA ◦ y =
A(A,−) : A → Set, and observing that these are then (both ×-preserving and) jointly
faithful.

We can do the same thing for a Boolean algebra B (which is, after all, a finite product
category) to get a jointly faithful family of ×-preserving, monotone maps B(b,−) : B → 2,
i.e. ∧-semilattice homomorphisms. By taking the preimages of {1} ↪→ 2, such homomor-
phisms correspond to filters in B: “upsets” that are also closed under ∧. The representables
then correspond to the principal filters ↑b ⊆ B. The problem with using this approach for
a completeness theorem for propositional logic is that such ∧-homomorphisms B → 2 are
not models, because they need not preserve the joins ϕ ∨ ψ (nor the complements ¬ϕ).

Lemma 2.6.3. Let B,B′ be Boolean algebras and f : B → B′ a distributive lattice homo-
morphism. Then f preserves negation, and so is Boolean. The category Bool of Boolean
algebras is thus a full subcategory of the category DLat of distributive lattices.

Proof. The complement ¬b is the unique element of B such that both b ∨ ¬b = 1 and
b ∧ ¬b = 0.

This suggests representing a Boolean algebra B, not by its filters, but by its prime
filters, which correspond bijectively to distributive lattice homomorphisms B → 2.

Definition 2.6.4. A filter F ⊆ D in a distributive lattice D is prime if b ∨ b′ ∈ F implies
b ∈ F or b′ ∈ F . Equivalently, just if the corresponding ∧-semilattice homomorphism
fF : B → 2 is a lattice homomorphism.

If B is Boolean, it then follows that prime filters F ⊆ B are in bijection with Boolean
homomorphisms B → 2, via the assignment F 7→ fF : B → 2 with fF (b) = 1⇔ b ∈ F and
(f : B → 2) 7→ Ff := f−1(1) ⊆ B. The prime filter Ff may be called the (filter) kernel of
f : B → 2.

Proposition 2.6.5. In a Boolean algebra B, the following conditions on a subset F ⊆ B
are equivalent.

1. F is a prime filter

2. the complement B\F is a prime ideal (defined as a prime filter in Bop).

3. the complement B\F is an ideal (defined as a filter in Bop).

4. F is a filter, and for each b ∈ B, either b ∈ F or ¬b ∈ F and not both.

5. F is a maximal filter: F is a filter and for all filters G, if F ⊆ G then F = G (also
called an ultrafilter).

6. the map fF : B → 2 given by fF (b) = 1 ⇔ b ∈ F (as in (2.10)) is a Boolean
homomorphism.

[DRAFT: September 17, 2022]

2.6 Stone representation 61

Proof. Exercise!

The following lemma is sometimes referred to as the (Boolean) prime ideal theorem.

Lemma 2.6.6. Let B be a Boolean algebra, I ⊆ B an ideal, and F ⊆ B a filter, with
I ∩ F = ∅. There is a prime filter P ⊇ F with I ∩ P = ∅.

Proof. Suppose first that I = {0} is the trivial ideal, and that B is countable, with b0, b1, ...
an enumeration of its elements. As in the proof of the Model Existence Lemma, we build
an increasing sequence of filters F0 ⊆ F1 ⊆ . . . as follows:

F0 = F

Fn+1 =

{
Fn if ¬bn ∈ Fn

{f ∧ b | f ∈ Fn, bn ≤ b} otherwise

P =
⋃
n

Fn

One then shows that each Fn is a filter, that I ∩ Fn = ∅ for all n and so I ∩ P = ∅, and
that for each bn, either bn ∈ P or ¬bn ∈ P , whence P is prime.

For I ⊆ B a nontrivial ideal we take the quotient Boolean algebra B ↠ B/I, defined
as the algebra of equivalence classes [b] where a ∼I b ⇔ a ∨ i = b ∨ j for some i, j ∈ I.
One shows that this is indeed a Boolean algebra and that the projection onto equivalence
classes πI : B ↠ B/I is a Boolean homomorphism with (ideal) kernel π−1([0]) = I. Now
apply the foregoing argument to obtain a prime filter P : B/I → 2. The composite
pI = P ◦ πI : B → 2 is then a Boolean homomorphism with (filter) kernel p−1

I (1) which is
prime, contains F and is disjoint from I.

The case where B is uncountable is left as an exercise.

Exercise 2.6.7. Finish the proof by (i) verifying the construction of the quotient Boolean
algebra B ↠ B/I, and (ii) considering the case where B is uncountable (Hint : either use
Zorn’s lemma, or well-order B.)

Theorem 2.6.8 (Stone representation theorem). Let B be a Boolean algebra. There is an
injective Boolean homomorphism B↣ PX into a powerset.

Proof. Let X be the set of prime filters in B and consider the map h : B → PX given by
h(b) = {F | b ∈ F}. Clearly h(0) = ∅ and h(1) = X. Moreover, for any filter F , we have
b ∈ F and b′ ∈ F if and only if b ∧ b′ ∈ F , so h(b ∧ b′) = h(b) ∩ h(b′). If F is prime, then
b ∈ F or b′ ∈ F if and only if b ∨ b′ ∈ F , so h(b ∨ b′) = h(b) ∪ h(b′). Thus h is a Boolean
homomorphism. Let a ̸= b ∈ B, and we want to show that h(a) ̸= h(b). It suffices to
assume that a < b (otherwise, consider a∧ b, for which we cannot have both a∧ b = a and
a ∧ b = b). We seek a prime filter P ⊆ B with b ∈ P but a /∈ P . Apply Lemma 2.6.6 to
the ideal ↓a and the filter ↑b.

[DRAFT: September 17, 2022]

62 Propositional Logic

2.7 Stone duality

Note that in the Stone representation B↣ P(XB) the powerset Boolean algebra

P(XB) ∼= Set
(
Bool(B,2), 2

)
is evidently (covariantly) functorial in B, and has an apparent “double-dual” form B∗∗.
This suggests a possible duality between the categories Bool and Set,

Boolop
∗

**
Set

∗
jj (2.11)

with contravariant functors B∗ = Bool(B,2), the set of prime filters, for a Boolean algebra
B, and S∗ = Set(S, 2), the powerset Boolean algebra, for a set S. This indeed gives a
contravariant adjunction “on the right”,

B → PS Bool

S → XB Set
(2.12)

by applying the contravariant functors

PS = Set(S, 2),

XB = Bool(B,2),

and then precomposing with the respective “evaluation” natural transformations,

ηB : B → PXB ∼= Set
(
Bool(B,2), 2

)
,

εS : S → XPS
∼= Bool

(
Set(S, 2),2

)
.

The homomorphism ηB takes an element b ∈ B to the set of prime filters that contain it,
and the function εS takes an element s ∈ S to the principal filter ↑{s} ⊆ PS, which is
prime since the singleton set {s} is an atom in PS, i.e., a minimal, non-zero element.

Exercise 2.7.1. Verify the adjunction (2.14).

The adjunction (2.14) is not an equivalence, however, because neither of the units ηB
nor εS is in general an isomorphism. We can do better by topologizing the set XB of
prime filters, in order to be able to cut down the powerset PXB ∼= Set(XB, 2) to just the
continuous functions into the discrete space 2, which then correspond to the clopen sets in
XB. To do so, we take as basic open sets all those sets of the form:

Bb = {P ∈ XB | b ∈ P}, b ∈ B. (2.13)

These sets are closed under finite intersections, because Ba ∩ Bb = Ba∧b. Indeed, if P ∈
Ba ∩Bb then a ∈ P and b ∈ P , whence a ∧ b ∈ P , and conversely.

[DRAFT: September 17, 2022]

2.7 Stone duality 63

Definition 2.7.2. For any Boolean algebra B, the prime spectrum of B is a topological
space XB with the prime filters P ⊆ B as points, and the sets Bb of (2.13), for all b ∈ B,
as basic open sets. The prime spectrum XB is also called the Stone space of B.

Proposition 2.7.3. The open sets O(XB) of the Stone space are in order-preserving,
bijective correspondence with the ideals I ⊆ B of the Boolean algebra, with the principal
ideals ↓b corresponding exactly to the clopen sets.

Proof. Exercise!

We now have an improved adjunction

Boolop

Spec
**
Top

Clop

kk (2.14)

Spec(B) = (XB,O(XB))

Clop(X) = Top(X, 2),

for which, up to isomorphism, the space Spec(B) has the underlying set Bool(B,2) given
by “homming” into the Boolean algebra 2, and the Boolean algebra Clop(X) = Top(X, 2)
is similarly determined by mapping into the “topological Boolean algebra” given by the
discrete topological space 2. Such an adjunction is said to be induced by a dualizing object :
an object that can be regarded as “living in two different categories”. Here the dualizing
object 2 is acting both as a space and as a Boolean algebra. In the Lawvere duality of
Chapter 1 (and others to be met later on), the role of dualizing object is played by the
category Set of all sets.

Toward the goal of determining the image of the functor Spec : Boolop → Top, observe
first that the Stone space XB of a Boolean algebra B is a subspace of a product of finite
discrete spaces,

XB ∼= Bool(B,2) ↪→
∏
|B|

2,

and is therefore a compact Hausdorff space by Tychonoff’s theorem. Indeed, the basis
(2.13) is just the subspace topology on XB with respect to the product topology on

∏
|B| 2.

The latter space is moreover totally disconnected, meaning that it has a subbasis of clopen
subsets, namely all those of the form f−1(δ) ⊆ |B| for f : |B| → 2 and δ = 0, 1.

Lemma 2.7.4. The prime spectrum XB of a Boolean algebra B is a totally disconnected,
compact, Hausdorff space.

Proof. Since
∏

|B| 2 has just been shown to be a totally disconnected, compact Hausdorff
space, we need only see that the subspace XB is closed. Consider the subspaces

2
|B|
∧ , 2

|B|
∨ , 2

|B|
1 , 2

|B|
0 ⊆ 2|B|

[DRAFT: September 17, 2022]

64 Propositional Logic

consisting of the functions f : |B| → 2 that preserve ∧,∨, 1, 0 respectively. Since each of
these is closed, so is their intersection XB. In more detail, the set of maps f : |B| → 2 that
preserve e.g. ∧ can be described as an equalizer

2
|B|
∧ // // 2|B|

t
//

s //
2|B|×|B|

where the maps s, t take an arrow f : |B| → 2 to the two different composites around the
square

|B| × |B| ∧ //

f × f
��

|B|
f
��

2× 2 ∧
// 2.

But the equalizer 2
|B|
∧ ↣ 2|B| is the pullback of the diagonal on 2|B|×|B|, which is closed

since 2|B|×|B| is Hausdorff. The other cases are analogous .

Definition 2.7.5. A topological space is called Stone if it is totally disconnected, compact,
and Hausdorff. Let Stone ↪→ Top be the full subcategory of topological spaces consisting
of Stone spaces and continuous functions between them.

In order to further cut down the adjunction on the topological side, we can now restrict
it to just the Stone spaces, since we know this subcategory will contain the image of the
functor Spec. In fact, up to isomorphism, this is exactly the image:

Theorem 2.7.6. There is a contravariant equivalence of categories between Bool and Stone,

Boolop
∗

++
Stone ,

∗
kk

with contravariant functors B∗ = XB the Stone space of a Boolean algebra B, as in Def-
inition 2.7.2, and X∗ = clopen(X), the Boolean algebra of all clopen sets in the Stone
space X.

Proof. We just need to show that the two units of the adjunction

ηB : B → Top
(
Bool(B,2), 2

)
,

εS : S → Bool
(
Top(S, 2),2

)
.

are isomorphisms, the second assuming S is a Stone space.
We know by the Stone representation theorem 2.6.8 that ηB is an injective Boolean

homomorphism, so its image, say

B′ ⊆ Top
(
Bool(B,2), 2

) ∼= Clop(XB) ,

[DRAFT: September 17, 2022]

2.7 Stone duality 65

is a sub-Boolean algebra of the clopen sets of XB. It suffices to show that every clopen set
of XB is in B′. Thus let K ⊆ XB be clopen, and take K =

⋃
iBi a cover by basic opens

Bi, all of which, note, are of the form (2.13), and so are in B′. Since K is closed and XB
compact, K is also compact, so there is a finite subcover, each element of which is in B′.
Thus their finite union K is also in B′.

Let S be a Stone space and consider the continuous function

εS : S → Bool
(
Top(S, 2),2

) ∼= XClop(S)

which takes s ∈ S to the prime filter Fs = {K ∈ Clop(S) | s ∈ K} of all clopen sets
containing it. Since S is Hausdorff, εS is a bijection on points, and it is continuous by
construction. To see that it is open, let K ⊆ S be a basic clopen set. The complement
S − K is therefore closed, and thus compact, and so is its image εS(S − K), which is
therefore closed. But since εS is a bijection, εS(S−K) is the complement of εS(K), which
is therefore open.

Remark 2.7.7. Another way to cut down the adjunction (2.14),

Boolop
∗

**
Set

∗
jj

to an equivalence is to restrict the Boolean algebra side to complete, atomic Boolean
algebras CABool and continuous (i.e.

