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Abstract

The category�theoretic notion of a topos is called upon to study the syntax and

semantics of higher�order logic� Syntactical systems of logic are replaced by topoi� and

models by functors on those topoi� as per the general scheme of functorial semantics�

Each �possibly higher�order� logical theory T gives rise to a syntactic topos I�UT � of

polynomial�like objects� The chief result is the universal characterization of I�UT � as

a so�called classifying topos� for any topos E� the category Log�I�UT �� E� of logical

morphisms I�UT �� E is naturally equivalent to the category ModT �E� of models of

T in E�

Log�I�UT �� E� �ModT �E��

In particular� there is a T �model UT in I�UT � such that any T �model in any topos is

an image of UT under an essentially unique logical morphism� In this sense� I�UT � is

freely generated by this �universal� model UT of T �

Having cast the principal logical notions in familiar algebraic terms� it be�

comes possible to apply standard algebraic and functorial techniques to some classical

logical topics� such as interpolation� de�nability� and completeness� For example� a

well�known theorem of Grothendieck states that every commutative ring is isomorphic

to the ring of global sections of a sheaf of local rings� A similar sheaf representation

theorem for topoi is proved using the theory of stacks and indexed categories� Com�

bining this result with the classifying topos theorem� one can infer the completeness

of higher�order logic with respect to certain topoi that are much like Sets� A stronger

version of the classical Henkin completeness theorem for higher�order logic follows as

a corollary�
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Introduction

This dissertation investigates what may be termed the model theory of higher�order

logic using the methods of category theory� Of course� there is no such �eld of

logic as �higher�order model theory�� and so our �rst concern in chapter I will be

to specify the basic objects under investigation� viz� higher�order logical theories

and their models� This is a fairly straightforward generalization�in two di�erent

directions�of the familiar corresponding notions for �rst�order logic� the notion of

a logical theory is generalized from �rst� to higher�order logic� and the notion of a

model is generalized both from �rst� to higher�order logic� and from the category

Sets to arbitrary topoi�� The remaining four chapters of the dissertation are then

devoted to what may be termed �functorial semantics for higher�order logic�� or �topos

semantics�� by which is meant the study of such higher�order logical theories and their

models by functorial methods� i�e� employing the theory of categories and functors�

invented by S� Eilenberg and S� Mac Lane �cf� ��
��� and in particular the notion of

an elementary topos� invented by F� W� Lawvere and M� Tierney �cf� �	��� �
����

The central notion of topos semantics is that of a classifying topos for a logi�

cal theory� Our treatment of classifying topoi for higher�order logic is patterned on the

now well�developed theory of classifying topoi for geometric logic� a fragment of �rst�

order logic �cf� �	
� ch� X��� In the geometric case� the relevant topoi are Grothendieck

topoi and the relevant morphisms of topoi are geometric morphisms �cf� �	
� ch� VII�

VIII��� Indeed� the theory of geometric classifying topoi is as much a tool for studying

this category of topoi as for studying geometric logic �as evidenced by ��	��� In the

�Higher�order theories and some of their connections to topoi have recently been considered by
several authors� in particular ��� ��� �� ���	 Roughly speaking� it is our treatment of models of such
theories that is new 
see the remarks at the end of xII	� for the exact relationship between this and
previous work�	
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case of higher�order logic under consideration here� it is rather elementary topoi and

logical morphisms that are most relevant� This is because the logical morphisms of

topoi are exactly those that preserve the higher�order logic under consideration here�

while the notion of an elementary topos is broad enough to include the classifying

topoi that we shall construct� in addition to the topoi like Sets in which models are

usually taken�

While the theory of geometric classifying topoi provides the starting point

for our treatment of topos semantics� it is rather another theory that guides the

further development� namely the classical theory of polynomial algebras and algebraic

extensions of rings and �elds� That this point of view is useful in our case results

from the fact that the category at issue of topoi and logical morphisms shares with

the category of commutative rings the important property of being �algebraic�� in a

suitable sense� and this results from the fact that the notion of an elementary topos

is itself �algebraic�� in a suitable sense�� since the de�nition is given wholly in terms

of adjoints� This fact was emphasized by Lawvere in the original presentation of

elementary topoi in �	��� Generally� and in rough terms� our goal in developing the

theory of classifying topoi for higher�order logic is to take advantage of these facts

to replace the traditional logical notion of �nitary syntax by the algebraic notions of

�nite generation and �nite presentability�

The theory of classifying topoi for higher�order logic is by no means fully

developed in this dissertation� numerous directions remain to be investigated� many

of them suggested by the ground covered here� It is hoped� however� that enough

of the theory has been carried out for the reader to recognize its outlines� and to

share the author�s opinion that it is a course worth pursuing� That pursuit is not just

an exercise in conceptual uni�cation� however� like the introduction of new methods

anywhere� it should also bear fruit� The �nal chapters of this work are thus intended

as sample applications� The method is the same as that used elsewhere� a given

logical problem or topic is �rst translated via our general set�up into an algebraic

�More precisely� �essentially algebraic
 in the sense of ����� see xIII	� below for a fuller discussion
of these matters	
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one �hopefully familiar�� The topic is treated by functorial methods� and the solution

is then translated back into logical terms� Each of the applications given follows

this scheme� the reader will recognize the ideas of algebraic �in�dependence in the

treatment of interpolation� descent theory in the treatment of de�nability� and the

sheaf�theoretic methods common in commutative algebra in our treatment of logical

completeness�

A summary of the contents and chief results of each chapter now follows�

I� Higher�Order Theories and Models in Topoi

The basic notions under consideration are introduced� A language of higher�order

logic is speci�ed� and the notion of a logical theory is de�ned as a �nite list of basic

type symbols� basic typed constant symbols� and closed formulas in those parameters�

A sequent calculus is given to determine the relation of syntactic entailment between

formulas� in the usual way�

The category Log of topoi and logical morphisms is then introduced to

provide semantics for such logical theories� as follows� For a given theory T and a given

topos E� the notion of a model of T in E is de�ned� generalizing the usual de�nition

of a model of an elementary theory in a topos �which de�nition itself generalizes the

usual set�valued notion�� Morphisms of such models are also speci�ed� determining

a category ModT �E� of T �models in E� The relation of semantic entailment between

formulas is then speci�ed in terms of models� in much the same way as in the case of

�rst�order logic and set�valued models�

II� Classifying Topoi

The chapter begins with a review of the basic idea of classi�cation� and the de�nition

of a classifying topos for a theory T is given� Given a model M � ModT �E� of T

in a topos E and any logical morphism of topoi f � E � F � the image f�M� of M

under f is a T �model in F � In this way� ModT ��� is a functor on the category Log
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of topoi and logical morphisms� A topos I�UT � is called a classifying topos for T if

I�UT � represents this functor ModT ��� �in a suitable ��categorical sense��

The main result of the chapter is proved in x	�

Theorem �classifying topos�� For any theory T there is a classifying topos� de�

noted I�UT �� thus for any topos E there is an equivalence of categories� natural in

E�

Log�I�UT �� E� � ModT �E��

Here Log�I�UT �� E� is the category of logical morphisms I�UT � � E and natural

isomorphisms between them� It then follows from the theorem that there is a so�

called universal T �model UT in I�UT �� associated under the above equivalence to the

identity logical morphism I�UT �� I�UT �� The model UT has the property that any

T �modelM in any topos E is the essential imageM ��M��UT � of UT under a logical

morphismM� � I�UT �� E� determined uniquely up to natural isomorphism� In this

sense� I�UT � is the free topos on a model of T �

The proof of the classifying topos theorem proceeds in two steps� First� the

free topos I�X� on a single object is constructed syntactically from the basic logical

language by identifying closed terms of the form fx � �g under provable equality�a

Lindenbaum�Tarski style construction already familiar in categorical logic� Next� the

general classifying topos I�UT � for a theory T is constructed topos�theoretically from

I�X� with the help of a �slice lemma�� From the construction of I�UT � together with

the classifying topos theorem then follows one of the main results of topos semantics�

Theorem �adequacy of topos semantics�� The deductive calculus is sound and

complete for models in topoi� Speci�cally� for any logical theory T � a T �sentence is

T �provable just if it is true in every T �model�

The chapter concludes with some examples of classifying topoi and some �rst

applications thereof� e�g� to the completeness of the classical theory of propositional

types�
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III� The Category Log

In this chapter� some basic facts about the category Log of topoi are established� A

morphism of theories T� � T� �called a �translation�� is de�ned to be a logical mor�

phism of classifying topoi I�UT�� � I�UT��� By the classifying topos theorem� these

correspond uniquely to models of T� in the classifying topos I�UT��� Such translations

can be speci�ed in syntactic terms� generalizing the usual logical notion of a transla�

tion �or interpretation� of one theory into another� There results a syntactic notion of

equivalence of theories� T� and T� are equivalent just if they are �intertranslatable� in

the sense that there is an equivalence of categories I�UT�� � I�UT��� Any translation

� � T� � T� induces� for each topos E� a �restriction� functor

� � �ModT��E� � Log�I�UT��� E�� Log�I�UT��� E� �ModT��E�

on the respective model categories� One then has the following result by the classifying

topos theorem and the well�known Yoneda lemma�

Theorem� A translation of theories � � T� � T� is an equivalence just if� for each

topos E� the induced restriction functor

� � �ModT��E��ModT��E�

is an equivalence of model categories�

A topos is called �nitary if it is �equivalent to� a slice topos I�X��A for some

object A in the free topos I�X� on one object� Any �nitary topos is a classifying

topos for some logical theory� and every classifying topos is �nitary� The category

Logf of �nitary topoi and logical morphisms is thus �equivalent to� the category

of logical theories� A notion of �niteness is also speci�ed for logical morphisms�

corresponding to the logical notion of a �nite extension of a theory� It is shown that

any logical morphism E � F between �nitary topoi E and F is �nitary� and that

the category Logf has all �nite colimits� It is further shown that if G is a �nite

�directed� graph� then the free topos I�G� on G is �nitary� moreover� one has the

following characterization of �nitary topoi�
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Theorem� For any topos E� the following statements are equivalent�

�i� E � I�UT � for a logical theory T �

�ii� E � I�X��A for an object A in the free topos I�X� on one object�

�iii� E � I�G��� for a subobject � of � in the free topos I�G� on a �nite graph G�

�iv� For some �nite graphs G�G�� E is a coequalizer of logical morphisms

I�G��
f�

�

f�
� I�G� � E�

Finitary topoi are used to construct colimits of topoi in general� using the

fact that every topos is a colimit of �nitary topoi� and the colimit can be constructed

as the usual one of categories and functors� It follows that so�called �relative classi�

fying topoi� exist� i�e� classifying topoi over an arbitrary base topos�

Finally� a section is devoted to quotient topoi� of which an abstract charac�

terization is given� The kernel of a logical morphism is de�ned� and a homomorphism

theorem for topoi is given� as is a factorization theorem for logical morphisms�

IV� Interpolation and De�nability

Results of previous chapters are used to investigate some classical logical topics�

Generalizations from �rst� to higher�order logic of the well�known Craig interpolation

and Beth de�nability theorems are considered� In each case� the theorem is shown

�by counter�example� to fail in full generality� i�e� in the case of many�sorted� higher�

order theories� A restricted version of each theorem is then obtained by determining

a suitable condition� in particular� the single sorted� higher�order case then follows

easily� The de�nability theorem is furthermore shown to hold in some cases where

the interpolation theorem fails� Each theorem is stated in both topos�theoretic and

syntactical forms�
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V� Sheaf Representation and Logical Completeness