∨
-preserving) homomorphisms between them. One

then obtains a duality
CABoolop ≃ Set,

between complete, atomic Boolean algebras and sets (see Johnstone [?]).

Remark 2.7.8. See Johnstone [?] for a more detailed presentation of the material in this
section (and much more). Also see [?] for a generalization to distributive lattices and
Heyting algebras, as well as to “Boolean algebras with operators”, i.e. algebraic models of
modal logic. For more on logical duality see [?]

[DRAFT: September 17, 2022]

66 Propositional Logic

[DRAFT: September 17, 2022]

Chapter 3

λ-Calculus

3.1 Categorification and the Curry-Howard correspon-

dence

Consider the following natural deduction proof in propositional calculus.

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B
B

(1)
(A ∧B) ∧ (A⇒ B)⇒ B

This deduction shows that

⊢ (A ∧B) ∧ (A⇒ B)⇒ B.

But so does the following:

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

B
(1)

(A ∧B) ∧ (A⇒ B)⇒ B

As does:

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
B

(1)
(A ∧B) ∧ (A⇒ B)⇒ B

There is a sense in which the first two proofs are “equivalent”, but not the first and the
third. The relation (or property) of provability in propositional calculus ⊢ ϕ discards such
differences in the proofs that witness it. According to the “proof-relevant” point of view,

[DRAFT: September 17, 2022]

68 λ-Calculus

sometimes called propositions as types, one retains as relevant some information about
the way in which a proposition is proved. This is effected by annotating the proofs with
proof-terms as they are constructed, as follows:

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B)⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B)⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π2(π1(x)) : B

(1)
λx.π2(π1(x)) : (A ∧B) ∧ (A⇒ B)⇒ B

The proof terms for the first two proofs are the same, namely λx.π2(x)(π1(π1(x))), but the
term for the third one is λx.π2(π1(x)), reflecting the difference in the proofs. The assign-
ment works by labelling assumptions as variables, and then associating term-constructors
to the different rules of inference: pairing and projection to conjunction introduction and
elimination, function application and λ-abstraction to implication elimination (modus po-
nens) and introduction. The use of variable binding to represent cancellation of premisses
is a particularly effective device.

From the categorical point of view, the relation of deducibility ϕ ⊢ ψ is a mere preorder.
The addition of proof terms x : ϕ ⊢ t : ψ results in a categorification of this preorder, in the
sense that it is a “proper” category, the preordered reflection of which is the deducibility
preorder. And now the following remarkable fact emerges: it is hardly surprising that the
deducibility preorder has, say, finite products ϕ ∧ ψ or even exponentials ϕ⇒ ψ; but it is
amazing that the category with proof terms x : ϕ ⊢ t : ψ as arrows, also turns out to be a
cartesian closed category, and indeed a proper one, with distinct parallel arrows, such as

π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) −→ B,

π2(π1(x)) : (A ∧B) ∧ (A⇒ B) −→ B.

[DRAFT: September 17, 2022]

3.2 Cartesian closed categories 69

This category of proofs contains information about the “proof theory” of the propositional
calculus, as opposed to its mere relation of deducibility. The calculus of proof terms can
be presented formally in a system of simple type theory, with an alternate interpretation
as a formal system of function application and abstraction. This dual interpretation—as
the proof theory of propositional logic, and as a system of type theory for the specification
of functions—is called the Curry-Howard correspondence []. From the categorical point
of view, it expresses the structural equivalence between the cartesian closed categories of
proofs in propositional logic and terms in simple type theory. Both of these can be seen
as categorifications of their preorder reflection, the deducibility preorder of propositional
logic (cf. [?]).

In the following sections, we shall consider this remarkable correspondence in detail,
as well as some extensions of the basic case represented by cartesian closed categories:
categories with coproducts, cocomplete categories, and categories equipped with modal
operators. In the next chapter, it will be seen that this correspondence even extends to
proofs in quantified predicate logic and terms in dependent type theory, and beyond.

3.2 Cartesian closed categories

Exponentials

We begin with the notion of an exponential BA of two objects A,B in a category, motivated
by a couple of important examples. Consider first the category Pos of posets and monotone
functions. For posets P and Q the set Hom(P,Q) of all monotone functions between them
is again a poset, with the pointwise order:

f ≤ g ⇐⇒ fx ≤ gx for all x ∈ P . (f, g : P → Q)

Thus Hom(P,Q) is again an object of Pos, when equipped with a suitable order.
Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure on the set

Hom(K,M), defined pointwise by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

Thus the category Mon also admits such “internal Hom”s. The same thing works in the
category Group of groups and group homomophisms, where the set Hom(G,H) of all ho-
momorphisms between groups G and H can be given a pointwise group structure.

These examples suggest a general notion of “internal Hom” in a category: an “object of
morphisms A → B” which corresponds to the hom-set Hom(A,B). The other ingredient
needed is an “evaluation” operation ϵ : BA ×A→ B which evaluates a morphism f ∈ BA

at an argument x ∈ A to give a value ϵ ◦ ⟨f, x⟩ ∈ B. This is always going to be present for
the underlying functions if we’re starting from a set of functions Hom(A,B), but it needs to
be an actual morphism in the category. Finally, we need an operation of “transposition”,
taking a morphism f : C × A → B to one f̃ : C → AB. We shall see that this in fact
separates the previous two examples.

[DRAFT: September 17, 2022]

70 λ-Calculus

Definition 3.2.1. In a category C with binary products, an exponential (BA, ϵ) of objectsA
and B is an object BA together with a morphism ϵ : BA × A → B, called the evaluation
morphism, such that for every f : C×A→ B there exists a unique morphism f̃ : C → BA,
called the transpose1 of f , for which the following diagram commutes.

BA BA × A ϵ // B

C

f̃

OO

C × A

f̃ × 1A

OO

f

<<

Commutativity of the diagram of course means that f = ϵ ◦ (f̃ × 1A).

Definition 3.2.1 is called the universal property of the exponential. It is just the category-
theoretic way of saying that a function f : C ×A→ B of two variables can be viewed as a
function f̃ : C → BA of one variable that maps z ∈ C to a function f̃ z = f⟨z,−⟩ : A→ B

that maps x ∈ A to f⟨z, x⟩. The relationship between f and f̃ is then

f⟨z, x⟩ = (f̃ z)x .

That is all there is to it, really, except that variables and elements never need to be
mentioned. The benefit of this is that the definition is applicable also in categories whose
objects are not sets and whose morphisms are not functions—even though some of the
basic examples are of that sort.

In Poset the exponential QP of posets P and Q is the set of all monotone maps P → Q,
ordered pointwise, as above. The evaluation map ϵ : QP × P → Q is just the usual
evaluation of a function at an argument. The transpose of a monotone map f : R×P → Q
is the map f̃ : R → QP , defined by, (f̃ z)x = f⟨z, x⟩, i.e. the transposed function. We say
that the category Pos has all exponentials.

Definition 3.2.2. Suppose C has all finite products. An object A ∈ C is exponentiable
when the exponential BA exists for every B ∈ C. We say that C has exponentials if every
object is exponentiable. A cartesian closed category (ccc) is a category that has all finite
products and exponentials.

Example 3.2.3. Consider again the example of the set Hom(M,N) of homomorphisms
between two monoidsM,N , equipped with the pointwise monoid structure. To be a monoid
homomorphism. the transpose h̃ : 1 → Hom(M,N) of a homomorphism h : 1 ×M → N
would have to take the unit element u ∈ 1 to the unit homomorphism u : M → N , which
is the constant function at the unit u ∈ N . Since 1 ×M ∼= M , that would mean that all
homomorphisms h : M → N would have the same transpose h̃ = u : 1→ Hom(M,N). So
Mon cannot be cartesian closed. The same argument works in the category Group, and in
many related ones. (But see ?? below on one way of embedding Group into a CCC.)

Exercise 3.2.4. Is the evaluation function eval : Hom(M,N)×M → N a homomorphism
of monoids?

1Also, f is called the transpose of f̃ , so that f and f̃ are each other’s transpose.

[DRAFT: September 17, 2022]

3.2 Cartesian closed categories 71

Two characterizations of CCCs

Proposition 3.2.5. In a category C with binary products an object A is exponentiable if,
and only if, the functor

−× A : C → C
has a right adjoint

−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is (BA, ϵB), where
ϵ : −A×A =⇒ 1C is the counit of the adjunction. The universal property of the exponential
is precisely the universal property of the counit ϵ.

Conversely, suppose for every B there is an exponential (BA, ϵB). As the object part
of the right adjoint we then take BA. For the morphism part, given g : B → C, we can
define gA : BA → CA to be the transpose of g ◦ ϵB,

gA = (g ◦ ϵB)∼

as indicated below.

BA × A ϵB //

gA × 1A
��

B

g

��
CA × A ϵC

// C

(3.1)

The counit ϵ : −A×A =⇒ 1C at B is then ϵB itself, and the naturality square for ϵ is then
exactly (3.1), i.e. the defining property of (f ◦ ϵB)∼:

ϵC ◦ (gA × 1A) = ϵC ◦ ((g ◦ ϵB)∼ × 1A) = g ◦ ϵB .

The universal property of the counit ϵ is precisely the universal property of the exponential
(BA, ϵB)

Note that because exponentials can be expressed as right adjoints to binary products,
they are determined uniquely up to isomorphism. Moreover, the definition of a cartesian
closed category can then be phrased entirely in terms of adjoint functors: we just need to
require the existence of the terminal object, binary products, and exponentials.

Proposition 3.2.6. A category C is cartesian closed if, and only if, the following functors
have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,
(−× A) : C → C . (A ∈ C)

Here !C is the unique functor from C to the terminal category 1 and ∆ is the diagonal
functor ∆A = ⟨A,A⟩, and the right adjoint of −× A is exponentiation by A.

[DRAFT: September 17, 2022]

72 λ-Calculus

The significance of the adjoint formulation is that it implies the possibility of a purely
equational specification (adjoint structure on a category is “equational” in a sense that
can be made precise; see [?]). We can therefore give an explicit, equational formulation of
cartesian closed categories.

Proposition 3.2.7 (Equational version of CCC). A category C is cartesian closed if, and
only if, it has the following structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A × B for all A,B ∈ C together with morphisms π0 : A × B → A and
π1 : A × B → B, and for every pair of morphisms f : C → A, g : C → B a
morphism ⟨f, g⟩ : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism ϵ : BA × A → B, and a
morphism f̃ : C → BA for every morphism f : C × A→ B.

These new objects and morphisms are required to satisfy the following equations:

1. For every f : A→ 1,
f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π0 ◦ ⟨f, g⟩ = f , π1 ◦ ⟨f, g⟩ = g , ⟨π0 ◦ h, π1 ◦ h⟩ = h .

3. For all f : C × A→ B, g : C → BA,

ϵ ◦ (f̃ × 1A) = f , (ϵ ◦ (g × 1A))
∼ = g .

where for e : E → E ′ and f : F → F ′ we define

e× f := ⟨eπ0, fπ1⟩ : E × F → E ′ × F ′.

These equations ensure that certain diagrams commute and that the morphisms that are
required to exist are unique. For example, let us prove that (A × B, π0, π1) is the product
of A and B. For f : C → A and g : C → B there exists a morphism ⟨f, g⟩ : C → A× B.
Equations

π0 ◦ ⟨f, g⟩ = f and π1 ◦ ⟨f, g⟩ = g

enforce the commutativity of the two triangles in the following diagram:

C

f

""

g

||

⟨f, g⟩
��

A A×Bπ0
oo

π1
// B

[DRAFT: September 17, 2022]

3.3 Positive propositional calculus 73

Suppose h : C → A × B is another morphism such that f = π0 ◦ h and g = π1 ◦ h. Then
by the third equation for products we get

h = ⟨π0 ◦ h, π1 ◦ h⟩ = ⟨f, g⟩ ,

and so ⟨f, g⟩ is unique.

Exercise 3.2.8. Use the equational characterization of CCCs, Proposition 3.2.7, to show
that the category Pos of posets and monotone functions is cartesian closed, as claimed.
Also verify that that Mon is not. Which parts of the definition fail in Mon?

3.3 Positive propositional calculus

We begin with the example of a cartesian closed poset and a first application to proposti-
tional logic.

Example 3.3.1. Consider the positive propositional calculus PPC with conjunction and
implication, as in Section 2.1. Recall that PPC is the set of all propositional formulas
ϕ constructed from propositional variables p1, p2, ..., a constant ⊤ for truth, and binary
connectives for conjunction ϕ ∧ ψ, and implication ϕ⇒ ψ.

As a category, PPC is a preorder under the relation ϕ ⊢ ψ of logical entailment, deter-
mined for instance by the natural deduction system ?? of section ??. As usual, it will be
convenient to pass to the poset reflection of the preorder, which we shall denote by

CPPC

by identifying ϕ and ψ when ϕ ⊣⊢ ψ. (This is just the usual Lindenbaum-Tarski algebra
of the system of propositional logic, as in Section 2.5.)

The conjunction ϕ ∧ ψ is a greatest lower bound of ϕ and ψ in CPPC, because we have
ϕ ∧ ψ ⊢ ϕ and ϕ ∧ ψ ⊢ ψ and for all ϑ, if ϑ ⊢ ϕ and ϑ ⊢ ψ then ϑ ⊢ ϕ ∧ ψ. Since binary
products in a poset are the same thing as greatest lower bounds, we see that CPPC has all
binary products; and of course ⊤ is a terminal object.

We have already remarked that implication is right adjoint to conjunction in proposi-
tional calculus,

(−) ∧ ϕ ⊣ ϕ⇒ (−) . (3.2)

Therefore ϕ⇒ ψ is an exponential in CPPC. The counit of the adjunction (the “evaluation”
arrow) is the entailment

(ϕ⇒ ψ) ∧ ϕ ⊢ ψ ,

i.e. the familiar logical rule of modus ponens.

We have now shown:

Proposition 3.3.2. The poset CPPC of positive propositional calculus is cartesian closed.

[DRAFT: September 17, 2022]

74 λ-Calculus

Let us now use this fact to show that the positive propositional calculus is deductively
complete with respect to the following notion of Kripke semantics [].

Definition 3.3.3 (Kripke model). Let K be a poset. Suppose we have a relation

k ⊩ p

between elements k ∈ K and propositional variables p, such that

j ≤ k, k ⊩ p implies j ⊩ p. (3.3)

Extend ⊩ to all formulas ϕ in PPC by defining

k ⊩ ⊤ always,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (3.4)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

Finally, say that ϕ holds on K, written

K ⊩ ϕ

if k ⊩ ϕ for all k ∈ K (for all such relations ⊩).

Theorem 3.3.4 (Kripke completeness for PPC). A propositional formulas ϕ is provable
from the rules of deduction for PPC if, and only if, K ⊩ ϕ for all posets K. Briefly:

PPC ⊢ ϕ iff K ⊩ ϕ for all K.

We will require the following (which extends the discussion in Section 2.6).

Lemma 3.3.5. For any poset P , the poset ↓P of all downsets in P , ordered by inclusion,
is cartesian closed. Moreover, the downset embedding,

↓(−) : P →↓P

preserves any CCC structure that exists in P .

Proof. The total downset P is obviously terminal, and for any downsets S, T ∈ ↓P , the
intersection S ∩ T is also closed down, so we have the products S ∧ T = S ∩ T . For the
exponential, set

S ⇒ T = {p ∈ P | ↓(p) ∩ S ⊆ T}.

Then for any downset Q we have

Q ⊆ S ⇒ T iff ↓(q) ∩ S ⊆ T , for all q ∈ Q. (3.5)

But that means that ⋃
q∈Q(↓(q) ∩ S) ⊆ T ,

[DRAFT: September 17, 2022]

3.3 Positive propositional calculus 75

which is equivalent to Q ∩ S ⊆ T , since
⋃

q∈Q(↓(q) ∩ S) = (
⋃

q∈Q ↓(q)) ∩ S = Q ∩ S.
The preservation of CCC structure by ↓(−) : P →↓P follows from its preservation by

the Yoneda embedding, of which ↓(−) is a factor,

SetP
op

P ↓P

y

↓(−)

But it is also easy enough to check directly: preservation of any limits 1, p ∧ q that exist
in P are clear. Suppose p⇒ q is an exponential; then for any downset D we have:

D ⊆↓(p⇒ q) iff ↓(d) ⊆↓(p⇒ q) , for all d ∈ D
iff d ≤ p⇒ q , for all d ∈ D
iff d ∧ p ≤ q , for all d ∈ D
iff ↓(d ∧ p) ⊆↓(q) , for all d ∈ D
iff ↓(d) ∩ ↓(p) ⊆↓(q) , for all d ∈ D
iff D ⊆↓(p)⇒↓(q)

where the last line is by (3.5). (Note that in line (3) we assumed that d ∧ p exists for all
d ∈ D; this can be avoided by a slightly more complicated argument.)

Proof. (of Theorem 3.3.4) The proof follows a now-familiar pattern, which we only sketch:

1. The syntactic category CPPC is a CCC, with ⊤ = 1, ϕ×ψ = ϕ∧ψ, and ψϕ = ϕ⇒ ψ.
In fact, it is the free cartesian closed poset on the generating set Var = {p1, p2, . . . }
of propositional variables.

2. A (Kripke) model (K,⊩) is the same thing as a CCC functor CPPC →↓K, which by
Step 1 is just an arbitrary map Var →↓K, as in (3.3). To see this, observe that we
have a bijective correspondence between CCC functors [[−]] and Kripke relations ⊩ ;
indeed, by the exponential adjunction in the cartesian closed category Pos, there is
a natural bijection,

[[−]] : CPPC −→↓K ∼= 2
Kop

⊩ : Kop × CPPC −→ 2

where we use the poset 2 to classify downsets in a poset P (via upsets in P op),

↓P ∼= 2
P op ∼= Pos(P op,2) ,

by taking the 1-kernel f−1(1) ⊆ P of a monotone map f : P op → 2. (The con-
travariance will be convenient in Step 3). Note that the monotonicity of ⊩ yields the
conditions

p ≤ q , q ⊩ ϕ =⇒ p ⊩ ϕ

[DRAFT: September 17, 2022]

76 λ-Calculus

and

p ⊩ ϕ , ϕ ⊢ ψ =⇒ p ⊩ ψ .

and the CCC preservation of the transpose [[−]] yields the Kripke forcing conditions
(3.4) (exercise!).

3. For any model (K,⊩), by the adjunction in (2) we then have K ⊩ ϕ iff [[ϕ]] = K, the
total downset.

4. Because the downset/Yoneda embedding ↓ preserves the CCC structure (by Lemma
3.3.5), CPPC has a canonical model, namely (CPPC,⊩), where:

↓(−) : CPPC −→↓CPPC ∼= 2
CPPCop

↪→ SetCPPC
op

⊩ : CPPCop × CPPC −→ 2 ↪→ Set

5. Now note that for the Kripke relation ⊩ in (4), we have ⊩ = ⊢ , since it’s essentially
the transpose of the Yoneda embedding. Thus the model is logically generic, in the
sense that CPPC ⊩ ϕ iff PPC ⊢ ϕ.

Exercise 3.3.6. Verify the claim that CCC preservation of the transpose [[−]] of ⊩ yields
the Kripke forcing conditions (3.4).

Exercise 3.3.7. Give a countermodel to show that PPC ⊬ (ϕ⇒ ψ)⇒ ϕ

3.4 Heyting algebras

We now extend the positive propositional calculus to the full intuitionistic propositional
calculus. This involves adding the finite coproducts 0 and p ∨ q to notion of a cartesian
closed poset, to arrive at the general notion of a Heyting algebra. Heyting algebras are to
intuitionistic logic as Boolean algebras are to classical logic: each is an algebraic description
of the corresponding logical calculus. We shall review both the algebraic and the logical
points of view; as we shall see, many aspects of the theory of Boolean algebras carry over
to Heyting algebras. For instance, in order to prove the Kripke completeness of the full
system of intuitionistic propositional calculus, we will need an alternative to Lemma 3.3.5,
because the Yoneda embedding does not in general preserve coproducts. For that we will
again use a version of the Stone representation theorem, this time in a generalized form
due to Joyal.

[DRAFT: September 17, 2022]

3.4 Heyting algebras 77

Distributive lattices

Recall first that a (bounded) lattice is a poset that has finite limits and colimits. In other
words, a lattice (L,≤,∧,∨, 1, 0) is a poset (L,≤) with distinguished elements 1, 0 ∈ L, and
binary operations meet ∧ and join ∨, satisfying for all x, y, z ∈ L,

0 ≤ x ≤ 1
z ≤ x z ≤ y

z ≤ x ∧ y
x ≤ z x ≤ y

x ∨ y ≤ z

A lattice homomorphism is a function f : L → K between lattices which preserves finite
limits and colimits, i.e., f0 = 0, f1 = 1, f(x∧ y) = fx∧ fy, and f(x∨ y) = fx∨ fy. The
category of lattices and lattice homomorphisms is denoted by Lat.

A lattice can be axiomatized equationally as a set with two distinguished elements 0
and 1 and two binary operations ∧ and ∨, satisfying the following equations:

(x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,
x ∧ y = y ∧ x , x ∨ y = y ∨ x ,
x ∧ x = x , x ∨ x = x ,

1 ∧ x = x , 0 ∨ x = x ,

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x .

(3.6)

The partial order on L is then determined by

x ≤ y ⇐⇒ x ∧ y = x .

Exercise 3.4.1. Show that in a lattice x ≤ y if, and only if, x ∧ y = x if, and only if,
x ∨ y = y.

A lattice is distributive if the following distributive laws hold in it:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) ,
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) .

(3.7)

It turns out that if one distributive law holds then so does the other [?, I.1.5].
A Heyting algebra is a cartesian closed lattice H. This means that it has an operation

⇒, satisfying for all x, y, z ∈ H
z ∧ x ≤ y

z ≤ x⇒ y

A Heyting algebra homomorphism is a lattice homomorphism f : K → H between Heyting
algebras that preserves implication, i.e., f(x⇒ y) = (fx⇒ fy). The category of Heyting
algebras and their homomorphisms is denoted by Heyt.

Heyting algebras can be axiomatized equationally as a set H with two distinguished
elements 0 and 1 and three binary operations ∧, ∨ and ⇒. The equations for a Heyting

[DRAFT: September 17, 2022]

78 λ-Calculus

algebra are the ones listed in (3.6), as well as the following ones for ⇒.

(x⇒ x) = 1 ,

x ∧ (x⇒ y) = x ∧ y ,
y ∧ (x⇒ y) = y ,

(x⇒ (y ∧ z)) = (x⇒ y) ∧ (x⇒ z) .

(3.8)

For a proof, see [?, I.1], where one can also find a proof that every Heyting algebra is
distributive (exercise!).

Example 3.4.2. We know from Lemma 3.3.5 that for any poset P , the poset ↓ P of
all downsets in P , ordered by inclusion, is cartesian closed. Moreover, we know that
↓P ∼= 2

P op
, as a poset, with the reverse pointwise ordering on monotone maps P op → 2,

or equivalently, ↓P ∼= 2
P , with the functions ordered pointwise. Since 2 is a lattice, we

can also take joins f ∨ g pointwise, in order to get joins in 2
P , which then correspond to

finite unions of the corresponding downsets f−1{0} ∪ g−1{0}. Thus, in sum, for any poset
P , the lattice ↓P ∼= 2

P is a Heyting algebra, with the downsets ordered by inclusion, and
the functions ordered pointwise.

Intuitionistic propositional calculus

There is a forgetful functor U : Heyt→ Set which maps a Heyting algebra to its underlying
set, and a homomorphism of Heyting algebras to the underlying function. Because Heyting
algebras are models of an equational theory, there is a left adjoint H ⊣ U , which is the
usual “free” construction mapping a set S to the free Heyting algebra HS generated by
it. As for all algebraic strictures, the construction of HS can be performed in two steps:
first, define a set HS of formal expressions, and then quotient it by an equivalence relation
generated by the axioms for Heyting algebras.

Thus let HS be the set of formal expressions generated inductively by the following
rules:

1. Generators: if x ∈ S then x ∈ HS.

2. Constants: ⊥,⊤ ∈ HS.

3. Connectives: if ϕ, ψ ∈ HS then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ) ∈ HS.

We impose an equivalence relation on HS, which we write as equality = and think of as
such; it is defined as the smallest equivalence relation satisfying axioms (3.6) and (3.8). This
forces HS to be a Heyting algebra. We define the action of the functor H on morphisms as
usual: a function f : S → T is mapped to the Heyting algebra morphism Hf : HS → HT
defined by

(Hf)⊥ = ⊥ , (Hf)⊥ = ⊥ , (Hf)x = fx ,

(Hf)(ϕ ⋆ ψ) = ((Hf)ϕ) ⋆ ((Hf)ψ) ,

[DRAFT: September 17, 2022]

3.4 Heyting algebras 79

where ⋆ stands for ∧, ∨ or ⇒.
The inclusion ηS : S → U(HS) of generators into the underlying set of the free Heyting

algebraHS is then the component at S of a natural transformation η : 1Set =⇒ U◦H, which
is of course the unit of the adjunctionH ⊣ U . To see this, consider a Heyting algebraK and
an arbitrary function f : S → UK. Then the Heyting algebra homomorphism f : HS → K
defined by

f⊥ = ⊥ , f⊥ = ⊥ , fx = fx ,

f(ϕ ⋆ ψ) = (fϕ) ⋆ (fψ) ,

where ⋆ stands for ∧, ∨ or ⇒, makes the following triangle commute:

S
ηS //

f
""

U(HS)

Uf

��
K

It is the unique such morphism because any two homomorphisms from HS which agree
on generators must be equal. This is proved by induction on the structure of the formal
expressions in HS.