The sheaf representation for topoi of Lambek � Moerdijk �����an analogue of Groth�

endieck�s sheaf representation for commutative rings�is improved upon� and sharper

logical completeness theorems are derived as corollaries� A topos is called hyperlocal

�resp� well�pointed� if the terminal object is connected and projective �resp� is a

generator�� Such topoi have been studied previously� well�pointed topoi as models

of so�called weak Zermelo set theory� and hyperlocal topoi as intuitionistic analogues

thereof� In logical terms� a classifying topos I�UT � is�

� hyperlocal i� T � p�q implies T � p or T � q� and T � 	x��x� implies T � ��� �

for some closed term � �

� boolean i� T � p � 
p �T is �classical���

� well�pointed i� hyperlocal and boolean�

After establishing a result in the theory of stacks �every small stack is equiv�

alent to a sheaf�� a recent result in topos theory is applied� and the following theorem

is established�

Theorem �sheaf representation�� For any small topos E there is a topological

space XE with a sheaf of categories eE such that�

�i� E is equivalent to the category of global sections of eE�
�ii� every stalk of eE is a hyperlocal topos�

�iii� E is boolean if and only if every stalk of eE is well�pointed�

Combining this sheaf representation with results of previous chapters� the

following completeness theorems for intuitionistic and classical higher�order logic are

obtained�

Theorem �strong completeness�� Let T be a �classical� logical theory� A T �sen�

tence is T �provable if it is true in every �well�pointed� hyperlocal model of T �
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By a �well�pointed� hyperlocal model of T is meant here a T �model in a �well�pointed�

hyperlocal topos� Thus e�g� if T is a classical theory� then a T �sentence is provable if it

is true in every model of T in every model of weak Zermelo set theory� Furthermore�

such models give rise to certain of the so�called general models usually considered in

this connection� and a sharper version of the classical Henkin completeness theorem

for higher�order logic then follows as a corollary to the strong completeness theorem�

xiv



Chapter I

Higher�Order Theories and Models in

Topoi

We begin by specifying the basic logical language� and then de�ne the central notion

of a logical theory� The syntactic entailment relation is then speci�ed in terms of a

logical calculus�

Next� the notion of a topos model of a theory is de�ned� as is the category

of such models� Models are then used to specify the semantic entailment relation�

and one of the basic theorems of topos semantics is stated� viz� soundness and com�

pleteness�

While most of these ideas are fairly standard�at least for �rst�order logic�

no reference could be found that suits our purposes in the sequel� A clearly related

notion� however� is that of �structure� given in ����

� Syntax

��� The Logical Language

De�nition �� �i� The logical language L�X� has the following basic symbols�

v� X� P� �� �� �� �� 
� ��

plus parentheses� comma� and the prime sign ��

�



�

�ii� The symbols X and P are called �basic� type symbols� If Y and Z are type

symbols� so are the expressions

Y � Z� P �Z��

A type symbol is called simple if it is not of the form Y � Z�

�iii� If Z is a simple type symbol� then the expression

vZ

is called a �simple� variable of type Z� If z is a simple variable of type Z� then so

is z�� If z�� � � � � zn are distinct simple variables of types Z�� � � � � Zn respectively�

then the expression

�z�� � � � � zn�

is called a �complex� variable of type Z� � � � �� Zn�

�iv� The terms of L�X� and their types are as follows�

� a variable of type Z is a term of type Z�

� if ��� � � � � �n are terms of simple types Z�� � � � � Zn respectively� then

���� � � � � �n�

is a term of type Z� � � � �� Zn�

� if z is a variable of type Z and � is a term of type P � then

�z � ��

is a term of type P �Z��

� if � is a term of type Z and � is a term of type P �Z�� then

�� � ��� ����

are terms of type P �



	

� if � and � are terms of type P � so are

�� � ��� ��
 ���

A formula is a term of type P � Free and bound variables are de�ned as

usual� also as usual� a term is closed if it has no free variables� and a sentence is a

closed formula�

If X�� � � � �Xn is a �possibly empty� list of new basic type symbols �i�e�

distinct letters�� then the language

L�X�� � � � �Xn�

�respectively L� is de�ned just like L�X�� but with the type symbols X�� � � � �Xn in

place of the single basic type symbol X� The notions type� term� formula� etc� of

L�X�� � � � �Xn� are de�ned as for L�X��

Similarly� for distinct simple variables c�� � � � � cm of L�X�� � � � �Xn� � the lan�

guage

L�X�� � � � �Xn� c�� � � � � cm�

is de�ned just like L�X�� � � � �Xn�� except that c�� � � � � cm are never bound� A term

of L�X�� � � � �Xn� c�� � � � � cm� is said to be closed if it has at most c�� � � � � cm free�

The terms c�� � � � � cm are called basic constant symbols of L�X�� � � � �Xn� c�� � � � � cm��

Basic type symbols and basic constant symbols will be called parameters� Terms of

L�X�� � � � �Xn� c�� � � � � cm� shall be said to be in the parametersX�� � � � �Xn� c�� � � � � cm�

Convention �� Where clarity permits it� we will take a rather lax attitude toward

syntactic matters� Parentheses in terms will be added� omitted� and replaced by

dots� brackets� or braces to improve readability� Given a formula �� we usually write

fz � �g rather than �z � ��� and �z�� rather than ��z � ��� We use the conventional

substitution notation ����z� to denote the result of replacing every occurrence of a

free variable z by a term � of the same type �as usual� changing bound variables in






� as necessary to prevent binding any free variable in � �� Frequent use will also be

made of the following standard abbreviations�

� �df �p�p
 p��

� �df �p�p�


p �df p 
��

p� q �df �p 
 q� � �q 
 p��

p � q �df �r���p
 r�
 �q 
 r��
 r��

	z�� �df �r��z��
 r�
 r��

z � z� �df �u�z � u
 z� � u��

	�z�� �df 	z�� � �z�z��� � ��z��z�
 z � z���

� � Z �df z � z �z of type Z��

Z � � �df fz � z � Zg � � �� of type PPZ��

fz � A � �g �df fz � z � A � �g�

�z�A�� �df �z�z � A
 ���

	z�A�� �df 	z�z � A � ���

A � B �df �z�z � A
 z � B� �A�B of type PZ��

P �A� �df fu � PZ � u � Ag �A of type PZ��

A�B �df f�z� y� � z � A � y � Bg �A�B of types PZ�PY ��

BA �df ff � P �A�B� � �z�A	�y�B� �z� y� � fg

�A�B of types PZ�PY ��

��f�z��y� �df 	y�Y � �z� y� � f � �� �f of type Y Z��

��� Theories

De�nition �� A �logical� theory is a list of basic type symbols X�� � � � �Xn� basic

constant symbols c�� � � � � cm in the parameters X�� � � � �Xn� and sentences ��� � � � � �k

in the parameters X�� � � � �Xn� c�� � � � � cm� If T � X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k






is a theory� then �X�� � � � �Xn� c�� � � � � cm� is called the �basic� language of T � and

��� � � � � �k are the axioms of T �

Convention �� Given a theory T � X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k� we will also

write L�T � for L�X�� � � � �Xn� c�� � � � � cm�� and call this the language of T � Types�

terms� formulas� etc� in L�T � are called T �types� T �terms� etc� If the constants c� c�

have types C�C � respectively� we also call the term �c� c�� a constant of type C � C ��

Similarly� if A � fz � Z � �g is a closed term in L�T � and c a constant of type Z� we

may say that c is a constant of type A if the sentence c � A is an axiom of T�even

though A is not a type �we use this mainly when A has the form CB��

Example 	� �i� Topological spaces� The theory T of topological spaces has one basic

type symbolX and one constant� which we write O�X�� of type PP �X�� The axioms

of T are just the usual axioms for a topology� viz�

X � O�X��

�U�V�O�X��U � V � O�X��

�u�P �O�X���
�
U�u

U � O�X��

�ii�Groups� The theory of groups has one basic type symbolG and the three constants

e�m� i of intended types G�GG�G � GG respectively� Take the usual axioms for groups�

�x�y�z�G� m�x�m�y� z�� � m�m�x� y�� z��

�x�G� m�x� e� � x �m�e� x� � x�

�x�G� m�x� i�x�� � e �m�i�x�� x� � e�

and let � be the conjunction of these three sentences� Of course� to get the constants

e�m� i to have the proper types� we must start with a constant �e�m� i� of type G �

P �G �G �G� � P �G� G� and add the further axioms m � GG�G and i � GG� We

thus arrive at the axioms �e�m� i� � G�GG�G �GG and � for the theory of groups�



�

�iii� Natural numbers� The theory of the natural numbers has one basic type N

and two constants o� s of types N and NN � for Zero and the successor operation

respectively� The axioms are the usual Peano postulates� viz��

�n�N�
 s�n� � o�

�m�n�N � sm � sn
 m � n�

�u�PN � o � u � �n�N�n � u
 s�n� � u��
 �n�N�n � u�

�iv� Z�modules� In the theory of natural numbers one can de�ne the ring of integers

Z in the usual way� as equivalence classes of pairs of natural numbers� One can then

combine the theory of natural numbers with that of abelian groups to a new theory

with two basic types N�G and the constants and axioms of both theories� We then

add a new constant c of type GZ�G� for the action of Z on G� Let us write i � g for

c�i� g� and g � g� for the group multiplication m�g� g��� as usual� Adding the further

module axioms�

�g�G� � � g � e�

�g�G� � � g � g�

�i�j�Z�g�G� �i� j� � g � i � g � j � g�

�i�Z�g�g��G� i � �g � g�� � i � g � i � g��

then gives the theory of Z�modules�

Many theories involving ��niteness� conditions� such as Noetherian rings or

torsion groups� are also formulated by adding the theory of natural numbers to some

more simple theory� for use in stating the relevant further conditions�

��� Syntactic Entailment

The syntactic entailment relation � on formulas is customarily speci�ed in terms of

a deductive system of some kind �e�g� sequent calculus� Hilbert�style system� etc���

The particular entailment relation required for our purposes is that of intuitionistic
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logic� in which the law of excluded middle does not hold generally� Furthermore� we

shall wish to include consideration of possibly empty domains of quanti�cation� so

that e�g� the entailment �x�� � 	x�� is also not assumed valid� Of course� there are

many equivalent systems of deduction satisfying these requirements� The course to

be adopted here is that of modifying the usual transitivity of entailment by keeping

track of the free variables occurring in each entailment in the course of a deduction�

Thus e�g� while both �x�� �x � and � �x 	x�� hold� it is not possible to infer

�x�� � 	x�� but only �x� �x 	x��� Such deductive systems� for languages similar to

those considered here� are presented in ��� 	�� 
� �
�� The reader interested in seeing

a more formal logical treatment than the following is referred in particular to the

second and third of these references�

We begin by de�ning the entailment relation for the language L�X� with just

one basic type and no constants� For each �possibly empty� list z�� � � � � zn of distinct

simple variables we de�ne a preorder �z����� �zn on the set

Form�z�� � � � � zn� �df

�
formulas �

�� the term f�z�� � � � � zn� � �g is closed
�

���

of formulas having at most those variables free� Let Form��� denote the set of sen�

tences� In the sequel we shall usually write simply z for z�� � � � � zn�

De�nition 
� The relations �z on the sets Form�z� are generated by the following

conditions�

� �z ����a�

� �z �� � �z 	 implies � �z 	���b�

� �z�y � implies ����y� �z ����y����c�

	 �z �� � implies 	 �z � � ����d�

	 �z � i� 	 �z zi � fzi � �g���e�

	 �z �y�� � �� i� 	 �z fy � �g � fy � �g���f�

	 �z �� 	 �z � i� 	 �z � � ����g�

	 � � �z � i� 	 �z �
 ����h�

	 �z�y � i� 	 �z �y�����i�



�

whereby in ��c� and ��i� y is a simple variable of appropriate type not among

z�� � � � � zn� in ��c� � is a term of the same type as y� and an expression such as

� �z � presumes that �� � � Form�z��

The conditions of the preceding de�nition can� of course� be regarded as

rules of inference for a sequent calculus�style deductive system in the manner of ibid�

Indeed� given formulas ��� � Form�z�� one clearly has � �z � just if there exists a

�proof� thereof� i�e� a sequence of expressions

�� �z� ��� � � � � �k �zk �k�

such that � � �k� � � �k� and each expression �j �zj �j follows from previous ones

in the sequence by one of the conditions ��a����i��

For any sentences �� � � we say that � syntactically entails � if

� � ��

We say that � is provable if � � �� also written

� ��

The entailment relation for a language L�X�� � � � �Xn� with several basic types is

de�ned in exactly the same way�

Now let T � X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k be a theory� We de�ne an

entailment relation �T for L�T � � L�X�� � � � �Xn� c�� � � � � cm� in terms of that for

L�X�� � � � �Xn� as follows� For each 
 � m� let C� be the type of the constant c�

and write c for �c�� � � � � cm�� C for C� � � � � � Cm� and � for �� � � � � � �k� Let

z�� � � � � zi be any distinct simple variables of L�T � and write z for z�� � � � � zi� Then for

any T �formulas �� � with free variables among z�� � � � � zi� put
�

� �Tz � �df � � � �c�z ���	�

A T �sentence � such that � �T � is of course called T �provable� written

�T ��
�When a complex variable such as c � 
c�� � � � � cm� occurs in the context �c�z� as in the following�

it is really �c����� �cm�z that is meant� but we shall not be explicit about this hereafter	
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Remark 	� Let T � X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k be a theory and let c� C� and

� be as in the preceding� Observe that

AT �df fc � C � �g

is a closed term of simple type PC in L�X�� � � � �Xn� with the property�

�T � i� � �T ��

i� � � � �c ��

i� � �c �
 ��

i� � � c � AT 
 ��

i� � � �c�C�c � AT 
 ���

i� � �c�AT �� �

We call AT the term associated to the theory T � For example� the theory of groups

as formulated in example 
�ii� has the associated term

f�e�m� i� � G�GG�G �GG � �g�

where � is the conjunction of the usual group axioms�

The associated term AT may be regarded as the �type of T �structures� on

the basic types of T � and the axiom � can plainly be assumed to have the form c � AT �

i�e� �the constant c is a T �structure�� Of course� every closed term of the form fz � �g

is associated to an evident theory�

� Semantics

��� Topoi

For the reader�s convenience and to �x notation we begin by recalling some basic

facts about topoi� For details of the material reviewed in this subsection� the reader

is referred to �	
��
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De�nition �� A topos is a category E satisfying the following conditions�

�i� E has a terminal object �� and for every corner of morphisms X � Z � Y

in E there is a pullback�

P � Y

X
�

� Z�
�

�ii� E has a subobject classi�er � an object  with a monomorphism true � � � �  

such that for any monomorphismm �M � � X in E there is a unique morphism

�m � X �  such that the following diagram is a pullback�

M � �

X

m

�

�

�m
�  �

�

�

true

�iii� E has power objects� for each object X in E� an object  X and a morphism

�X � X �  X �  such that for any morphism f � X � Y �  in E there is a

unique morphism �X �f � Y �  X such that the following diagram commutes�

X �  X �X
�  

�
�
�
�
�

f

�

X � Y�

�X � �X �f

�

Remark 
� By �i� a topos has all �nite limits� in particular� the product X � Y of

two objects X� Y is the pullback of the corner of morphisms X � �� Y � For each

object X� the unique morphism to the terminal object � is denoted �X � X � ��

The morphism �m � X �  of �ii� is called the characteristic �or classifying�

morphism of the mono m �M � �X�
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In �iii�� the morphism �X � X �  X �  is called evaluation� and �X �f �

Y �  X is called the �X�� transpose of f � X � Y �  � As the notation suggests�

 X is the exponential of  by X �cf� �	
� exponent���

For any morphism � � X �  � the X�transpose of the composite X � � ��

X
�
�  is also denoted �X �� � � �  X � or simply ���� We also use the following

�standard� abbreviations�

trueX �df true��X � X � ��  

!X �df 
 �X � �X �� X � �X �X

�X �df ��X � X �X �  

In addition to having all �nite limits and exponentials of the subobject

classi�er  � it can be shown that a topos necessarily has all �nite colimits and an

exponential Y X for each pair of objects X�Y �cf� �	
� ch� IV���

��� Models

Every topos has its own �internal language�� also called the Mitchell�B�enabou lan�

guage �cf� �	
�� VI�
�� We make use of this language to de�ne the notion of a model

of a theory in a topos� Let T � X� c� � be a �xed theory� with just one basic type�

one basic constant� and one axiom� and let E be a �xed topos� A model M of T in

E will consist of an object XM of E and a suitable morphism cM of E� satisfying the

axiom � in an appropriate sense�

The following �book�keeping� terminology with regard to free variables will

prevent a good deal of redundant verbiage�

Convention � �free variables�� Let � be a term in L�X� c�� with type U and with

exactly the distinct simple variables v�� � � � � vn free �in that order of appearance�� Let

V�� � � � � Vn� respectively� be the simple types of v�� � � � � vn� Write v for the complex

variable �v�� � � � � vn�� and V for the type V�� � � ��Vn� We shall say that � has exactly

the variable v free� and shall call V the free variable type of � �
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We begin by interpreting the language L�X� c� of T in the topos E� First�

given any object E of E� we associate to each type symbol Z of L�X� c� an object ZE

of E� its interpretation with respect to E� by setting��

XE �df E�

PE �df  �the subobject classi�er of E��

�PY �E �df  YE �

�Y � Y ��E �df YE � Y �
E�

Now let C be the type of the constant c� and let

e � � �� CE

be any morphism of E with the indicated domain and codomain� Let � be a term in

L�X� c�� with type U and free variable type V � The interpretation of � with respect

to the pair �E� e� is a morphism

��E�e� � VE �� UE�

of E� de�ned by induction on the complexity of � as follows�

� For � � c� put

c�E�e� �df e � �� CE�

� For � a simple variable u� put

u�E�e� �df �UE � UE � UE�

� For � � ��� ��� let U� be the type of � and U� that of �� so U � U��U�� Let V �

and V � be the free variable types of � and � respectively� and let p � VE � V �
E �

�When convenient� as in the following� we shall assume a choice of products� subobject classi�er�
etc	� as in ����� pp	 xx	



�	

q � VE � V �
E be the evident canonical projections� By induction� we have the

interpretations

��E�e� � V
�
E �� U�

E�

��E�e� � V
�
E �� U�

E�

Now put

��� ���E�e� �df 
 ��E�e�p� ��E�e�q �� VE �� U�
E � U�

E � �U
� � U��E � UE�

The case � � ���� � � � � �n� for n � � is analogous�

� For � � fz � Z � �g� put

fz � Z � �g�E�e� �df �ZE ���E�e�p� � VE �  ZE �

where p � ZE � VE � dom���E�e�� is the evident projection�

� For � � � � � where � has type Z and � has type PZ� put

�� � ���E�e� �df �ZE � ��� ���E�e� � VE � ZE �  
ZE �  �

� For � � �� where � has type PZ� put

�����E�e� �df �ZE � ��E�e� � VE �  ZE �  �

where� as usual� �ZE �  
ZE �  classi�es the mono �trueZE� � ��  ZE �

� For � � � � �� or � � �
 �� put

�� � ���E�e� �df � � ������E�e� � VE �  �  �  �

��
 ���E�e� �df 
 �������E�e� � VE �  �  �  �

where� as usual� � �  �  �  classi�es the mono 
 true� true �� ��  � �

and 
�  �  �  is the composite indicated in the diagram�

 �  



�  

 �  �  

!� � ��

�

�� ��
�  �  �

�

��



�


We can now de�ne the basic notion of topos semantics�

De�nition �� A model of the theory T � �X� c� �� in the topos E is a pair �E� e�

such that

��E�e� � true � ��  �

If M � �E� e� is such a T �model� let ZM �df ZE for each type symbol Z in

L�T �� so in particular M � �XM � cM ��

Remark �� It is clear that if T � � X� c� ��� � � � � �k is a theory with more than one

axiom then we may as well let � � �� � � � �� �k and consider the theory T � X� c� �

instead of T �� That is to say� we could simply de�ne a model of T � to be a model of T

in the sense of the preceding de�nition� the di�erence between the two theories being

so trivial as to hardly warrant mention� Similarly� a theory T � � X� c�� � � � � cm� � with

several basic constants can be brought into the desired form T � X� c� � by putting

c � �c�� � � � � cm�� Again� the di�erence between the two theories may not seem to

warrant a separate de�nition of a model of a theory with several basic constants

and the resulting distinction between T ��models and T �models� However�and this

is the point�we have at our disposal �as yet� no precise notion of two theories being

�su"ciently similar� to warrant such identi�cations� The point is perhaps clearer

when it comes to a theory of the form T � � X�� � � � �Xn� c� �� with several basic types�

which is also �similar� to one of the desired form T � X� c� �� but only presuming a

perhaps less obvious notion of �similarity�� Thus� until we have de�ned the relevant

notion of similarity of theories� we shall continue to distinguish between the more

or less trivial variants just mentioned� As a consequence� we should also de�ne the

notion of a model of a theory having other than the form X� c� �� This de�nition is

recorded next� We leave to the reader� however� the necessary preliminary de�nitions

of the interpretations of type symbols and terms for this case� these being entirely

analogous to those already given above for the simple case�
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De�nition 
� Let T � X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k be a theory and E a topos�

A model of T in E is an �n � m��tuple �E�� � � � � En� e�� � � � � em� such that for each

� � k

�����E����� �En�e����� �em� � true � ��  �

whereby each E� is an object of E� each e� � � � �C���E����� �En� is a morphism of E�

C� is the type of the constant c�� and true � ��  is the subobject classi�er of E�

If M � �E�� � � � � En� e�� � � � � em� is such a T �model� let ZM �df Z�E����� �En�

for each type symbol Z in L�T �� so in particular

M � ��X��M � � � � � �Xn�M � �c��M � � � � � �cm�M��

Example �� �i� Groups� Recall from example 
�ii� that the theory of groups has the

language G�u�m� i� where the constants u�m� i have types G� GG�G� GG respectively�

and the axiom � is the conjunction of the usual group axioms� A model M �

�GM � uM �mM � iM� of this theory in a topos E thus consists of an object E � GM of