We may now define the intuitionistic propositional calculus IPC to be the free Heyt-
ing algebra IPC on countably many generators p0, p1, . . . , called atomic propositions or
propositional variables. This is a somewhat unorthodox definition from a logical point of
view—normally we would start from a calculus consisting of a formal language, judge-
ments, and rules of inference—but of course, by now, we realize that the two approaches
are essentially equivalent.

Having said that, let us also describe IPC in the conventional way. The formulas of
IPC are built inductively from propositional variables p0, p1, . . . , constants falsehood ⊥
and truth ⊤, and binary operations conjunction ∧, disjunction ∨ and implication ⇒. The
basic judgment of IPC is logical entailment

u1 : A1, . . . , uk : Ak ⊢ B

which means “hypotheses A1, . . . , Ak entail proposition B”. The hypotheses are labeled
with distinct labels u1, . . . , uk so that we can distinguish them, which is important when
the same hypothesis appears more than once. Because the hypotheses are labeled it is
irrelevant in what order they are listed, as long as the labels are not getting mixed up.
Thus, the hypotheses u1 : A ∨B, u2 : B are the same as the hypotheses u2 : B, u1 : A ∨B,
but different from the hypotheses u1 : B, u2 : A∨B. Sometimes we do not bother to label
the hypotheses.

The left-hand side of a logical entailment is called the context and the right-hand side
is the conclusion. Thus logical entailment is a relation between contexts and conclusions.
The context may be empty. If Γ is a context, u is a label which does not occur in Γ, and A
is a formula, then we write Γ, u : A for the context Γ extended by the hypothesis u : A.

[DRAFT: September 17, 2022]

80 λ-Calculus

Definition 3.4.3. Deductive entailment is the smallest relation satisfying the following
rules:

1. Conclusion from a hypothesis:

Γ ⊢ A
if u : A occurs in Γ

2. Truth:

Γ ⊢ ⊤

3. Falsehood:
Γ ⊢ ⊥
Γ ⊢ A

4. Conjunction:
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
Γ ⊢ A ∧B
Γ ⊢ A

Γ ⊢ A ∧B
Γ ⊢ B

5. Disjunction:

Γ ⊢ A
Γ ⊢ A ∨B

Γ ⊢ B
Γ ⊢ A ∨B

Γ ⊢ A ∨B Γ, u : A ⊢ C Γ, v : B ⊢ C
Γ ⊢ C

6. Implication:
Γ, u : A ⊢ B
Γ ⊢ A⇒ B

Γ ⊢ A⇒ B Γ ⊢ A
Γ ⊢ B

A proof of Γ ⊢ A is a finite tree built from the above inference rules whose root is
Γ ⊢ A. A judgment Γ ⊢ A is provable if there exists a proof of it. Observe that every proof
has at its leaves either the rule for ⊤ or a conclusion from a hypothesis.

You may wonder what happened to negation. In intuitionistic propositional calculus,
negation is defined in terms of implication and falsehood as

¬A ≡ A⇒ ⊥ .

Properties of negation are then derived from the rules for implication and falsehood, see
Exercise 3.4.7

Let P be the set of all formulas of IPC, preordered by the relation

A ⊢ B , (A,B ∈ P)

where we did not bother to label the hypothesis A. Clearly, it is the case that A ⊢ A. To
see that ⊢ is transitive, suppose Π1 is a proof of A ⊢ B and Π2 is a proof of B ⊢ C. Then
we can obtain a proof of A ⊢ C from a proof Π2 of B ⊢ C by replacing in it each use of
the hypothesis B by the proof Π1 of A ⊢ B. This is worked out in detail in the next two
exercises.

[DRAFT: September 17, 2022]

3.4 Heyting algebras 81

Exercise 3.4.4. Prove the following statement by induction on the structure of the
proof Π: if Π is a proof of Γ, u : A, v : A ⊢ B then there is a proof of Γ, u : A ⊢ B.

Exercise 3.4.5. Prove the following statement by induction on the structure of the
proof Π2: if Π1 is a proof of Γ ⊢ A and Π2 is a proof of Γ, u : A ⊢ B, then there is a
proof of Γ ⊢ B.

Let IPC be the poset reflection of the preorder (P,⊢). The elements of IPC are equiv-
alence classes [A] of formulas, where two formulas A and B are equivalent if both A ⊢ B
and B ⊢ A are provable. The poset IPC is just the free Heyting algebra on countably many
generators p0, p1, . . .

Classical propositional calculus

Another look:
An element x ∈ L of a lattice L is said to be complemented when there exists y ∈ L

such that

x ∨ y = 1 , x ∧ y = 0 .

We say that y is the complement of x.
In a distributive lattice, the complement of x is unique if it exists. Indeed, if both y

and z are complements of x then

y ∧ z = (y ∧ z) ∨ 0 = (y ∧ z) ∨ (y ∧ x) = y ∧ (z ∨ x) = y ∧ 1 = y ,

hence y ≤ z. A symmetric argument shows that z ≤ y, therefore y = z. The complement
of x, if it exists, is denoted by ¬x.

A Boolean algebra is a distributive lattice in which every element is complemented. In
other words, a Boolean algebra B has the complementation operation ¬ which satisfies,
for all x ∈ B,

x ∧ ¬x = 0 , x ∨ ¬x = 1 . (3.9)

The full subcategory of Lat consisting of Boolean algebras is denoted by Bool.

Exercise 3.4.6. Prove that every Boolean algebra is a Heyting algebra. Hint: how is
implication encoded in terms of negation and disjunction in classical logic?

In a Heyting algebra not every element is complemented. However, we can still define
a pseudo complement or negation operation ¬ by

¬x = (x⇒ 0) ,

Then ¬x is the largest element for which x∧¬x = 0. While in a Boolean algebra ¬¬x = x,
in a Heyting algebra we only have ¬¬x ≤ x in general. An element x of a Heyting algebra
for which ¬¬x = x is called a regular element.

[DRAFT: September 17, 2022]

82 λ-Calculus

Exercise 3.4.7. Derive the following properties of negation in a Heyting algebra:

x ≤ ¬¬x ,
¬x = ¬¬¬x ,

x ≤ y ⇒ ¬y ≤ ¬x ,
¬¬(x ∧ y) = ¬¬x ∧ ¬¬y .

Exercise 3.4.8. Prove that the topology OX of any topological space X is a Heyting
algebra. Describe in topological language the implication U ⇒ V , the negation ¬U , and
the regular elements U = ¬¬U in OX.

Exercise 3.4.9. Show that for a Heyting algebra H, the regular elements of H form a
Boolean algebra H¬¬ =

{
x ∈ H

∣∣ x = ¬¬x
}
. Here H¬¬ is viewed as a subposet of H. Hint:

negation ¬′, conjunction ∧′, and disjunction ∨′ in H¬¬ are expressed as follows in terms of
negation, conjunction and disjunction in H, for x, y ∈ H¬¬:

¬′x = ¬x , x ∧′ y = ¬¬(x ∧ y) , x ∨′ y = ¬¬(x ∨ y) .

The classical propositional calculus (CPC) is obtained from the intuitionistic proposi-
tional calculus by the addition of the logical rule known as tertium non datur, or the law
of excluded middle:

Γ ⊢ A ∨ ¬A
Alternatively, we could add the law known as reductio ad absurdum, or proof by contradic-
tion:

Γ ⊢ ¬¬A
Γ ⊢ A

.

Identifying logically equivalent formulas of CPC, we obtain a poset CPC ordered by logical
entailment. This poset is the free Boolean algebra on countably many generators. The
construction of a free Boolean algebra can be performed just like described for the free
Heyting algebra above. The equational axioms for a Boolean algebra are the axioms for a
lattice (3.6), the distributive laws (3.7), and the complement laws (3.9).

Exercise∗ 3.4.10. Is CPC isomorphic to the Boolean algebra IPC¬¬ of the regular elements
of IPC?

Exercise 3.4.11. Show that in a Heyting algebra H, one has ¬¬x = x for all x ∈ H
if, and only if, y ∨ ¬y = 1 for all y ∈ H. Hint: half of the equivalence is easy. For the
other half, observe that the assumption ¬¬x = x means that negation is an order-reversing
bijection H → H. It therefore transforms joins into meets and vice versa, and so the De
Morgan laws hold:

¬(x ∧ y) = ¬x ∨ ¬y , ¬(x ∨ y) = ¬x ∧ ¬y .

Together with y ∧ ¬y = 0, the De Morgan laws easily imply y ∨ ¬y = 1. See [?, I.1.11].

[DRAFT: September 17, 2022]

3.4 Heyting algebras 83

Kripke semantics for IPC

We now prove the Kripke completeness of IPC, extending Theorem 3.3.4, namely:

Theorem 3.4.12 (Kripke completeness for IPC). Let K be a poset equipped with a forcing
relation k ⊩ p between elements k ∈ K and propositional variables p, satisfying

j ≤ k, k ⊩ p implies j ⊩ p. (3.10)

Extend ⊩ to all formulas ϕ in IPC by defining

k ⊩ ⊤ always,

k ⊩ ⊥ never,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (3.11)

k ⊩ ϕ ∨ ψ iff k ⊩ ϕ or k ⊩ ψ , (3.12)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

Finally, write K ⊩ ϕ if k ⊩ ϕ for all k ∈ K (for all such relations ⊩).
Then a propositional formulas ϕ is provable from the rules of deduction for IPC (Defi-

nition 3.4.3) if, and only if, K ⊩ ϕ for all posets K. Briefly:

PPC ⊢ ϕ iff K ⊩ ϕ for all K.

Let us first see that we cannot simply reuse the proof from that theorem, because the
downset (Yoneda) embedding that we used there

↓ : IPC ↪→ ↓(IPC) (3.13)

would not preserve the coproducts ⊥ and ϕ ∨ ψ. Indeed, ↓ (⊥) ̸= ∅, because it contains
⊥ itself! And in general ↓ (ϕ ∨ ψ) ̸= ↓ (ϕ) ∪ ↓ (ψ), because the righthand side need not
contain, e.g., ϕ ∨ ψ.

Instead, we will generalize the Stone Representation theorem 2.6.8 from Boolean alge-
bras to Heyting algebras, using a theorem due to Joyal (cf. [?, ?]). First, recall that the
Stone representation provided, for any Boolean algebra B, an injective Boolean homomor-
phism into a powerset,

B↣ PX .

For X we took the set of prime filters Bool(B,2), and the map h : B ↣ PBool(B,2) was
given by h(b) = {F | b ∈ F}. Transposing PBool(B,2) ∼= 2

Bool(B,2) in the cartesian closed
category Pos, we arrive at the (monotone) evaluation map

eval : Bool(B,2)× B → 2. (3.14)

Now recall that the category of Boolean algebras is full in the category DLat of distributive
lattices,

Bool(B,2) = DLat(B,2) .

[DRAFT: September 17, 2022]

84 λ-Calculus

For any Heyting algebra H (or indeed any distributive lattice), the Homset DLat(H,2),
ordered pointwise, is isomorphic to the poset of all prime filters in H ordered by inclusion,
by taking f : H → 2 to its (filter) kernel f−1{1} ⊆ H. In particular, the poset DLat(H,2)
is no longer discrete when H is not Boolean, since a prime ideal in a Heyting algebra need
not be maximal.

The transpose of the (monotone) evaluation map,

eval : DLat(H,2)×H → 2. (3.15)

will then be the (monotone) map

ϵ : H −→ 2
DLat(H,2), (3.16)

which takes p ∈ H to the “evaluation at p” map f 7→ f(p) ∈ 2, i.e.,

ϵp(f) = f(p) for p ∈ H and f : H → 2 .

As before, the poset 2DLat(H,2) (ordered pointwise) may be identified with the upsets in
the poset DLat(H,2), ordered by inclusion, which recall from Example 3.4.2 is always a
Heyting algebra. Thus, in sum, we have a monotone map,

H −→ ↑DLat(H,2) , (3.17)

which generalizes the Stone representation from Boolean to Heyting algebras.

Theorem 3.4.13 (Joyal). Let H be a Heyting algebra. There is an injective Heyting
homomorphism

H ↣ ↑J

into a Heyting algebra of upsets in a poset J .

Note that in this form, the theorem literally generalizes the Stone representation theo-
rem, because when H is Boolean we can take J to be discrete, and then ↑J ∼= Pos(J,2) ∼=
PJ is Boolean, whence the Heyting embedding is also Boolean. The proof will again use
the transposed evaluation map,

ϵ : H −→↑DLat(H,2) ∼= 2
DLat(H,2)

which, as before, is injective, by the Prime Ideal Theorem (see Lemma 2.6.6). We will use
it in the following form due to Birkhoff.

Lemma 3.4.14 (Birkhoff’s Prime Ideal Theorem). Let D be a distributive lattice, I ⊆ D
an ideal, and x ∈ D with x ̸∈ I. There is a prime ideal I ⊆ P ⊂ D with x ̸∈ P .

Proof. As in the proof of Lemma 2.6.6, it suffice to prove it for the case I = (0). This
time, we use Zorn’s Lemma: a poset in which every chain has an upper bound has maximal
elements. Consider the poset I\x of “ideals I without x”, x ̸∈ I, ordered by inclusion.

[DRAFT: September 17, 2022]

3.4 Heyting algebras 85

The union of any chain I0 ⊆ I1 ⊆ ... in I\x is clearly also in I\x, so we have (at least
one) maximal element M ∈ I\x. We claim that M ⊆ D is prime. To that end, take
a, b ∈ D with a ∧ b ∈ M . If a, b ̸∈ M , let M [a] = {n ≤ m ∨ a | m ∈ M}, the ideal join
of M and ↓(a), and similarly for M [b]. Since M is maximal without x, we therefore have
x ∈ M [a] and x ∈ M [b]. Thus let x ≤ m ∨ a and x ≤ m′ ∨ b for some m,m′ ∈ M . Then
x ∨m′ ≤ m ∨m′ ∨ a and x ∨m ≤ m ∨m′ ∨ b, so taking meets on both sides gives

(x ∨m′) ∧ (x ∨m) ≤ (m ∨m′ ∨ a) ∧ (m ∨m′ ∨ b) = (m ∨m′) ∨ (a ∧ b).

Since the righthand side is in the ideal M , so is the left. But then x ≤ x∨ (m∧m′) is also
in M , contrary to our assumption that M ∈ I\x.

Proof of Theorem 3.4.13. As in (3.17), let J = DLat(H,2) be the poset of prime filters in
H, and consider the “evaluation” map (3.17),

ϵ : H −→ 2
DLat(H,2) ∼= ↑DLat(H,2)

given by ϵ(p) = {F | p ∈ F prime}.
Clearly ϵ(0) = ∅ and ϵ(1) = DLat(H,2), and similarly for the other meets and joins,

so ϵ is a lattice homomorphism. Moreover, if p ̸= q ∈ H then, as in the proof of 2.6.8, we
have that ϵ(p) ̸= ϵ(q), by the Prime Ideal Theorem (Lemma 3.4.14). Thus it just remains
to show that

ϵ(p⇒ q) = ϵ(p)⇒ϵ(q) .

Unwinding the definitions, it suffices to show that, for all f ∈ DLat(H,2),

f(p⇒ q) = 1 iff for all g ≥ f , g(p) = 1 implies g(q) = 1. (3.18)

Equivalently, for all prime filters F ⊆ H,

p⇒ q ∈ F iff for all prime G ⊇ F , p ∈ G implies q ∈ G. (3.19)

Now if p ⇒ q ∈ F , then for all (prime) filters G ⊇ F , also p ⇒ q ∈ G, and so p ∈ G
implies q ∈ G, since (p⇒ q) ∧ p ≤ q.

Conversely, suppose p ⇒ q ̸∈ F , and we seek a prime filter G ⊇ F with p ∈ G but
q ̸∈ G. Consider the filter

F [p] = {x ∧ p ≤ h ∈ H | x ∈ F} ,

which is the join of F and ↑(p) in the poset of filters. If q ∈ F [p], then x∧ p ≤ q for some
x ∈ F , whence x ≤ p ⇒ q, and so p ⇒ q ∈ F , contrary to assumption; thus q ̸∈ F [p]. By
the Prime Ideal Theorem again (applied to the distributive lattice Hop) there is a prime
filter G ⊇ F [p] with q ̸∈ G.

Exercise 3.4.15. Give a Kripke countermodel to show that the Law of Excluded Middle
ϕ ∨ ¬ϕ is not provable in IPC.

[DRAFT: September 17, 2022]

86 λ-Calculus

3.5 Frames and spaces

A poset (P,≤), viewed as a category, is cocomplete when it has suprema (least upper
bounds) of arbitrary subsets. This is so because coequalizers in a poset always exist, and
coproducts are precisely least upper bounds. Recall that the supremum of S ⊆ P is an
element

∨
S ∈ P such that, for all y ∈ S,∨

S ≤ y ⇐⇒ ∀x : S . x ≤ y .

In particular,
∨
∅ is the least element of P and

∨
P is the greatest element of P . Similarly,

a poset is complete when it has infima (greatest lower bounds) of arbitrary subsets; the
infimum of S ⊆ P is an element

∧
S ∈ P such that, for all y ∈ S,

y ≤
∧
S ⇐⇒ ∀x : S . y ≤ x .

Proposition 3.5.1. A poset is complete if, and only if, it is cocomplete.

Proof. Infima and suprema are expressed in terms of each other as follows:∧
S =

∨{
y ∈ P

∣∣ ∀x : S . y ≤ x
}
,∨

S =
∧{

y ∈ P
∣∣ ∀x : S . x ≤ y

}
.

Thus, we usually speak of complete posets only, even when we work with arbitrary
suprema.

Suppose P is a complete poset. When is it cartesian closed? Being a complete poset,
it has the terminal object, namely the greatest element 1 ∈ P , and it has binary products
which are binary infima. If P is cartesian closed then for all x, y ∈ P there exists an
exponential (x⇒ y) ∈ P , which satisfies, for all z ∈ P ,

z ∧ x ≤ y

z ≤ x⇒ y
.

With the help of this adjunction we derive the infinite distributive law, for an arbitrary
family

{
yi ∈ P

∣∣ i ∈ I},
x ∧

∨
i∈I yi =

∨
i∈I(x ∧ yi) (3.20)

as follows:
x ∧

∨
i∈I yi ≤ z∨

i∈I yi ≤ (x⇒ z)

∀ i : I . (yi ≤ (x⇒ z))

∀ i : I . (x ∧ yi ≤ z)∨
i∈I(x ∧ yi) ≤ z

[DRAFT: September 17, 2022]

3.5 Frames and spaces 87

Now since x ∧
∨

i∈I yi and
∨

i∈I(x ∧ yi) have the same upper bounds they must be equal.
Conversely, suppose the distributive law (3.20) holds. Then we can define x⇒ y to be

(x⇒ y) =
∨{

z ∈ P
∣∣ x ∧ z ≤ y

}
. (3.21)

The best way to show that x⇒ y is the exponential of x and y is to use the characterization
of adjoints by counit, as in Proposition 1.5.5. In the case of ∧ and ⇒ this amounts to
showing that, for all x, y ∈ P ,

x ∧ (x⇒ y) ≤ y , (3.22)

and that, for z ∈ P ,
(x ∧ z ≤ y)⇒ (z ≤ x⇒ y) .

This implication follows directly from (3.5.7), and (3.22) follows from the distributive law:

x ∧ (x⇒ y) = x ∧
∨{

z ∈ P
∣∣ x ∧ z ≤ y

}
=

∨{
x ∧ z

∣∣ x ∧ z ≤ y
}
≤ y .

Complete cartesian closed posets are called frames.

Definition 3.5.2. A frame is a poset that is complete and cartesian closed, thus a frame
is a complete Heyting algebra. Equivalently, a frame is a complete poset satisfying the
(infinite) distributive law

x ∧
∨

i∈I yi =
∨

i∈I(x ∧ yi) .

A frame morphism is a function f : L → M between frames that preserves finite infima
and arbitrary suprema. The category of frames and frame morphisms is denoted by Frame.

Warning: a frame morphism need not preserve exponentials!

Example 3.5.3. Given a poset P , the downsets ↓ P form a complete lattice under the
inclusion order S ⊆ T , and with the set theoretic operations

⋃
and

⋂
as

∨
and

∧
. Since

↓P is already known to be a Heyting algebra (Example 3.4.2), it is therefore also a frame.
(Alternately, we can show that it is a frame by noting that the operations

⋃
and

⋂
satisfy

the infinite distributive law, and then infer that it is a Heyting algebra.)
A monotone map f : P → Q between posets gives rise to a frame map

↓f : ↓Q −→↓P ,

as can be seen by recalling that ↓P ∼= 2
P as posets. Note that as a (co)limit preserving

functor on complete posets, 2f : 2Q −→ 2
P has both left and right adjoints. These

functors are usually written f! ⊣ f ∗ ⊣ f∗. Although it does not in general preserve Heyting
implications S ⇒ T , the monotone map ↓f : ↓Q −→↓P is indeed a morphism of frames.
We therefore have a contravariant functor

↓(−) : Pos→ Frameop. (3.23)

[DRAFT: September 17, 2022]

88 λ-Calculus

Example 3.5.4. The topology OX of a topological space X, ordered by inclusion, is
a frame because finite intersections and arbitrary unions of open sets are open. The
distributive law holds because intersections distribute over unions. If f : X → Y is a
continuous map between topological spaces, the inverse image map f ∗ : OY → OX is a
frame homomorphism. Thus, there is a functor

O : Top→ Frameop

which maps a space X to its topology OX and a continuous map f : X → Y to the inverse
image map f ∗ : OY → OX.

The category Frameop is called the category of locales and is denoted by Loc. When we
think of a frame as an object of Loc we call it a locale.

Example 3.5.5. Let P be a poset and define a topology on the elements of P by defining
the opens to be the upsets,

OP = ↑P ∼= Pos(P,2).

These open sets are not only closed under arbitrary unions and finite intersections, but
also under arbitrary intersections. Such a topological space is said to be an Alexandrov
space.

Exercise∗ 3.5.6. This exercise is meant for students with some background in topology.
For a topological space X and a point x ∈ X, let N(x) be the neighborhood filter of x,

N(x) =
{
U ∈ OX

∣∣ x ∈ U} .

Recall that a T0-space is a topological space X in which points are determined by their
neighborhood filters,

N(x) = N(y)⇒ x = y . (x, y ∈ X)

Let Top0 be the full subcategory of Top on T0-spaces. The functor O : Top→ Loc restricts
to a functor O : Top0 → Loc. Prove that O : Top0 → Loc is a faithful functor. Is it full?

Topological semantics for IPC

It should now be clear how to interpret IPC into a topological space X: each formula ϕ is
assigned to an open set [[ϕ]] ∈ OX in such a way that [[−]] is a homomorphism of Heyting
algebras.

Definition 3.5.7. A topological model of IPC is a space X and an interpretation of for-
mulas,

[[−]] : IPC→ OX ,

[DRAFT: September 17, 2022]

3.6 Proper CCCs 89

satisfying the conditions:

[[⊤]] = X

[[⊥]] = ∅
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[ϕ⇒ ψ]] = [[ϕ]]⇒ [[ψ]]

The Heyting implication [[ϕ]]⇒ [[ψ]] in OX, is defined in (3.5.7) as

[[ϕ]]⇒ [[ψ]] =
⋃{

U ∈ OX
∣∣ U ∧ [[ϕ]] ≤ [[ψ]]

}
.

Joyal’s representation theorem 3.4.13 easily implies that IPC is sound and complete
with respect to topological semantics.

Corollary 3.5.8. A formula ϕ is provable in IPC if, and only if, it holds in every topological
interpretation [[−]] into a space X, briefly:

IPC ⊢ ϕ iff [[ϕ]] = X for all spaces X .

Proof. Put the Alexandrov topology on the upsets of prime ideals in the Heyting alge-
bra IPC

Exercise 3.5.9. Give a topological countermodel to show that the Law of Double Negation
¬¬ϕ⇒ ϕ is not provable in IPC.

3.6 Proper CCCs

We begin by reviewing some important examples of cartesian closed categories that are
not posets, most of which have already been discussed.

Example 3.6.1. The first example is the category Set. We already know that the terminal
object is a singleton set and that binary products are cartesian products. The exponential
of X and Y in Set is just the set of all functions from X to Y ,

Y X =
{
f ⊆ X × Y

∣∣ ∀x : X . ∃! y : Y . ⟨x, y⟩ ∈ f
}
.

The evaluation morphism eval : Y X ×X → Y is the usual evaluation of a function at an
argument, i.e., eval⟨f, x⟩ is the unique y ∈ Y for which ⟨x, y⟩ ∈ f .

Example 3.6.2. The category Cat of all small categories is cartesian closed. The exponen-
tial of small categories C andD is the category DC of functors, with natural transformations
as arrows (see 1.6). Note that if D is a groupoid (all arrows are isos), then so is DC. It
follows that the category of groupoids is full (even as a 2-category) in Cat. Since limits
of groupoids in Cat are also groupoids, the inclusion of the full subcategory Grpd ↪→ Cat
preserves limits, too, and is therefore a full inclusion of CCCs.

[DRAFT: September 17, 2022]

90 λ-Calculus

Example 3.6.3. The same reasoning as in the previous example shows that the full sub-
category Pos ↪→ Cat of all small posets and monotone maps is also cartesian closed.
It is worth noting that, unlike the previous cases, the (limit preserving) forgetful func-
tor U : Poset → Set does not preserve exponentials; in general U(QP) ⊆ (UQ)UP is a
proper subset.