E plus morphisms

uM � �� E�

mM � �� EE�E�

iM � �� EE

in E� The latter two correspond by transposition to unique morphisms�


 � E � E � E�

� � E � E�

Since M is a model� �M � true � � �  in E� This condition is easily seen to be

equivalent to the statement that

E � E



� E
�

� E

�

�

uM



��

is a group in E�

More explicitly� the sentence�� recall� is a conjunction of sentences ��� ��� ���

So plainly �M � true just if each ��i�M � true� Let us show by way of example that

for� say� �� the associativity axiom

�x�y�z�G� m�x�m�y� z�� � m�m�x� y�� z��

����M � true just if 
 � E � E � E is associative�

From the de�nition of the interpretation of terms� one sees easily that

����M � ��x�y�z�G� �m�x�m�y� z�� � m�m�x� y�� z��M

� �G�G�G� �m�x�m�y� z�� � m�m�x� y�� z��M

� �G�G�G� �G 
 
��G � 
�� 
�
 � �G� �

���

Now 
��G � 
� and 
�
 � �G� are the two ways round the familiar associativity

diagram

G�G �G
���G���� G �G

�G��

��y ��y�
G�G ����

�
G�

But this diagram commutes� i�e� 
 is associative� just if

�G 
 
��G � 
�� 
�
� �G� � � trueG�G�G � G�G �G ��  �

hence just if

�G�G�G� �G 
 
��G � 
�� 
�
 � �G� � � true � � ��  �

hence� by ���� just if

����M � true � � ��  �

�ii� Natural numbers� As in example 
�iii�� the theory of the natural numbers has

the language N� o� s� where the constants o� s have types N� NN respectively� and
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the axiom � is the conjunction of the usual Peano axioms� A model �E� e� f� of this

theory in a topos E thus consists of an object E of E plus morphisms

e � �� E�

f � �� EE�

in E� the latter corresponding by transposition to a unique morphism�

� � E � E�

Furthermore� ��E�e�f� � true � ��  in E� But this is the case just if

�
e

���� E
	

���� E

is a natural numbers object in E �cf� ������

We next de�ne the notion of a morphism of models� Let T be a theory and

E a topos� both �xed for the remainder of this subsection� LetM and N be T �models

in E and suppose given� for each basic type X of T � an isomorphism�

hX � XM
�
�� XN �

in E� For each type symbol Z in L�T � there is then an induced isomorphism�

hZ � ZM
�
�� ZN �

in E� de�ned by induction on the complexity of Z as follows�

hP �df �� �  
�
��  where  is the subobject classi�er of E�

hPY �df � hY ��� �  YM �
��  YN �

hY �Y � �df hY � hY � � YM � Y �
M

�
�� YN � Y �

N �
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De�nition �� A morphism h � M � N of T �models in E consists of isomorphisms

hX � XM
�
�� XN in E� one for each basic type X of T � such that for each basic

constant c of T � the following diagram in E commutes�

CM

hC
� CN

�
�
�
�
�

cN

�

��

cM

�

where C is the type of the constant c and hC � CM
�
�� CN is the morphism induced

by the hX � XM
�
�� XN � The category of T �models in E� denoted

ModT �E��

has T �models in E as objects� T �model morphisms in E as morphisms� and the evident

domains� codomains� identities� and composites�

Since T �model morphisms are plainly invertible� the category ModT �E� is

a groupoid� i�e� a category in which every morphism is an isomorphism� Of course�

for certain familiar theories such as groups and topological spaces there is already a

familiar notion of morphism� e�g� group homomorphism or continuous function� and

our de�nition does not give these as morphisms of models� Indeed it is not always clear

from the speci�cation of a kind of object just what the relevant notion of morphism is�

The de�nition of morphism just given is narrow enough for our purposes while being

liberal enough to encompass the isomorphisms of most familiar categories �of models��

For example� the morphisms of groups in our sense are just the group isomorphisms�

and the morphisms of topological spaces in our sense are just the homeomorphisms�

��� Semantic Entailment

For this subsection let T be a �xed theory� We de�ne the relation j�T of semantic

entailment on the set FormT ��� of T �sentences as follows�
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Let � be a T �sentence and M a T �model in a topos E� with subobject

classi�er  � The interpretation �M � � �  of � in M then classi�es a unique

subobject of the terminal object � in E� which we denote

��M � � � ��

We thus have a map

��M � � FormT ��� �� SubE�������

where SubE��� is the set of subobjects of � in E� Now SubE��� is a poset� with S � S�

for S� S� � SubE��� i� �a mono representing� S factors though �one representing� S��

Thus we can use the map ��� to de�ne a partial order j�T
M on FormT ���� by setting

� j�T
M � �df ��M � � ��M ��

for all �� � � FormT ���� Observe that �M � true � ��  � so that

� j�T
M � i� �M � true � ��  �

When this holds� we say that � is true in M � or that M satis�es �� also written

M j�T ��

as is customary� Note that every axiom of T is trivially satis�ed by any T �model�

De�nition 
� The relation j�T of semantic entailment is de�ned by putting� for any

T �sentences �� � �

� j�T � �df � j�T
M � for every T �modelM in every topos�

As usual� a T �sentence � is said to be valid if � j�T �� also written

j�T ��

We can now state one of the main results of topos semantics� the proof of

which is deferred to x	 of the next chapter� where it follows as a corollary to the

fundamental theorem of the subject� viz� the classifying topos theorem�
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Theorem �adequacy of topos semantics�� Deduction is sound and complete with

respect to topos semantics� in the sense that the relations of syntactic and semantic

entailment are the same� In particular� for any theory T and any T �sentence ��

�T � i� j�T ��



Chapter II

Classifying Topoi

The general idea of classi�cation is closely related to the distinctly categorical notions

of universality and adjointness� Like instances of those� classifying objects arise nat�

urally in various branches of Mathematics� We have in mind not only the theory of

classifying spaces for cohomology �from which the name of course derives�� but also

the classical theory of polynomial rings and �eld extensions�

Since traditional research in logic rarely draws on functorial methods� the

important notions of universality and adjointness are generally not encountered� But

in logic� too� the ideas of classi�cation can be applied� and some recent work in topos

theory and categorical logic has been devoted to this� A theory of classifying topoi

which treats �rst�order model theory using a strongly functorial approach� empha�

sizing adjointness and universality� is now well�developed �cf� �	�� 
�� 
���� Much of

this theory proceeds along the lines of the geometric theory of classifying spaces �cf�

in particular �
���� Another trend in categorical logic �notably �	�� 
��� uses pretopoi

and related categories to treat �rst�order logic along more algebraic lines�

In this chapter and the next� we shall develop a theory of classifying topoi

for higher�order logic� Unlike the theory of classifying topoi for �rst�order logic�

it is the algebraic rather than the geometric paradigm that appears to be the more

suitable classical example for providing intuition and motivation �and so for suggesting

terminology and notation�� Thus we begin with a glance at the theory of polynomial

rings and ring extensions from the standpoint of classi�cation� before formulating the

logical case and stating the basic classifying topos theorem at the end of section �

below� Toward the proof� section � is occupied with constructing a certain topos

��
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I�X� of particular importance� it plays a role in our theory analogous to that played

by the ring Z�X� of polynomials with integral coe"cients� The classifying topos

theorem is proved in section 	� and in section 
 several examples of classifying topoi

are presented�

The relationship between the material developed here and previous work on

topoi and higher�order logic is more easily indicated after some of the basic notions

have been de�ned� thus see the remarks at the end of section � below�

� Classi�cation

Let C be a category and F � C � Sets a set�valued functor on C� Recall from

�		� II� that F is called representable if there exists an object R of C and a natural

isomorphism

# � C�R��� �� F����

If F is representable� then the element

u �df #R��R� � FR���

is a universal element of the functor F � i�e� the pair hR�ui has the universal mapping

property� for every pair hC� xi with C an object of C and x � FC� there is a unique

morphism fx � R� C in C with Ffx�u� � x� The element u has this property simply

because for any such pair hC� xi� one can put fx �df #
��
C �x� � C�R�C�� Then

Ffx�u� � Ffx � #R��R��

� #C �C�R� fx���R��

� #C�fx � �R��

� #C�fx��

� x�

�	�

And if also g � R� C in C with Fg�u� � x� then by the same calculation� #C�g� � x�

so f � g since #C is an isomorphism�
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Conversely� if a functor F � C � Sets has such a universal element hR�ui�

then clearly F is representable� for there is then a natural isomorphism # � C�R��� ��

F � given for each object C of C by�

#C �df F $�u� � C�R�C�
�
�� FC�

f �� Ff�u��

From a slightly di�erent point of view� we may say that an object R of C

classi�es elements of a set�valued functor F � C � Sets just if R is a representing

object for F � i�e� just if there exists a natural isomorphism # � C�R��� �� F � By

the preceding� this is the case just if there is an element u � FR such that� for any

object C in C and element x � FC there is a unique morphism fx � R � C in C

with Ffx�u� � x� as pictured in the diagram�

C R
fx

� C

Sets

F

�

FR � u
Ffx

� x � FC

The element u � #R��R� � FR is then a universal element of F � The morphism

fx � F#��C �x��

may be called the classifying morphism of the element x�

Classifying objects and universal elements are unique up to isomorphism� in

the following sense� IfR� and R� both classify elements of the functor F � with universal

elements u � FR and u� � FR� respectively� then there is a unique isomorphism

f � R �� R� in C with Ff�u� � u� �put f �df fu� and f�� �df fu��

For example� the subobject classi�er  of a topos E of course classi�es sub�

objects in this sense� i�e� it represents the �contravariant� subobject functor

X ��� SubE�X��

Eop �� Sets�
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The universal subobject is that given by the monomorphism true � � � �  �

Any set�valued ��forgetful�� functor U with a left adjoint ��free functor�� F

is represented by the object F�� where � is any singleton set� The universal element

is given by the unit �� � �� UF� of the adjunction at �� For example� consider the

category Rings of commutative rings with unit element� which we shall call simply

�rings�� and the forgetful functor U � Rings � Sets� Since the �free�ring� functor

F is left adjoint to U � for any ring A there is the usual isomorphism� natural in A�

UA �� Sets��� UA� �� Rings�F�� A� �� Rings�Z�X�� A���
�

where the free ring on one generator F� is of course the ring of polynomials with

integral coe"cients Z�X�� Thus Z�X� represents the forgetful functor U � The inde�

terminate X in Z�X� is of course the universal element of U � it is associated to the

identity Z�X� � Z�X� under the isomorphism �
�� In other words� the polynomial

ring Z�X� classi�es elements of rings� so given any element a of any ring A there is a

unique ring homomorphism fa � Z�X�� A with fa�X� � a� which is just the familiar

universal mapping property of the polynomial ring Z�X��

More generally� let k be any ring and consider the category k�Alg of algebras

over k� Let f � k�X�� � � � �Xn� be a polynomial over k in n indeterminates� and

for any k�algebra A consider the set Zf �A� � An of roots of f in A� i�e� elements

a�� � � � � an � A with f�a�� � � � � an� � �� Clearly� Zf ��� is a set�valued functor on

k�Alg� Indeed� Zf ��� is naturally isomorphic to the representable functor of the

polynomial algebra k�X�� � � � �Xn���f�� where �f� � k�X�� � � � �Xn� is the principle

ideal generated by f � The natural isomorphism is given� for each k�algebra A� by the

assignment

k�Alg�k�X�� � � � �Xn���f�� A� �� Zf �A��

�k�X�� � � � �Xn���f�
h
� A� ��� hh����� � � � � h��n�i�

�
�

where each �i � k�X�� � � � �Xn���f� is the image of Xi under the canonical projection

k�X�� � � � �Xn�� k�X�� � � � �Xn���f�� One checks easily that the map �
� is invertible

and natural in A� The k�algebra k�X�� � � � �Xn���f� therefore classi�es roots of the
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polynomial f � with h��� � � � � �ni being the universal such root� Of course� this is just

what is usually expressed by saying that k�X�� � � � �Xn���f� freely extends k by a root

of f �

The �already intertranslatable� notions of representable functor and univer�

sal element are� of course� perfectly expressive without the further redundant termi�

nology of classi�cation� However� we shall be interested in a particular generalization

of those notions� involving a ��category C rather than a category� and category�valued

����functors C� Cat on C rather than set�valued ones �the reader is referred to ����

for the basic theory of ��categories�� Here the terminology of classi�cation will be

used exclusively� and the foregoing may then serve to indicate the relation to those

more familiar notions� Moreover� we shall state the relevant de�nitions only in the

degree of generality required for our purposes� leaving the more general formulation

to the interested reader �or cf� ibid���

First� recall from �	
� IV�	� that a logical morphism of topoi f � E � F is

a functor that preserves �nite limits� power objects� and the subobject classi�er� all

in the usual �up to isomorphism� sense� More speci�cally� if X � X � Y � Y is

a product diagram in E� then its image fX � f�X � Y � � fY is required to be a

product diagram in F �but not necessarily a canonical one� if canonical products are

assumed for F�� and similarly for other �nite limits� power objects� and the subobject

classi�er� We then de�ne Log to be the ��category of topoi� logical morphisms� and

natural isomorphisms� Given topoi E and F and logical morphisms f� g � E � F � a

morphism ���cell� from f to g in Log�E�F� is thus a natural isomorphism of functors

	 � f
�
�� g� Each category Log�E�F� is therefore a groupoid� and for any logical

morphism h � F � F � the composition functor

Log�E� h� � Log�E�F�� Log�E�F ��

f �� h � f

is a groupoid homomorphism�



��

Now let T � �X� � � � � c� be a logical theory in the sense of de�nition I�����	�

and f � E � F a logical morphism between topoi E and F � Then f induces a functor�

ModT �f� �ModT �E��ModT �F��

from T �models in E to those in F � essentially by taking images�

More precisely� letM � hXM � � � � � cMi be a model of T in E� For each basic

type X of T put XfM �df fXM � Since f is logical� for each type Z of T there is then

an obvious isomorphism

fZM
�� ZfM ����

For example� given fUM
�� UfM and fVM �� VfM for types U� V � for Z � U � V the

isomorphism ��� is the composite�

f�U � V �M � f�UM � VM � �� fUM � fVM �� UfM � VfM �

and similarly for power types PZ and the type P � using the fact that f preserves

power objects and the subobject classi�er�

Now� using these isomorphisms de�ne for each constant c of T with type C

an interpretation cfM � �� CfM as the composite�

cfM � � �� f�
fcM

� fCM
�� CfM ����

In this way� we have the data fM � hXfM � � � � � cfMi for a model of T in F � It

remains to see that fM satis�es the axioms of T � But this again is clear� since f is

logical� For given an axiom � we have �M � true in E since M is a model� and so

�fM � f�M � f�true� � true� as is easily seen by induction on the complexity of ��

We then put

ModT �f��M� �df hXfM � � � � � cfMi�

and call this model in F the image of M under f � We shall usually write fM rather

than ModT �f��M��
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Finally� ModT �f� acts on morphisms in ModT �E� in the obvious way�

Namely� given a morphism of T �models j �M � N in E� �rst put

ModT �f��jX� �df fjX � XfM � fXM � fXN � XfN ����

for each basic T �type X� Then for each basic constant c of T � we have the following

diagram in F �

CfM ��
� fCM

fjC
��

� fCN ��
� CfN

�

cfM

�

��
� f�

fcM

�

�������� f�

�

fcN

��
� �

�

cfN

The inner square is the image of a commutative square in E since j is a T �model

morphism� and the outer squares trivially commute by ��� above� Thus the outer

rectangle commutes� Since the composite across the top is plainly induced by the

morphisms fjX � XfM � XfN of ���� these indeed constitute a morphism

ModT �f��j� � fM � fN

of T �models in F � We also denote this morphism fj � fM � fN and call it the image

of j under f � This completes the de�nition of the functor ModT �f� � ModT �E� �

ModT �F� induced by a logical morphism f � E � F �

The central concept of this chapter is that of a classifying topos for a theory�

which can now be de�ned as follows�

De�nition �� A topos C is said to classify T �models if for each topos E there is an

equivalence of categories� natural in E�

#E � Log�C� E� �ModT �E�����
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Remark 
� �i� The naturality in E of the equivalence ��� means the following� If

f � E � F is any logical morphism to a topos F � there results a square of functors

as on the right below�

E Log�C� E�
#E
��

�ModT �E�

F

f

�

Log�C�F�

Log�C� f�

� ��

#F
�ModT �F��

�

ModT �f�����

While this square need not commute� we require that there exists a natural isomor�

phism

ModT �f� � #E
�
�� #F � Log�C� f�

�in which case one says that the square in ���� �commutes up to isomorphism���

�ii� Let C classify models of the theory T�we say that C is a classifying

topos for T � The equivalence ��� is of course reminiscent of the isomorphism ��� for a

representable functor� And as in ���� it follows that there is a universal model of T �

UT �df #C��C� in ModT �C������

associated under the equivalence ��� to the identity functor on C� Up to isomorphism

of T �models� any T �modelM in any topos E is the image of this universal T �model UT

under a unique �up to isomorphism� logical morphism M� � C � E� More precisely�

the classifying topos C and the universal model UT are characterized by the following

universal mapping property� given any T �model M in any topos E� there exists a

logical morphism

M� � C � E

with

M�UT
��M�
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and M� is unique with this property� up to a uniquely determined natural isomor�

phism�

This is so because� given a model M � one can set

M� �df #
��
E �M� in Log�C� E������

The naturality diagram ���� with M� for f then becomes the commutative diagram�

C Log�C� C�
#C
��

�ModT �C�

E

M�

�

Log�C� E�

Log�C�M��

� ��

#E
�ModT �E�

�

ModT �M
����	�

One therefore has T �model isomorphisms �like �	���

M�UT �ModT �M
���UT ��

��ModT �M
�� � #C��C� by �����

�� #E � Log�C�M
����C� by ��	��

�� #E�M
� � �C��

�� #E#
��
E �M� by �����

��M�

Moreover� if j �M
�
�� N is any isomorphism of T �models in E and M�� N� � C � E

are logical morphisms with

M�UT
��M�

N�UT
�� N�

then since ��� is an equivalence of categories� there is a unique natural isomorphism

j� �M� �
�� N� such that #E�j�� is the composite�

#E�j
�� �M�UT

��M
��

j
� N �� N�UT �
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The uniqueness clause of the above�stated universal mapping property then follows

directly� The logical morphismM� � C � E is called the classifying morphism of the

T �model M � and the natural transformation j� �M� �
�� N� is said to classify the

T �model morphism j � M
�
�� N � It is clear from this universal mapping property

that classifying topoi are unique up to equivalence of topoi�

�iii� The notion of a classifying topos is analogous to those reviewed above of

representability and universal element� and indeed de�nition � says that the functor

ModT ��� is represented by the topos C�in a suitable ��categorical sense which need

not be spelled out further here �cf� �
���� In section 
 below� we shall identify the initial

topos I �which is thus the analogue for topoi of the ring of integers Z�� The universal

mapping property of the classifying topos C then makes it the topos resulting from

I by freely adjoining the �universal� T �model UT � in just the way that an algebra of

the form k���� � � � � �n� � k�X�� � � � �Xn���f� freely extends the ground ring k by a root

h��� � � � � �ni of a polynomial f � k�X�� � � � �Xn�� Thus we shall usually write

I�UT �

for the classifying topos of the theory T �

The main theorem of this chapter� to be proved in x	 below� is the following�

Classifying Topos Theorem� Classifying topoi exist� Speci�cally� for every logical

theory T there is a topos CT such that for each topos E there is an equivalence of

categories� natural in E�

Log�CT � E� �ModT �E��

As explained in the preceding remark ��iii�� the classifying topos CT of the theoremwill

usually be written in the form I�UT �� The proof of the theorem proceeds in two steps�

In the next section we construct a certain topos I�X�� which has a universal mapping

property analogous to that of the ring of polynomials Z�X�� The construction of I�X�

is itself analogous to that of polynomial rings �and other such free objects�� in that

it proceeds from equivalence classes of certain expressions ��words�� in a suitable
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language� In this case� the language at issue is just the logical language L�X� of

chapter I� and the relevant equivalence relation is derived from syntactic entailment�

In x	� arbitrary classifying topoi I�UT � are then constructed �topos theoretically�

from the topos I�X�� It is of course also possible� though perhaps less perspicuous�

to conduct the proof in a single step by constructing a general classifying topos I�UT �

syntactically from the language L�T � of the theory T �

We conclude this section by indicating the relation of our classifying topos

theorem to previous work on topoi and higher�order logic� in particular ��� 	�� 
� �
��

In each of those references� topoi are also constructed �syntactically� from systems of

�higher�order� logic similar to our logical theories� The chief di�erence between these

treatments and the present one is our consideration of models of such theories �models

are not considered in those references�� The categoryModT �E� of models is required

to de�ne the notion of a classifying topos� and to give its universal mapping property�

This property completely determines the �syntactically constructed� classifying topos

up to equivalence of categories� the syntactical construction itself plays the same role

as analogous constructions of other free objects� viz� establishing existence�

By way of contrast� the most detailed development among the above�cited

references is given in �	��� to which we shall now restrict attention� There it is shown

that each topos gives rise to a generalized system of logic�called a �type theory��

from which the original topos can be reconstructed syntactically� up to isomorphism

of topoi� �The authors of �	�� consider �strict� logical morphisms� which preserve all

of the topos structure �on the nose�� rather than in the �up to isomorphism� sense

in use here� Furthermore� their category of topoi is a simple category� rather than a

��category as is required for the purpose of classi�cation�� Morphisms of type theories

are de�ned as syntactical translations� determining a category of type theories� The

main theorem in this connection is that there is an �adjoint� equivalence between this

category of type theories and the category of topoi with strict logical morphisms�

Thus� in a nut�shell� previous work has focused on the equivalence between

topoi and syntactical systems of logic� Here this equivalence is taken more or less

for granted� and we focus instead on the relation between topoi �representing logical
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systems� if you wish� on the one hand� and categories of models �the semantics of

such systems� on the other� This relation is given by the classifying topos theorem

stated above�

� Syntactic Topos

The purpose of this section is to construct the free topos I�X� on one object� As a

classifying topos� I�X� classi�es models of the theory X having a single basic type

symbol and no basic constant symbols or axioms� The language of this theory is

thus just the language L�X� of section I��� which is essentially what is also known as