Exercise 3.6.4. There is a full and faithful functor I : Set → Poset that preserves finite
limits as well as exponentials. How is this related to the example Grpd ↪→ Cat?

The foregoing examples are instances of the following general situation.

Proposition 3.6.5. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a left adjoint reflection L : E → S preserving finite products. Suppose moreover that for
any two objects A,B in S, the exponential iBiA is again in S. Then S has all exponentials,
and these are preserved by i.

Proof. By assumption, we have L ⊣ i with isomorphic counit LiS ∼= S for all S ∈ S.
Let us identify S with the subcategory of E that is its image under i : S ↪→ E . The
assumption that BA is again in S for all A,B ∈ S, along with the fullness of S in E , gives
the exponentials, and the closure of S under finite products in E ensures that the required
transposes will also be in S.

Alternately, for any A,B ∈ S set BA = L(iBiA). Then for any C ∈ S, we have natural
isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= E

(
iC, iL(iBiA)

)
∼= S

(
C,L(iBiA)

)
∼= S

(
C,BA

)
where in the fifth line we used the assumption that iBiA is again in S, in the form iBiA ∼= iE
for some E ∈ S, which is then necessarily L(iBiA) = LiE ∼= E.

A related general situation that covers some (but not all) of the above examples is this:

Proposition 3.6.6. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a right adjoint reflection R : E → S. If i preserves finite products, then S also has all
exponentials, and these are computed first in E, and then reflected by R into S.

Proof. For any A,B ∈ S set BA = R(iBiA) as described. Now for any C ∈ S, we have

[DRAFT: September 17, 2022]

3.6 Proper CCCs 91

natural isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= S

(
C,R(iBiA)

)
∼= S

(
C,BA

)
.

An example of the foregoing is the inclusion of the opens into the powerset of points of
a space X,

OX ↪→ PX

This frame homomorphism is associated to the map |X| → X of locales (or in this case,
spaces) from the discrete space on the set of points of X.

Exercise 3.6.7. Which of the examples follows from which proposition?

Example 3.6.8. A presheaf category Ĉ is cartesian closed, provided the index category
C is small. To see what the exponential of presheaves P and Q ought to be, we use the
Yoneda Lemma. If QP exists, then by Yoneda Lemma and the adjunction (−×P) ⊣ (−P),
we have for all A ∈ C,

QP (A) ∼= Nat(yA,QP) ∼= Nat(yA× P,Q) .

Because C is small Nat(yA× P,Q) is a set, so we can define QP to be the presheaf

QP = Nat(y−× P,Q) .

The evaluation morphism E : QP × P =⇒ Q is the natural transformation whose compo-
nent at A is

EA : Nat(yA× P,Q)× PA→ QA ,

EA : ⟨η, x⟩ 7→ ηA⟨1A, x⟩ .

The transpose of a natural transformation ϕ : R × P =⇒ Q is the natural transformation
ϕ̃ : R =⇒ QP whose component at A is the function that maps z ∈ RA to the natural
transformation ϕ̃Az : yA× P =⇒ Q, whose component at B ∈ C is

(ϕ̃Az)B : C(B,A)× PB → QB ,

(ϕ̃Az)B : ⟨f, y⟩ 7→ ϕB⟨(Rf)z, y⟩ .

Exercise 3.6.9. Verify that the above definition of QP really gives an exponential of
presheaves P and Q.

[DRAFT: September 17, 2022]

92 λ-Calculus

It follows immediately that the category of graphs Graph is cartesian closed because it
is the presheaf category Set·⇒·. The same is of course true for the “category of functions”,
i.e. the arrow category Set→, as well as the category of simplicial sets Set∆

op

from topology.

Exercise 3.6.10. This exercise is for students with some background in linear algebra.
Let Vec be the category of real vector spaces and linear maps between them. Given vector
spaces X and Y , the linear maps L(X, Y) between them form a vector space. So define
L(X,−) : Vec → Vec to be the functor which maps a vector space Y to the vector space
L(X, Y), and it maps a linear map f : Y → Z to the linear map L(X, f) : L(X, Y) →
L(X,Z) defined by h 7→ f ◦ h. Show that L(X,−) has a left adjoint −⊗X, but also show
that this adjoint is not the binary product in Vec.

A few other instructive examples that can be explored by the interested reader are the
following.

• Etale spaces over a base space X. This category can be described as consisting of
local homeomorphisms f : Y → X and commutative triangles over X between such
maps. It is also equivalent to the category Sh(X) of sheaves on X. See [?, ch.n].

• Various subcategories of topological spaces (sequential spaces, compactly-generated
spaces). Cf. [?].

• Dana Scott’s category Equ of equilogical spaces [?].

3.7 Simply typed λ-calculus

The λ-calculus is the abstract theory of functions, just like group theory is the abstract
theory of symmetries. There are two basic operations that can be performed with functions.
The first one is the application of a function to an argument: if f is a function and a is an
argument, then fa is the application of f to a, also called the value of f at a. The second
operation is abstraction: if x is a variable and t is an expression in which x may appear,
then there is a function f defined by the equation

fx = t .

Here we gave the name f to the newly formed function. But we could have expressed the
same function without giving it a name; this is usually written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation, which is more
convenient when abstractions are nested:

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the function which
maps an argument a to the function λy. (a+ y), which maps an argument b

In an expression λx. t the variable x is said to be bound in t.

[DRAFT: September 17, 2022]

3.7 Simply typed λ-calculus 93

Remark 3.7.1. It may seem strange that in specifying the abstraction of a function, we
switched from talking about objects (functions, arguments, values) to talking about ex-
pressions : variables, names, equations. This “syntactic” point of view seems to have been
part of the notion of a function since its beginnings, in the theory of algebraic equations.
It is the reason that the λ-calculus is part of logic, unlike the theory of cartesian closed cat-
egories, which remains thoroughly semantical (and “variable-free”). The relation between
the two different points of view will occupy the remainder of this chapter.

Remark 3.7.2. There are two kinds of λ-calculus, the typed and the untyped one. In
the untyped version there are no restrictions on how application is formed, so that an
expression such as

λx. (xx)

is valid, whatever it may mean. In typed λ-calculus every expression has a type, and
there are rules for forming valid expressions and types. For example, we can only form an
application f, a when a has a type A and f has a type A→ B, which indicates a function
taking arguments of type A and giving results of type B. The judgment that expression t
has a type A is written as

t : A .

To computer scientists the idea of expressions having types is familiar from programming
languages, whereas mathematicians can think of types as sets and read t : A as t ∈ A. We
will concentrate on the typed λ-calculus.

We now give a precise definition of what constitutes a simply-typed λ-calculus. First,
we are given a set of simple types, which are generated from basic types by formation of
products and function types:

Basic type B ::= B0 | B1 | B2 · · ·
Simple type A ::= B | A1 × A2 | A1 → A2.

Function types associate to the right:

A→ B → C ≡ A→ (B → C) .

We assume there is a countable set of variables x, y, u, . . .We are also given a set of
basic constants. The set of terms is generated from variables and basic constants by the
following grammar:

Variable v ::= x | y | z | · · ·
Constant c ::= c1 | c2 | · · ·

Term t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. a variable is a term,

[DRAFT: September 17, 2022]

94 λ-Calculus

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if u and t are terms then ⟨u, t⟩ is a term, called a pair,

5. if t is a term then fst t and snd t are terms,

6. if u and t are terms then u t is a term, called an application

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term, called a
λ-abstraction.

The variable x is bound in λx : A . t. Application associates to the left, thus s t u = (s t)u.
The free variables FV(t) of a term t are computed as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(⟨u, t⟩) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

If x1, . . . , xn are distinct variables and A1, . . . , An are types then the sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted by a dot ·,
and it is a valid context. Context are denoted by capital Greek letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition the free variables of t
must occur in Γ, but Γ may contain other variables as well. We read the above judgment
as “in context Γ the term t has type A”. Next we describe the rules for deriving typing
judgments.

Each basic constant ci has a uniquely determined type Ci,

Γ | ci : Ci

The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An | xi : Ai

(1 ≤ i ≤ n)

[DRAFT: September 17, 2022]

3.7 Simply typed λ-calculus 95

The constant ∗ has type 1:

Γ | ∗ : 1
The typing rules for pairs and projections are:

Γ | u : A Γ | t : B
Γ | ⟨u, t⟩ : A×B

Γ | t : A×B
Γ | fst t : A

Γ | t : A×B
Γ | snd t : B

The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | u : A

Γ | t u : B

Γ, x : A | t : B
Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms; for terms of type A in context Γ,

Γ | u : A , Γ | t : B ,

the judgment that they are equal is written as

Γ | u = t : A .

Note that u and t necessarily have the same type; it does not make sense to compare terms
of different types. We have the following rules for equations:

1. Equality is an equivalence relation:

Γ | t = t : A

Γ | t = u : A

Γ | u = t : A

Γ | t = u : A Γ | u = v : A

Γ | t = v : A

2. The weakening rule:
Γ | u = t : A

Γ, x : B | u = t : A

3. Unit type:

Γ | t = ∗ : 1

4. Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | ⟨u, s⟩ = ⟨v, t⟩ : A×B
Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B
Γ | snd s = snd t : A

Γ | t = ⟨fst t, snd t⟩ : A×B

Γ | fst ⟨u, t⟩ = u : A Γ | snd ⟨u, t⟩ = t : A

[DRAFT: September 17, 2022]

96 λ-Calculus

5. Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

Γ | λx : A . (t x) = t : A→ B
if x ̸∈ FV(t) (η-rule)

This completes the description of a simply-typed λ-calculus.
Apart from the above rules for equality we might want to impose additional equations.

In this case we do not speak of a λ-calculus but rather of a λ-theory. Thus, a λ-theory T
is given by a set of basic types, a set of basic constants, and a set of equations of the form

Γ | u = t : A .

We summarize the preceding definitions.

Definition 3.7.3. A simply-typed λ-calculus is given by a set of basic types and a set
of basic constants together with their types. A simply-typed λ-theory is a simply-typed
λ-calculus together with a set of equations.

We use letters S, T, U, . . . to denote theories.

Example 3.7.4. The theory of a group is a simply-typed λ-theory. It has one basic type
G and three basic constant, the unit e, the inverse i, and the group operation m,

e : G , i : G→ G , m : G× G→ G ,

with the following equations:

x : G | m⟨x, e⟩ = x : G

x : G | m⟨e, x⟩ = x : G

x : G | m⟨x, ix⟩ = e : G

x : G | m⟨ix, x⟩ = e : G

x : G, y : G, z : G | m⟨x, m⟨y, z⟩⟩ = m⟨m⟨x, y⟩, z⟩ : G

These are just the familiar axioms for a group.

Example 3.7.5. In general, any algebraic theory A determines a λ-theory Aλ. There is
one basic type A and for each operation f of arity k there is a basic constant f : Ak → A,
where Ak is the k-fold product A×· · ·×A. It is understood that A0 = 1. The terms of A are
translated to the terms of the corresponding λ-theory in a straightforward manner. For
every axiom t = u of A the corresponding axiom in the λ-theory is

x1 : A, . . . , xn : A | t = u : A

where x1, . . . , xn are the variables occurring in t and u.

[DRAFT: September 17, 2022]

3.7 Simply typed λ-calculus 97

Example 3.7.6. The theory of a directed graph is a simply-typed theory with two basic
types, V for vertices and E for edges, and two basic constant, source src and target trg,

src : E→ V , trg : E→ V .

There are no equations.

Example 3.7.7. An example of a λ-theory is readily found in the theory of programming
languages. The mini-programming language PCF is a simply-typed λ-calculus with a basic
type nat for natural numbers, and a basic type bool of Boolean values,

Basic type B ::= nat type | bool type.

There are basic constants zero 0, successor succ, the Boolean constants true and false,
comparison with zero iszero, and for each type A the conditional condA and the fixpoint
operator fixA. They have the following types:

0 : nat

succ : nat→ nat

true : bool

false : bool

iszero : nat→ bool

condA : bool→ A→ A

fixA : (A→ A)→ A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 3.7.8. Another example of a λ-theory is the theory of a reflexive type. This
theory has one basic type D and two constants

r : D→ D→ D s : (D→ D)→ D

satisfying the equation
f : D→ D | r (s f) = f : D→ D (3.24)

which says that s is a section and r is a retraction, so that the function type D → D is a
subspace (even a retract) of D. A type with this property is said to be reflexive. We may
additionally stipulate the axiom

x : D | s (rx) = x : D (3.25)

which implies that D is isomorphic to D→ D.

[DRAFT: September 17, 2022]

98 λ-Calculus

Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are generated by
the following grammar:

t ::= v | t! t2 | λx. t .