�simple� type theory or �pure� higher�order logic�

The category I�X� consists of polynomial�like objects and morphisms in the

indeterminate object X� in that it has just those objects and morphisms which can

be constructed from a single object in any topos by using just the topos operations

of �nite limits� subobject classi�cation� and power objects� These are easily speci�

�ed by certain expressions in the language L�X�� much as the elements of the usual

polynomial ring Z�X� are speci�ed as words over the letter X and the ring operations

������ �� The identity conditions for the objects and morphisms of I�X� are� however�

less trivial than those for polynomials� for which a simple comparison of coe"cients

su"ces� Indeed� the identity relation on objects of I�X� is undecidable �as is that on

morphisms�� for the problem of deciding whether two suitable expressions determine

the same object is equivalent to deciding whether an arbitrary sentence is provable�

In short� the word problem for topoi is undecidable�

As mentioned at the end of the last section� this kind of syntactical con�

struction of topoi is not new� such constructions are given e�g� in �	�� �� 
� �
�� In �	��

and elsewhere� more general categories �e�g� pretopoi� are constructed syntactically

from �rst�order theories �cf� also �	
� chap� X��� Going back a bit further� a similar

construction� familiar to logicians� is that of the Lindenbaum�Tarski algebra of formu�

las of a �rst�order theory� which is however a boolean algebra rather than a category�



		

Indeed the syntactic topos may be regarded as a �higher�order Lindenbaum�Tarski

category��

To begin� recall the speci�cation of the language L�X� of higher�order logic

over one basic type X �see xI���� above�� In addition to X there is a type P of

formulas� and for any types Y and Z there are types Y � Z and P �Z�� There

are countably many variables z� z�� � � � of type X and of each type P �Z� �these are

called simple variables�� and n�tuples hz�� � � � � zni of distinct simple variables of types

Z�� � � � � Zn respectively serve as the variables of type Z� � � � �� Zn �called complex

variables�� In addition to variables� the terms of L�X� are the following�

��� � � � � � �� �� � ��� ��
 ��� ��� �� � ��� fz � �g�

when �� � � � � � are any terms� � and � are formulas� z is a variable� and � is a term

of type P �Z� with Z being the type of � � Of course� we use standard abbreviations

to extend the basic language to include the other familiar logical constants such as

� and 	 �see convention I���� Finally� for each complex variable z� there is a relation

�z of syntactic entailment on the set Form�z� of those formulas � such that the term

fz � �g is closed �see xI���	 above�� To avoid always having to mention the special case

of sentences� let us henceforth call � the �empty product type�� and regard a sentence

as containing free a unique complex variable of length null� which we imagine to have

type ��so that Form��� is the set of sentences� P ��� � P the type of formulas� etc�

The objects of the category I�X� are to be equivalence classes of pairs hz� �i

where z is a variable and � � Form�z�� W shall write these equivalence classes in the

form �z � ��� The equivalence relation is mutual syntactic entailment� viz� � �z � and

� �z �� with the additional provision that formulas di�ering only by an alphabetic

change of free variables are also to be equivalent� I�e� if z and y are variables of the

same type and � � Form�z�� then we also identify � and ��y�z�� This is most simply

accomplished by taking instead equivalence classes of closed terms fz � �g of type

PZ� for any type Z� modulo provable equality� thus

�z � �� � �y � �� i� � fz � �g � fy � �g����



	


for any such terms fz � �g� fy � �g� For observe that� as desired�

� fz � �g � fy � �g i� �z z � fz � �g � z � fy � �g�

i� �z �� ��z�y��

i� � �z ��z�y� and ��z�y� �z ��

To make such equivalence classes �z � �� a bit easier to handle� we shall treat

�z � �� as a closed term of type PZ in forming terms� e�g� if u is a variable of type Z�

we may also write u � �z � �� for the formula u � fy � �g �or for u � fy � �g where

�z � �� � �y � ���� In the same spirit� the object �z � �� will be said to have type PZ�

De�nition �� The category I�X� is de�ned as follows�

� An object �z � �� of I�X� is given by a closed term fz � �g of type PZ� for any

type Z� Two such terms fz � �g� fy � �g determine the same object just if

� fz � �g � fy � �g�

� Given objects �z � �� and �y � ��� a morphism �z � �� � �y � �� is a triple

h��z� y� � ��� �z � ��� �y � ��i where the formula � satis�es

� �z�y � � ��

� �z 	�y��

Thus � is a ��provably� functional relation from �z � �� to �y � ���� We shall

call � the relation of the morphism h��z� y� � ��� �z � ��� �y � ��i� which we usually

write more simply

��z� y� � �� � �z � ��� �y � ���

� The domain and codomain operations are the evident ones� i�e�

domh��z� y� � ��� �z � ��� �y � ��i � �z � ���

codh��z� y� � ��� �z � ��� �y � ��i � �y � ���



	


� For any object �z � ��� the identity morphism is

��z� z�� � � � z � z�� � �z � ��� �z � ���

� For morphisms ��z� y� � �� � �z � ��� �y � �� and ��y�w� � �� � �y � ��� �w � 	��

the composite morphism is given by setting

��z� y� � �� � ��y�w� � �� �df ��z�w� � 	y�� � ��� � �z � ��� �w � 	��

Proposition �� I�X� is a topos�

Proof� �sketch� This is a lengthy but straightforward veri�cation of the axioms�

detailed proofs for similar topoi are given in �	�� 
��

To see that I�X� is a category� one checks that �i� for any object �z � ��� the relation

� � z � z� is functional from �z � �� to �z� � �� � �z � ��� �ii� for any morphism

��z� y� � �� � �z � ��� �y � ��� one has�

��z� y� � ��� � ��z� z�� � � � z � z�� � ��y� y�� � � � y � y�� � ��z� y� � ��

� ��z� y� � �� � �z � ��� �y � ���

and �nally� �iii� given any morphisms ��z� y� � �� � �z � �� � �y � �� and ��y�w� � �� �

�y � ��� �w � 	�� the relative product 	y�� � �� is functional from �z � �� to �w � 	��

Each of these steps is a simple deduction�

The following de�nitions then exhibit what shall be called the canonical topos struc�

ture on I�X�� Let p� z� y� w� u be variables of types P�Z� Y�W�PZ respectively� and

A�B�C objects of types PZ�PY� PW respectively�

One� � �df �p � p��

�A �df ��z� p� � z � A � p� � A� ��

Products� A�B �df ��z� y� � z � A � y � B��

�A �df ��z� z�� y� � �z� y� � A�B � z � z�� � A�B � A�

�B �df ��z� y� y�� � �z� y� � A�B � y � y�� � A�B � B�

For any f � C � A� g � C � B�

hf� gi �df ��w� z� y� � �w� z� � f � �w� y� � g� � C � A�B�



	�

Subobject Classi�er �  �df �p � ���

true �df ��p� p�� � p � p � p�� � ��  �

For any mono m � B � � A� the classifying map is�

�m �df ��z� p� � z � A � �	y��y� z� � m � p�� � A�  �

For any f � A�  � the extension if � Ef � � A is�

Ef �df �z � �z��� � f ��

if �df ��z� z�� � z � Ef � z � z�� � Ef � A�

Power Objects�  A �df �u � �z�z � u
 z � A���

�A �df ��z� u� p� � �z� u� � A� A � �z � u� � p� � A�  A �  

For any f � A�B �  �

�Af �df ��y� u� � y � B � fz � �z� y��� � fg � u� � B �  A�

One checks directly that these speci�cations determine objects and morphisms with

the required universal properties� again� this is a sequence of elementary deductions�

We note that all �nite limits in a topos can be constructed from �nite products and

�extensions�� i�e� pullbacks of true � � �  � so these speci�cations indeed su"ce for

all �nite limits�

Convention �� Where possible without confusion� the conventions and de�nitions

for L�X� stipulated in convention I������ will be carried over to I�X� without further

comment� For each type symbol Z we shall also write Z for the associated object

�z � Z � �� of I�X��

Before showing that the topos I�X� classi�es models of the theory X with

a single basic type symbol and no basic constants or axioms� let us consider what

these models are� and what the functor ModX��� � Log � Cat is� First� a model

of X in a topos E is plainly just an object E of E� and a morphism h � E
�
�� E� of

models in E is just an isomorphism in E� The theory X is thus the theory of objects�

and a classifying topos for X� an object classi�er� The category ModX�E� has the



	�

same objects as E and the isomorphisms of E as morphisms� thus ModX�E� is the

underlying groupoid of E� which we shall denote E i�

ModX�E� � E i�

Therefore ModX��� is the forgetful functor from topoi to groupoids� The topos

I�X� thus classi�es objects just if the representable functor Log�I�X���� is �naturally

equivalent to� that forgetful functor� This is to be compared with the usual polynomial

ring Z�X�� which represents the forgetful functor from rings to sets� As in that case�

there is an equivalent universal mapping property� now stated in terms of I�X� and

the �universal object� X�

Proposition � �Universal property of I�X��� For any topos E and any object E

in E� there exists a logical morphism

E� � I�X�� E

with

E�X �� E�

and for any logical morphisms f� g � I�X� � E and isomorphism h � fX
�
�� gX in

E� there is a unique natural transformation

h� � f
�
�� g

with

h�X � h � fX
�
�� gX�

Before giving the proof� we require some preliminary notions and a lemma�

First� let E be an object in a topos E� As in x���� E determines an interpretation of

L�X� in E� Speci�cally� setting XE �df E� each type Z of L�X� is then interpreted

�inductively� as an object ZE of E� and each term � of L�X�� with type U and free



	�

variable type V �in the sense of the convention on free variables 	�� is then interpreted

�inductively� as a morphism

�E � VE � UE

of E� A closed term of the form fz � �g is interpreted as a morphism

fz � �gE � �� �PZ�E �  
ZE ����

where Z is the type of the variable z and  the subobject classi�er of E� Suppose

that � has exactly z free� in the sense of the convention on free variables� i�e� if

z � hz�� � � � � zni� then each zi actually occurs in �� Then by de�nition the transpose

of ��� is the interpretation

�E � ZE � PE �  �	�

of �� Let the object �z � ��E and monomorphism

i�E � �z � ��E � � ZE�
�

be those determined �up to isomorphism� by taking the following pullback in E�

�z � ��E � �

ZE

i�E

�

�

�E
�  �

�

true�
�

If � does not have exactly the variable z free� we apply the foregoing de�nition

to the formula z � fz � �g rather than �� This then determines the object and

monomorphism �
� for any closed term fz � �g� We will also write �z � ��E � � ZE

for the subobject of ZE determined by this monomorphism�

Lemma 	 �Soundness�� Let z � hz�� � � � � zni be a variable of type Z� For any

formulas ��� � Form�z�� if

�z � �� � �z � �� in I�X�����



	�

then for any object E in any topos E�

�z � ��E � �z � ��E in SubE�ZE�����

Proof� The premise ��� is clearly equivalent to the conjunction

� �z � and � �z �����

It therefore su"ces to show that

� �z �

implies

�z � ��E � �z � ��E in SubE�ZE��

But this follows directly from the soundness of each of the rules of inference ��� for the

syntactic entailment relation � with respect to the present notion of an interpretation�

which is obvious�

Proof of proposition �� Given any object E in a topos E� we de�ne a logical mor�

phism E� � I�X�� E with E�X �� E as follows�

On objects� Given a closed term fz � �g of type PZ� we have the object and monomor�

phism

i�E � �z � ��E � � ZE

of �
�� For the object �z � �� of I�X� determined by fz � �g� we set

E��z � �� �df �z � ��E����

which is well�de�ned by the soundness lemma 
�

On morphisms� Given objects �z � �� and �y � �� of I�X�� we have the monomorphism

i�E � i
E � �z � ��E � �z � ��E � � ZE � YE




�

in E� Given any morphism

��z� y� � �� � �z � ��� �y � ��

in I�X�� there is also the monomorphism

i�E � �z � ��E � � ZE � YE�

Since � is functional from � to �� by soundness there is a unique factorization u of

i�E through i�E � i
E � as shown in the commutative diagram

�z � ��E �
u

� �z � ��E � �z � ��E

ZE � YE

i�E

�

�

�����������ZE � YE�
�

�

i�E � i
E

Moreover� for the same reason� u is then the graph of a �necessarily unique� morphism

f�E � �z � ��E � �z � ��E�

i�e� there exist a unique such morphism f�E and an isomorphism �z � ��E �� �z � ��E

such that the following commutes�

�z � ��E
�

� �z � ��E

�z � ��E � �z � ��E

h��z	�
E � fi

�

�

������ �z � ��E � �z � ��E�
�

�

u

Let

E��z � �� �df f�E � �z � ��E � �z � ��E�����

One checks easily that E��A � �E�A and E��g � f� � E�g � E�f for any object

A and composable morphisms f� g in I�X�� so E� � I�X� � E is indeed a functor�

Observe that for any type Z�

E�Z � E��z � �� � �z � ��E �� ZE�




�

Thus� in particular�

E�X �� E�����

The proof that E� is logical is a matter of inspecting de�nitions� and shall be omitted�

Now let � be a term of type U with free variable type V � and consider the interpre�

tation

�X � VX � UX����

of � in I�X� with respect to the universal object X� Indeed� for any type Z� we have

ZX � �z � �� � Z by conventions� and one sees easily by induction that

�X � �hv� ui � � � u� � V � U�

We shall� however� write ZX � �X � etc� for the remainder of the proof to avoid confusion�

Let f � I�X�� E be a logical morphism and consider the diagram in E�

fVX
f�X

� fUX

VfX

��

�

�fX
� UfX�

�

����	�

in which �fX is the interpretation of � with respect to the object fX� and the vertical

isomorphisms are the canonical ones resulting from the fact that f is logical� This

diagram commutes since f is logical� again by induction on the complexity of � �

Similarly� let g � I�X� � E be another logical morphism and h � fX
�
�� gX any

isomorphism in E� and consider the diagram

VfX
�fX

� UfX

VgX

��

�

�gX
� UgX �

�

����
�




�

in which �gX is the interpretation of � with respect to the object gX and the vertical

isomorphisms are those induced by h �see x��� for such induced isomorphisms�� This

diagram also commutes� by a similar induction on the complexity of � �

The following diagram therefore also commutes� since the middle square does by ��
�

and the other two squares do by ��	��

fVX
f�X

� fUX

VfX

��

� �fX
� UfX

�

��

VgX

��

�

�gX
� UgX

�

��

gVX

��

�

g�X
� gUX �

�

��

��
�

In sum� for any logical morphisms f� g � I�X�� E and isomorphism h � fX
�
�� gX�

and for any types U � V � there exist isomorphisms 	V � fVX
�
�� gVX and 	U �

fUX
�
�� gUX � namely the vertical composites in ��
� above� such that for any term

� of type U and with free variable type V � the diagram

fVX
f�X

� fUX

gVX

	V

�

��

g�X
� gUX

��

�

	U����

in E commutes�




	

Now let �z � �� be any object of I�X�� and choose the representative fz � �g so that

� has exactly z free� e�g� by taking z � fz � �g rather than �� In I�X� we have the

monomorphism

i� �df �hz� z
�i � � � z � z�g � �z � �� � � ZX �

where Z is the type of the variable z� There is then a �classifying� pullback square

�z � �� � �

ZX

i�

�

�

�X
� PX �

�

true����

similar to �
� above� in which �X � ZX � PX is a case of ���� above� In particular�

true � �� PX is the subobject classi�er of I�X�� In E� therefore� f true � f� � fPX

is a subobject classi�er� and

f �z � �� � f�

fZX

fi�

�

�

�X
� fPX �

�

f true����

is a �classifying� pullback square for the mono fi� � f �z � �� � � fZX � and similarly

with g in place of f � Now consider the following diagram in E�

f �z � ��
	�z	�


��
� g�z � ��

�
� f�

	�
��

� g�

fZX

fi�

�

�

��

	Z
� gZX

�

�

gi�

	��P � g�X
� fPX

f true

� ��

	P
� gPX �

�

gtrue����







We claim there exists a unique isomorphism 	�z	�
 � f �z � ��
�
�� g�z � �� making the

left�hand square a pullback� Observe �rst that

fZX

f�X
� fPX

gZX

	Z

�

��

g�X
� gPX �

��

�

	P����

commutes as a case of ����� So composing the �rst two arrows in the bottom row of

���� gives 	��P �g�X�	Z � f�X � Composing the second two of course gives g�X � Thus

pulling gtrue back in stages along the indicated horizontal arrows gives the indicated

vertical ones� The pullback of 	Z � fZX
�
�� gZX along gi� � g�z � �� � � gZX is

therefore the desired isomorphism

	�z	�
 � f �z � ��
�
�� g�z � ���

One sees easily that this indeed de�nes the component at the object �z � �� of a

natural isomorphism 	 � f
�
�� g� Note that if Z is a type� this speci�cation agrees

with 	Z � fZX
�
�� gZX as already de�ned� In particular�

	X � h � fX
�
�� gX�

Furthermore� if 	� � f
�
�� g is any natural isomorphism with 	�X � h � fX

�
�� gX�

then we claim that 	� � 	�

First observe that if true � � �  and true � � �� �  � are two subobject classi�ers in

a topos E� then there is exactly one isomorphism k �  
�
��  � such that the diagram

�
�
��

� ��

 

true

� ��

k
�  �

�

true �����







commutes� namely the classifying map of true� For if k is any iso making ���� com�

mute� then ���� is clearly a pullback square� hence k is the unique classifying map of

true� Applying this fact to fPX and gPX � which are subobject classi�ers since f and

g are logical� we have 	�P � 	P � fPX
�
�� gPX �

Hence� by induction� for each type Z�

	�Z � 	Z � fZX
�
�� gZX �����

Finally� for each object �z � �� of I�X� there is a monomorphism i� � �z � �� � � ZX

to a type ZX � as in ���� above� The squares formed from the upper� resp� lower�

horizontals in the following diagram therefore commute by the naturality of 	� resp�

	��

f �z � ��
	�z	�


�

	��z	�

� g�z � ��

fZX

fi�

�

�

	Z
�

	�Z
� gZX �

�

�

gi�

Now i� is mono and g is logical� so gi� is mono� But 	�Z � 	Z by ����� so

	��z	�
 � 	�z	�
�

as claimed� This completes the proof of proposition 
� the universal mapping property

of I�X��

For any logical morphism f � I�X�� E to any topos E� put

#E�f� �df f�X��

and for any natural transformation 	 � f
�
�� g of logical morphisms f� g � I�X�� E�

put

#E�	� �df 	X � f�X�
�
�� g�X��




�

This de�nes a functor�

#E � Log�I�X�� E�� E i�

which� of course� is the evaluation functor at the universal object X in I�X�� By

the universal mapping property just established� this functor #E is an equivalence

of categories� and as an evaluation functor it is plainly natural in E� Thus we have

shown the following� which was the aim of this section�

Proposition 
� There exists a topos I�X� which classi�es objects� in the sense that

for each topos E with underlying groupoid E i� there is an equivalence of categories�

natural in E�

Log�I�X�� E� � E i�

� The Classifying Topos Theorem

For the proof of the classifying topos theorem� we �rst require the important and

useful �slice lemma�� the terms of which must �rst be explained� For any topos S

let LogS be the ����comma category �S�Log�� Thus an object of LogS consists of a

topos E and a logical morphism

e � S � E�

a morphism

hf� �i � hE� ei � hE �� e�i

between two such objects consists of a logical morphism f � E � E � and a natural

isomorphism � � f � e
�
�� e�� and a 
�cell

	 � hf� �i
�
�� hf �� ��i

between two such morphisms is a natural isomorphism 	 � f
�
�� f � such that

�� � 	e � ��




�

Such objects� morphisms� and ��cells will be said to be over S �against category�

theoretic custom� but in keeping with algebraic terminology�� As usual in such con�

texts� we shall suppress reference to some of this data� saying e�g� that E is a topos

over S� f � E � E � a logical morphism over S� and 	 � f � f � a natural isomor�

phism over S� The topos S itself is called the base topos of LogS�we think of it as

something like the ground ring k in the category of k�algebras�

Next we recall some basic facts about slice topoi� see �	
� IV��� for details�

Given any object X of a topos S� the slice topos S�X is de�ned to be the ordinary

comma category �S�X�� an object of which is a morphism

A
a
�X

of S with codomain X� and a morphism of which from a � A � X to the object

a� � A� � X is a morphism f � A � A� of S with a� � f � a� i�e� a commutative

triangle�

A
f

� A�

�
�
�
�
�

a
R ��

�
�
�
�

a�

X�

The identities and composites of S�X are the evident ones� This category S�X is a

topos� and the functor

X� � S �� S�X�

Y ��� ��� � X � Y � X�
���

is a logical morphism� making S�X a topos over S� For any morphism b � X � � X

in S� the pullback functor along b�

b� � S�X � S�X �����

is then a logical morphism over S� in the sense of the last paragraph� Observe that�

up to the evident isomorphism S�� �� S� the functor X� of ��� is of the form ���� for




�

the unique morphism �X � X � �� Recall� �nally� that in a topos any such pullback

functor as ��� has both left and right adjoints� customarily written

%b a b� a &b � S�X
� � S�X��	�

see ibid� for details�

For our purposes� the essential property of the slice topos S�X is that it

freely extends the topos S by a point of the object X� in the following sense� There

is a point x � � � X�X of X in S�X such that� given any topos e � S � E over S

and any point p � � � eX of X in E� there is a logical morphism p� � S�X � E

over S with p�x � p� and p� is unique with this property up to a unique natural

isomorphism over S� This universal mapping property of slice topoi may be expressed

by saying that S�X classi�es points of X� we prove it in the following equivalent

form�

Slice Lemma� For any topos S� any object X of S� and any topos e � S � E over

S� there is an equivalence of categories

LogS�S�X� E� � E��� eX��
�

which� furthermore� is natural in both X and E�

Proof� The category E��� eX� is here understood to be the discrete one with set

of objects E��� eX�� The functor category LogS�S�X� E� is therefore equivalent to

E��� eX� as in �
� just if there is at most one natural isomorphism 	 � f
�
�� g

over S between any two logical morphisms f� g � S�X � E over S� and moreover�

isomorphism classes in LogS�S�X� E� correspond bijectively to points of eX in E� To

show that this is so� we shall exhibit functors

P � LogS�S�X� E�� E��� eX��

L � E��� eX�� LogS�S�X� E��

such that

L � P �� �LogS�S�X�E��

P � L � �E���eX��




�

To begin� the universal point of X in S�X is the diagonal morphism �X � h�X � �Xi�

X
�X

�X �X

�
�
�
�
�

�X
R

X�
�

��

written �X � �� X�X in S�X� Observe that any point x � �� X is a composite

x � � �� x����
x��X

� x�X�X �� X��
�

of canonical isos with the image of �X under a logical morphism� namely pullback

along x itself� Given any logical morphism f � S�X � E over S� with natural

isomorphism � � f �X� �
�� e� we let P �f� be the composite�

P �f� � �
�
��

� f�
f�X

� fX�X
�X
��

� eX����

where � � �
�
�� f� results from the fact that f� is terminal� Given any natural

isomorphism 	 � f
�
�� g over S� consider the diagram�

�
��

� f�
f�X

� fX�X
��

� eX

�

wwwwwwwwww
��

� g�

	�

�

g�X
� gX�X

�

	X�X

��
� eX

wwwwwwwwww

in which the upper and lower horizontal composites are P �f� and P �g� respectively�

The square on the right commutes since 	 is natural over S� the one on the left does

since f� and g� are terminal� and the middle square commutes since 	 is a natural

transformation� Thus P �f� � P �g�� as required for P to be a functor to a discrete

category�




�

Next� let e�X � S�X � E�eX be the functor indicated by

A
f

� A� eA
ef

� eA�

�
�
�
�
�

a
R ��

�
�
�
�

a�
e�X

�

�
�
�
�
�

ea
R ��

�
�
�
�

ea�

X eX�

One sees easily that e�X is logical since e is� and that the square

S�X
e�X

� E�eX

S

X�

�

e
� E

�

�eX�����

commutes up to natural isomorphism� simply because e preserves products� Observe

that� up to canonical isomorphisms� the image of the universal point �X of X under

e�X is the universal point �eX � �� �eX���eX� of eX�

For any point p � �� eX of eX in E� we now put

L�p� �df p
� � e�X � S�X � E�eX � E����

where p� � E�eX � E�� �� E is the pullback functor along p � � � eX� as in ����

Thus L�p� is the composite across the top of the diagram�

S�X
e�X

� E�eX
p�

� E

�
�
�
�
�

�E

�

S

X�

�

e
� E�

�eX��

�

���

Since

p� � �eX�� �� ��eX � p�� � ����
� �� �E � E � E�




�

the right�hand triangle of ��� also commutes up to natural isomorphism� so L�p� is

indeed a logical morphism over S�

For any point p � � � eX� the point PL�p� � � � eX is then by de�nition the

composite

PL�p� � � �� p��e�X����
p��e�X���X�

� p��e�X��X�X� �� eX�

But �e�X��X�X� �� �eX���eX� canonically� by ���� and up to canonical isomorphisms

e�X��X� is the diagonal �eX � eX � eX � eX over eX� as was already noted� Thus

PL�p� � � �� p��
p��eX

� p��eX���eX� �� eX�

which is p by �
�� i�e�

PL�p� � p�����

To evaluate LP �f� for an arbitrary logical morphism f � S�X � E over S� we �rst

require the following three facts� which are easily veri�ed�

�i� For any object X in a topos S and any composable logical morphisms

S
e

� E
f

� F �

one has�

�f � e��X �� f��eX� � �e�X��

as indicated in the diagram�

S�X
e�X

� E�eX
f��eX�

� F�feX

S

X�

�

e
� E

�

�eX��

f
� F �

�

�feX��




�

�ii� For any morphism a � A� X in a topos S and any topos e � S � E over S�

�e�A� � a� �� �ea�� � �e�X��

as indicated in the diagram�

S�X
e�X

� E�eX

I�
�
�
�
�

X�

�
�
�
�
�

�eX��
�

S
e

� E

��
�
�
�
�

A�

�
�
�
�
�

�eA��
R

S�A

a�

�

e�A
� E�eA�

�

�ea��

�iii� For any objects X�Y in a topos S� there are equivalences of categories�

�S�X���X�Y � � S��X � Y � � �S�Y ���Y �X��

under which�

Y ��X �� �X�Y ���

as indicated in the diagram�

S�X
�X�Y ��

� �S�X���X�Y ��S��X � Y ���S�Y ���Y �X�

S

X�

�

Y �
� S�Y�

�

�Y �X��




	

Now� using these facts to calculate the composite LP �f�� we have�

LP �f� � P �f�� � e�X by de�nition

�� P �f�� � �f �X���X

�� P �f�� � f��X�X� �X��X by �i�

�� �f�X�
� � f��X�X� �X��X by ���

�� f � ��X �X��X by �ii�

�� f � ��X � �X�X�� by �iii�

�� f � ��X�X � �X�
�

�� f � ����
�

�� f�

Combining this with ����� we have the claimed equivalence of categories�

LogS�S�X� E� � E��� eX������

To show that ���� is natural in X� take any morphism b � X � � X in S� We then

have eb � eX � � eX in E� and b� � S�X � S�X � in LogS � and we claim that the

following square commutes�

E��� eX ��
L
� LogS�S�X

�� E�

E��� eX�

E��� eb�

�

L
� LogS�S�X� E��

�

LogS�b
�� E�

Taking p � �� eX � in E� one has

LogS�b
�� E� � L�p� � p� � �e�X �� � b�

�� p� � �eb�� � �e�X� by �ii�

�� �eb � p�� � �e�X�

�� L�eb � p�

�� L � E��� eb��p��







as claimed�

To show that ���� is natural in E� take any morphism

E
g

� F

�
�
�
�
�

f

�

S

e

�

in LogS � We claim that the following diagram then commutes�

E��� eX�
L

� LogS�S�X� E�

F�g�� geX�

g

�

F��� fX�

��

�

L
� LogS�S�X�F�

�

LogS�S�X� g�

Taking p � �� eX in E� one has

LogS�S�X� g� � L�p� � g � p� � �e�X�

�� �g��� � p� � �e�X�

�� �gp�� � �g�eX� � �e�X� by �ii�

�� �gp�� � ��g � e��X� by �i�

�� �gp�� � �f�X�

�� L�gp��

as claimed�

Thus the equivalence ���� is natural �and covariant�� in both X and E� which com�

pletes the proof of the slice lemma�







Remark �� Observe that the slice lemma entails the following �lifting criterion� for

natural isomorphisms� Given any logical morphisms f� g � S�X � E and a natural

isomorphism 	 � fX� �
�� gX�� if the square

fX��
f�X

� fX�X

gX��

	�

�

��

g�X
� gX�X

��

�

	X����

in E commutes� then there exists a unique natural isomorphism 	�X � f
�
�� g with

�	�X�X� � 	� Brie'y� a 	 �downstairs� �lifts� to a unique 	�X �upstairs� if ����

commutes� The situation is pictured in the following diagram�

S�X

f
�

��X �o

g
�
E

S

X�

�

fX�

�
� �o

gX�
�
E

wwwwwwwwww

For E is a topos over S via gX� � S � E� and g and f are then logical morphisms

S�X � E over S� the former with the identity natural isomorphism� and the latter

with 	 � fX� �
�� gX�� By ����� these two logical morphisms over S classify the same

point � �� g�
g
x

� gX of gX� and so by the slice lemma there exists a unique natural

isomorphism 	�X � f
�
�� g over S� i�e� with �	�X�X� � 	� as claimed�

We can now prove the main theorem of this chapter�and fundamental the�

orem of topos semantics�namely�

Classifying Topos Theorem� Classifying topoi exist� Explicitly� for any logical

theory T there is a topos I�UT � such that for each topos E there is an equivalence

of categories� natural in E�

Log�I�UT �� E� �ModT �E����	�




�

We proceed with the proof in �ve steps�

�i� For the theory X of objects� the classifying topos I�X� exists by proposition � of

x��

�ii� Let T be a theory that has a classifying topos I�UT �� and let T � � �T� c� result

from T by adding a new constant symbol c� We shall construct a classifying topos

for T � from I�UT ��

Associated to the identity logical morphism I�UT �� I�UT � under ��	� is the universal

model UT of T in I�UT �� It has an object XUT interpreting each basic type X of T �

and so there is an object Z � ZUT in I�UT � interpreting the type Z of the new basic

constant c� Now consider the topos

I�UT ��Z�

As in ���� there is a pullback functor

Z� � I�UT �� I�UT ��Z�

Now� a modelM � of T � in a topos E consists of a modelM of T and a point p � �� ZM

interpreting the constant c� CallM the underlying T �model of M �� In I�UT ��Z is the

model Z�UT of T and the universal point

�Z � �� Z�Z � Z�ZUT
�� ZZ�UT

of Z� Therefore

UT � �df �Z
�UT � �Z���
�

is a model of T ��

If M � � �M�p� is any model of T � in a topos E� then there is a classifying morphism

M� � I�UT �� E

of the underlying T �model� i�e� withM��UT � ��M � Furthermore� by the slice lemma

the point

�
p
� ZM

��M�Z




�

has a classifying morphism over I�UT ��

I�UT ��Z
p�

� E

�
�
�
�
�

M�

�

I�UT ��

Z�

�

with

p � � �� p��
p��Z

� p�Z�Z ��M�Z �� ZM �

But this says just that

p��UT �� ��M ��

by the de�nition of the image of the model UT � under the logical morphism p�� In

this way� any T ��model is isomorphic to the image of UT � under a logical morphism�

i�e� the functor

Log�I�UT ��Z� E� ��ModT �E��

f ��� f�UT ��
��
�

is essentially surjective�

To show that this functor is also full and faithful� and is thus an equivalence of

categories� let f� g � I�UT ��Z � E be any logical morphisms� and let

h� � f�UT ��
�
�� g�UT ��

be a morphism of T ��models in E� Then h� determines an obvious morphism

h � fZ��UT �
�
�� gZ��UT �

of the underlying T �models of f�UT �� and g�UT �� �forgetting the interpretation of the

constant c�� Since I�UT � classi�es T �models� there is then a unique natural isomor�




�

phism h� � fZ� �
�� gZ� with h�UT � h� Furthermore� since h� is a morphism of

T ��models� the following diagram in E commutes�

fZ��
f�Z

� fZ�Z

gZ��

h��

�

��

g�Z
� gZ�Z�

��

�

h�Z

Thus by the lifting criterion for natural isomorphisms of remark � following the slice

lemma� there is a unique natural isomorphism

�h��� �df h
��Z � f

�
�� g

such that

�h���Z� � h��

Whence �h��� is unique with �h���UT � � h�� as required�

Thus we have the claimed equivalence of categories

Log�I�UT ��Z� E� �ModT ��E��

Moreover� this equivalence is natural in E� simply because it is induced by the eval�

uation functor ��
�� Speci�cally� given any logical morphisms e � I�UT ��Z � E and

f � E � F � one plainly has

f�e�UT ��� �� �f � e��UT ���

and similarly for natural isomorphisms� But this is just the required commutativity

�up to isomorphism� of the square

Log�I�UT ��Z� E� � ModT ��E�

Log�I�UT ��Z�F�

Log�I�UT ��Z� f�

�

� ModT ��F��
�

ModT ��f�




�

�iii� Let T be a theory with a classifying topos I�UT �� and let T � � �T