In words, a variable is a term, an application t t′ is a term, for any terms t and t′, and a
λ-abstraction λx. t is a term, for any term t. Variable x is bound in λx. t. A context is a
list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed in Γ. The
judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really necessary
but we include it because it is always good practice to list the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | (λx. t)u = t[u/x]
(β-rule)

Γ | λx. (t x) = t
if x ̸∈ FV(t) (η-rule)

The untyped λ-calculus can be translated into the theory of a reflexive type from Exam-
ple 3.7.8. An untyped context Γ is translated to a typed context Γ∗ by typing each variable
in Γ with the reflexive type D, i.e., a context x1, . . . , xk is translated to x1 : D, . . . , xk : D.
An untyped term t is translated to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .

[DRAFT: September 17, 2022]

3.8 Interpretation of λ-calculus in CCCs 99

For example, the term λx. (x x) translates to s (λx : D . ((rx)x)). A judgment

Γ | u = t (3.26)

is translated to the judgment
Γ∗ | u∗ = t∗ : D . (3.27)

Exercise∗ 3.7.9. Prove that if equation (3.26) is provable then equation (3.27) is provable
as well. Identify precisely at which point in your proof you need to use equations (3.24)
and (3.25). Does provability of (3.27) imply provability of (3.26)?

3.8 Interpretation of λ-calculus in CCCs

We now consider semantic aspects of λ-calculus and λ-theories. Suppose T is a λ-calculus
and C is a cartesian closed category. An interpretation [[−]] of T in C is given by the
following data:

1. For every basic type A in T an object [[A]] ∈ C. The interpretation is extended to all
types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

2. For every basic constant c of type A a morphism [[c]] : 1→ [[A]].

The interpretation is extended to all terms in context as follows. A context Γ = x1 :
A1, · · · , xn : An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object 1. A typing judgment

Γ | t : A

is interpreted as a morphism
[[Γ | t : A]] : [[Γ]]→ [[A]] .

The interpretation is defined inductively by the following rules:

1. The i-th variable is interpreted as the i-th projection,

[[x0 : A0, . . . , xn : An | xi : Ai]] = πi : [[Γ]]→ [[Ai]] .

2. A basic constant c : A in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

[DRAFT: September 17, 2022]

100 λ-Calculus

3. The interpretation of projections and pairs is

[[Γ | ⟨t, u⟩ : A×B]] = ⟨[[Γ | t : A]], [[Γ | u : B]]⟩ : [[Γ]]→ [[A]]× [[B]]

[[Γ | fst t : A]] = π0 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[A]]

[[Γ | snd t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[B]] .

4. The interpretation of application and λ-abstraction is

[[Γ | t u : B]] = e ◦ ⟨[[Γ | t : A→ B]], [[Γ | u : A]]⟩ : [[Γ]]→ [[B]]

[[Γ | λx : A . t : A→ B]] = ([[Γ, x : A | t : B]])∼ : [[Γ]]→ [[B]][[A]]

where e : [[A → B]] × [[A]] → [[B]] is the evaluation morphism for [[B]][[A]] and ([[Γ, x :
A | t : B]])∼ is the transpose of the morphism

[[Γ, x : A | t : B]] : [[Γ]]× [[A]]→ [[B]] .

An interpretation of the λ-calculus of a theory T is a model of the theory if it satisfies
all axioms of T. This means that, for every axiom Γ | t = u : A, the interpretations of u
and t coincide as arrows in C,

[[Γ | u : A]] = [[Γ | t : A]] : [[Γ]] −→ [[A]].

It follows that all equations provable in T are satisfied in the model, by the following fact.

Proposition 3.8.1 (Soundness). If T is a λ-theory and [[−]] a model of T in a cartesian
closed category C, then for every equation in context Γ | t = u : A that is provable from the
axioms of T, we have

[[Γ | u : A]] = [[Γ | t : A]] : [[Γ]] −→ [[A]] .

Briefly, for all T-models [[−]],

T ⊢ (Γ | t = u : A) implies [[−]] |= (Γ | t = u : A) .

Remark 3.8.2 (Inhabitation). There is another notion of provability for the λ-calculus,
related to the Curry-Howard correspondence of section 3.1, relating it to propositional
logic. If we regard types as “propositions” rather than structures, and terms as “proofs”
rather than operations, then it is more natural to ask whether there even is a term a : A of
some type, than whether two terms of the same type are equal s = t : A. This only makes
sense when A is considered in the empty context · ⊢ A, rather than Γ ⊢ A for non-empty
Γ (consider the case where Γ = x : A, . . .). We say that a type A is inhabited (by a closed
term) when there is some ⊢ a : A, and regard an inhabited type A a provable. In this
sense, there is another notion of soundness as follows.

[DRAFT: September 17, 2022]

3.9 Functorial semantics 101

Proposition 3.8.3 (Inhabitation soundness). If T is a λ-theory and [[−]] a model of T in
a cartesian closed category C, then for every closed type A that is inhabited in T by a closed
term, ⊢ a : A, there is a corresponding point

[[a]] : 1→ [[A]] ,

in C. Briefly, for all T-models [[−]],

⊢ a : A implies [[a]] : 1→ [[A]] .

This follows immediately from the fact that [[·]] = 1 for Γ = · the empty context.

Example 3.8.4. 1. A model of an algebraic theory A, extended to a λ-theory Aλ as in
Example 3.7.5, taken in a CCC C, is just a model of the algebraic theory A in the
underlying finite product category |C| of C. A difference, however, is that in defining
the category of models

Mod×(A, |C|)

we can take all homomorphism of models the algebraic theory as arrows, while the
arrows in the category

Modλ(Aλ, C)

of λ-models are best taken to be isomorphisms, for which one has an obvious way to
deal with the contravariance of the function type [[A→ B]] = [[B]][[A]] .

2. A model of the theory of a reflexive type, Example 3.7.8, in Set must be the one-
element 1 (prove this!). Fortunately, the exponentials in categories of presheaves
are not computed pointwise - otherwise it would follow that there would be no non-
trivial models at all in small categories! That there are such non-trivial models is
an important fact in the semantics of programming languages and the subject called
domain theory. A basic paper in which this is shown is [?].

3. A model of a propositional theory T, regarded as a λ-theory, in a CCC poset P is the
same thing as before: an interpretation of the atomic propositions p1, p2, ... of T as
elements [[p1]], [[p2]], ... ∈ P , such that the axioms ϕ1, ϕ2, ... of T are all sent to 1 ∈ P
by the extension of [[−]] to all formulas, i.e. [[ϕ1]] = [[ϕ2]] = ... = 1 ∈ P .

3.9 Functorial semantics

In Section ?? we saw that algebraic theories can be viewed as categories, cf. Definition ??,
and models as functors, cf. Definition ??, and we arranged this categorical analysis of the
traditional relationship between syntax and sematics into the framework that we called
functorial semantics. The same can be done with λ-theories and their models in CCCs.
The first step is to build a syntactic category CT from a λ-theory T. This is done as follows:

• The objects of CT are the types of T.

[DRAFT: September 17, 2022]

102 λ-Calculus

• Morphisms A→ B are terms in context

[x : A | t : B] ,

where two such terms x : A | t : B and x : A | u : B represent the same morphism
when T proves x : A | t = u : B.

• Composition of the terms

[x : A | t : B] : A −→ B and [y : B | u : C] : B −→ C

is the term obtained by substituting t for y in u:

[x : A | u[t/y] : C] : A −→ C .

• The identity morphism on A is the term [x : A | x : A].

Proposition 3.9.1. The syntactic category CT built from a λ-theory is cartesian closed.

Proof. We omit the equivalence classes brackets [x : A | t : B] and treat equivalent terms
as equal.

• The terminal object is the unit type 1. For any type A the unique morphism !A :
A→ 1 is

x : A | ∗ : 1 .
This morphism is unique because

Γ | t = ⋆ : 1

is an axiom for the terms of unit type 1.

• The product of objects A and B is the type A × B. The first and the second
projections are the terms

p : A×B | fst p : A , p : A×B | snd p : B .

Given morphisms

z : C | t : A , z : C | u : B ,

the term
z : C | ⟨t, u⟩ : A×B

represents the unique morphism satisfying

z : C | fst ⟨t, u⟩ = t : A , z : C | snd ⟨t, u⟩ = u : B .

Indeed, if fst s = t and snd s = u then

s = ⟨fst s, snd s⟩ = ⟨t, u⟩ .

[DRAFT: September 17, 2022]

3.9 Functorial semantics 103

• The exponential of objects A and B is the type A→ B with the evaluation morphism

p : (A→ B)× A
∣∣ (fst p)(snd p) : B .

The transpose of the morphism p : C × A | t : B is

z : C | λx : A . (t[⟨z, x⟩/p]) : A→ B .

Showing that this is the transpose of t amounts to

(λx : A . (t[⟨fst p, x⟩/p]))(snd p) = t[⟨fst p, snd p⟩/p] = t[p/p] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique, because
any morphism z : C | s : A→ B that satisfies

(s[fst p/z])(snd p) = t

is equal to λx : A . (t[⟨z, x⟩/p]). First observe that

t[⟨z, x⟩/p] = (s[fst p/z])(snd p)[⟨z, x⟩/p] =
(s[fst ⟨z, x⟩/z])(fst ⟨z, x⟩) = (s[z/z])x = s x .

Therefore,
λx : A . (t[⟨z, x⟩/p]) = λx : A . (s x) = s ,

as required.

The syntactic category allows us to “redefine” models as functors. More precisely, we
have the following.

Lemma 3.9.2. A model [[−]] of a λ-theory T in a cartesian closed category C determines
a cartesian closed functor M : CT → C with

M(A) = [[A]], M(c) = [[c]], (3.28)

for all basic types A and basic constants c. Moreover, M is unique up to a unique isomor-
phism of CCC functors, in the sense that given another model N satisfying (3.28), there is
a unique natural isoM ∼= N determined inductively by the comparison mapsM(1) ∼= N(1),

M(A×B) ∼= MA×MB ∼= NA×NB ∼= N(A×B) ,

and similarly for M(BA).

Proof. Straightforward.

We now have the usual functorial semantics theorem:

[DRAFT: September 17, 2022]

104 λ-Calculus

Theorem 3.9.3. For any λ-theory T, the syntactic category CT classifies T-models, in the
sense that for any cartesian closed category C there is an equivalence of categories

Modλ
(
T, C

)
≃ CCC

(
CT , C

)
, (3.29)

naturally in C.

Proof. Note that the categories involved in (3.29) are actually groupoids, as discussed in
example 3.8.4(1). The only thing remaining to show is that given a model [[−]]M in a CCC
C and a CCC functor f : C → D, there is an induced model [[−]]fM in D, given by the
interpretation [[A]]fM = f [[A]]M . This is straigtforward, just as for algebraic theories.

We can now proceed just as we did in the case of algebraic theories and prove that the
semantics of λ-theories in cartesian closed categories is complete, in virtue of the syntactic
construction of the classifying category CT. Specifically, a λ-theory T has a canonical
interpretation [−] in the syntactic category CT, which interprets a basic type A as itself, and
a basic constant c of type A as the morphism [x : 1 | c : A]. The canonical interpretation
is a model of T, also known as the syntactic model, in virtue of the definition of the
equivalence relation [−] on terms. In fact, it is a logically generic model of T, because by
the construction of CT, for any terms Γ | u : A and Γ | t : A, we have

T ⊢ (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= Γ | u = t : A .

For the record, we therefore have shown:

Proposition 3.9.4. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (3.29) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by CCC functors (Proposition 3.8.1).

Corollary 3.9.5. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every CCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]] in
every model M .

[DRAFT: September 17, 2022]

3.10 The internal language of a CCC 105

3.10 The internal language of a CCC

We can take the correspondence between λ-theories and CCCs one step further and organize
the former into a category, which is then equivalent to that of the latter. For this we first
need to define a suitable notion of morphism of theories. A translation τ : T → U of a
λ-theory T into a λ-theory U is given by the following data:

1. For each basic type A in T a type τA in U. The translation is then extended to all
types by the rules

τ1 = 1 , τ(A×B) = τA× τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type A in A a term τc of type τA in U. The translation
of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ⟨t, u⟩ = ⟨τt, τu⟩ , τ(λx : A . t) = λx : τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .

A context Γ = x1 : A1, . . . , xn : An is translated by τ to the context

τΓ = x1 : τA1, . . . , xn : τAn .

Furthermore, a translation is required to preserve the axioms of T: if Γ | t = u : A is an
axiom of T then U proves τΓ | τt = τu : τA. It then follows that all equations proved by T
are translated to valid equations in U.

A moment’s consideration shows that a translation τ : T → U is the same thing as
a model of T in CU, despite being specified entirely syntactically. Clearly, λ-theories and
translations between them form a category. Translations compose as functions, therefore
composition is associative. The identity translation ιT : T → T translates every type to
itself and every constant to itself. It corresponds to the canonical interpretation of T in CT.

Definition 3.10.1. λThr is the category whose objects are λ-theories and morphisms are
translations between them.

Let C be a small cartesian closed category. There is a λ-theory L(C) that corresponds
to C, called the internal language of C, defined as follows:

1. For every object A ∈ C there is a basic type ⌜A⌝.

2. For every morphism f : A → B there is a basic constant ⌜f⌝ whose type is ⌜A⌝ →
⌜B⌝.

3. For every A ∈ C there is an axiom

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝ .

[DRAFT: September 17, 2022]

106 λ-Calculus

4. For all morphisms f : A→ B, g : B → C, and h : A→ C such that h = g ◦ f , there
is an axiom

x : ⌜A⌝ | ⌜h⌝x = ⌜g⌝ (⌜f⌝x) : ⌜C⌝ .

5. There is a constant
T : 1→ ⌜1⌝ ,

and for all A,B ∈ C there are constants

PA,B : ⌜A⌝× ⌜B⌝→ ⌜A×B⌝ , EA,B : (⌜A⌝→ ⌜B⌝)→ ⌜BA⌝ .

They satisfy the following axioms:

u : ⌜1⌝ | T ∗ = u : ⌜1⌝

z : ⌜A×B⌝ | PA,B⟨⌜π0⌝z, ⌜π1⌝z⟩ = z : ⌜A×B⌝

w : ⌜A⌝× ⌜B⌝ | ⟨⌜π0⌝(PA,Bw), ⌜π1⌝(PA,Bw)⟩ = w : ⌜A⌝× ⌜B⌝

f : ⌜BA⌝ | EA,B(λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨f, x⟩))) = f : ⌜BA⌝

f : ⌜A⌝→ ⌜B⌝ | λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨(EA,Bf), x⟩)) = f : ⌜A⌝→ ⌜B⌝

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure the
isomorphisms ⌜1⌝ ∼= 1, ⌜A×B⌝ ∼= ⌜A⌝× ⌜B⌝, and ⌜BA⌝ ∼= ⌜A⌝→ ⌜B⌝. Types A and B
are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that T proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories T and U is a pair of translations

T
τ

** U
σ

jj

such that, for any type A in T and any type B in U,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : CCC→ λThr ,

where CCC is the category of small cartesian closed categories and functors between them
that preserve finite products and exponentials. Such functors are also called cartesian
closed functors or ccc functors. If F : C → D is a cartesian closed functor then L(F) :
L(C)→ L(D) is the translation given by:

[DRAFT: September 17, 2022]

3.10 The internal language of a CCC 107

1. A basic type ⌜A⌝ is translated to ⌜FA⌝.

2. A basic constant ⌜f⌝ is translated to ⌜Ff⌝.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and EFA,FB, respec-
tively.

We now have a functor L : CCC→ λThr. How about the other direction? We already
have the construction of syntactic category which maps a λ-theory T to a small cartesian
closed category CT. This extends to a functor

C : λThr→ CCC ,

because a translation τ : T→ U induces a functor Cτ : CT → CU in an obvious way: a basic
type A ∈ CT is mapped to the object τA ∈ CU, and a basic constant x : 1 | c : A is mapped
to the morphism x : 1 | τc : A. The rest of Cτ is defined inductively on the structure of
types and terms.

Theorem 3.10.2. The functors L : CCC → λThr and C : λThr → CCC constitute an
equivalence of categories, “up to equivalence”. This means that for any C ∈ CCC there is
an equivalence of catgories

C ≃ CL(C) ,

and for any T ∈ λThr there is an equivalence of theories

T ≃ L(CT) .

Proof. For a small cartesian closed category C, consider the functor ηC : C → CL(C), defined
for an object A ∈ C and f : A→ B in C by

ηCA = ⌜A⌝ , ηCf = (x : ⌜A⌝ | ⌜f⌝x : ⌜B⌝) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝

and for all f : A→ B and g : B → C,

x : ⌜A⌝ | ⌜g ◦ f⌝x = ⌜g⌝(⌜f⌝x) : ⌜C⌝ .

To see that ηC is an equivalence of categories, it suffices to show that for every object
X ∈ CL(C) there exists an object θCX ∈ C such that ηC(θCX) ∼= X. The choice map θC is
defined inductively by

θC1 = 1 , θC⌜A⌝ = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)
θCY .

[DRAFT: September 17, 2022]

108 λ-Calculus

We skip the verification that ηC(θCX) ∼= X. In fact, θC can be extended to a functor
θC : CL(C) → C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1CL(C) .

Given a λ-theory T, we define a translation τT : T→ L(CT). For a basic type A let

τTA = ⌜A⌝ .

The translation τTc of a basic constant c of type A is

τTc = ⌜x : 1 | c : τTA⌝ .

In the other direction we define a translaton σT : L(CT) → T as follows. If ⌜A⌝ is a basic
type in L(CT) then

σT ⌜A⌝ = A ,

and if ⌜x : A | t : B⌝ is a basic constant of type ⌜A⌝→ ⌜B⌝ then

σT ⌜x : A | t : B⌝ = λx : A . t .

The basic constants T, PA,B and EA,B are translated by σT into

σT T = λx : 1 . x ,

σT PA,B = λp : A×B . p ,

σT EA,B = λf : A→ B . f .

If A is a type in T then σT(τTA) = A. For the other direction, we would like to show, for
any type X in L(CT), that τT(σTX) ∼= X. We prove this by induction on the structure of
type X:

1. If X = 1 then τT(σT1) = 1.

2. If X = ⌜A⌝ is a basic type then A is a type in T. We proceed by induction on the
structure of A:

(a) If A = 1 then τT(σT⌜1⌝) = 1. The types 1 and ⌜1⌝ are isomorphic via the
constant T : 1→ ⌜1⌝.

(b) If A is a basic type then τT(σT⌜A⌝) = ⌜A⌝.

(c) If A = B × C then τT(σT⌜B × C⌝) = ⌜B⌝× ⌜C⌝. But we know ⌜B⌝× ⌜C⌝ ∼=
⌜B × C⌝ via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τT(σT(Y × Z)) = τT(σTY) × τT(σTZ). By induction hypothesis,
τT(σTY) ∼= Y and τT(σTZ) ∼= Z, from which we easily obtain

τT(σTY)× τT(σTZ) ∼= Y × Z .

4. The case X = Y → Z is similar.

[DRAFT: September 17, 2022]

3.11 Embedding and completeness theorems 109

Exercise 3.10.3. In the previous proof we defined, for each C ∈ CCC, a functor ηC : C →
CL(C). Verify that this determines a natural transformation η : 1CCC =⇒ C ◦ L. Can you
say anything about naturality of the translations τT and σT? What would it even mean
for a translation to be natural?

Remark 3.10.4. Discussion of untyped λ-calculus: we do not know that the syntactic
construction is non-trivial. But existence of non-trivial models tells us that it is not (which
implies a suitable notion of consistency of untyped λ-calculus).

Give an untyped model satisfying β-reduction. Refer to literature for βη-models.

Remark 3.10.5. Adding coproducts 0, A+B, also for presheaf models.

3.11 Embedding and completeness theorems

We have considered the λ-calculus as a common generalization of both propositional logic,
modelled by poset CCCs such as Boolean and Heyting algebras, and equational logic,
modelled by finite product categories. Accordingly, there are then two different notions
of “provability”, as discussied in Remark 3.8.2; namely the derivability of a closed term
⊢ a : A, and the derivability of an equation between two (not necessarily closed) terms of
the same type Γ ⊢ s = t : A. With respect to the semantics, there are then two different
corresponding notions of soundness and completeness: for “inhabitation” of types, and for
equality of terms. We consider special cases of these notions in more detail below.

Conservativity

With regard to the former notion, inhabitation, one can also consider the question of how
it compares with simple provability in propositional logic: e.g. a positive propositional
formula ϕ in the variables p1, p2, ..., pn obviously determines a type Φ in the corresponding
λ-theory T(X1, X2, ..., Xn) over n basic type symbols. What is the relationship between
provability in positive propositional logic, PPL ⊢ ϕ, and inhabitation in the associated
λ-theory, T(X1, X2, ..., Xn) ⊢ t : Φ? Let us call this the question of conservativity of λ-
calculus over PPL. According to the basic idea of the Curry-Howard correspondence from
Section 3.1, the λ-calculus is essentially the “proof theory of PPL”. So one should expect
that starting from an inhabited type Φ, a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ
should result in a corresponding proof of ϕ in PPL just by “rubbing out the proof terms”.
Conversely, given a provable formula ⊢ ϕ, one should be able to annotate a proof of it in
PPL to obtain a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ in the λ-calculus (although
perhaps not the same term that one started with, if the proof was obtained from rubbing
out a term).

We can make this idea precise semantically as follows. Write |C| for the poset reflection
of a category C, that is, the left adjoint to the inclusion i : Pos ↪→ Cat, and let η : C → |C|
be the unit of the adjunction.

[DRAFT: September 17, 2022]

110 λ-Calculus

Lemma 3.11.1. If C is cartesian closed, then so is |C|, and η : C → |C| preserves the CCC
structure.

Proof. Exercise!

Exercise 3.11.2. Prove Lemma 3.11.1.

Corollary 3.11.3. The syntactic category PPC(p1, p2, ..., pn) of the positive propositional
calculus on n propositional variables is the poset reflection the syntactic category CT(X1,X2,...,Xn)

of the λ-theory T(X1, X2, ..., Xn),

|CT(X1,X2,...,Xn)| ∼= PPC(p1, p2, ..., pn) .

Proof. We already know that CT(X1,X2,...,Xn) is the free cartesian closed category on n gener-
ating objects, and that PPC(p1, p2, ..., pn) is the free cartesian closed poset on n generating
elements. We have an obvious CCC map

CT(X1,X2,...,Xn) −→ PPC(p1, p2, ..., pn)

taking generators to generators, and it extends along the quotient map to |CT(X1,X2,...,Xn)|
by the universal property of the poset reflection. Thus it suffices to show that the quotient
map preserves, and indeed creates, the CCC structure on |CT(X1,X2,...,Xn)|, which follows
from the Lemma 3.11.1.

Remark 3.11.4. Corollary 3.11.3 can be extended to other systems of type theory and
logic, with further operations such as CCCs with sums 0, A + B (“bicartesian closed cat-
egories”), and the full intuitionistic propositional calculus IPC with the logical operations
⊥ and p ∨ q. We leave this as a topic for the interested student.

Completeness

As was the case for algebraic and propositional logics, the fact that there is a generic model
(Proposition 3.9.4) allows the general completeness theorem stated in Corollary 3.9.5 to
be specialized to various classes of special models, via embedding (or “representation”)
theorems, this time for CCCs, rather than for finite product categories or Boolean/Heyting
algebras. We shall consider three such cases: “variable” models, topological models, and
Kripke models. Note that this follows that same pattern that we saw for the “proof
irrelevant” case of propostional logic, but in some cases, the proofs require much more
sophisticated methods.

Variable models

By a variable model of the λ-calculus we mean one in a ccc of the form Ĉ = SetC
op

, i.e.
presheaves on a category C. We regard such a model as “varying over C”, just as a presheaf
of groups on the simplex category ∆ may be seen both as a simplicial group – a simplicial
object in the category of groups – and as a group in the category Set∆

op

of simplicial sets.
The basic fact that we use in specializing Proposition 3.9.4 to such variable models is the
following, which is one of the fundamental facts of categorical semantics.

[DRAFT: September 17, 2022]

3.11 Embedding and completeness theorems 111

Lemma 3.11.5. For any small category C, the Yoneda embedding

y : C ↪→ SetC
op

preserves cartesian closed structure.

Proof. We just evaluate yA(X) = C(X,A). It is clear that y1(X) = C(X, 1) ∼= 1 naturally
in X, and that y(A×B)(X) = C(X,A × B) ∼= C(X,A) × C(X,B) ∼= (yA × yB)(X) for
all A,B,X, naturally in all three arguments. For BA ∈ C, we then have

y(BA)(X) = C(X,BA) ∼= C(X × A,B) ∼= Ĉ(y(X × A), yB) ∼= Ĉ(yX × yA, yB),

since y is full and faithful and preserves ×. But now recall that the exponential QP of
presheaves P,Q is defined at X by the specification

QP (X) = Ĉ(yX × P,Q) .

So Ĉ(yX × yA, yB) = yByA(X), and we’re done.

Proposition 3.11.6. For any λ-theory T, we have the following:

1. A type A is inhabited,
T ⊢ a : A

if, and only if, there is a point
1→ [[A]]

in every model [[−]] in a CCC of presheaves SetC
op

on a small category C.

2. For any terms Γ | s, t : A,
T ⊢ (Γ | s = t : A)

if, and only if,
[[Γ ⊢ s : A]] = [[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

for every such presheaf model.

Proof. We can specialize the general completeness statement of Corollary 3.9.5 to CCCs of
the form Ĉ using Lemma 3.11.5, together with the fact that the Yoneda embedding is full
(and therefore reflects inhabitation) and faithful (and therefore reflects equations).

Topological models

See [?]

Kripke models

See [?]

[DRAFT: September 17, 2022]

112 λ-Calculus

Models based on computability and continuity

See [?]

3.12 Modal operators and monads

See [?]

[DRAFT: September 17, 2022]

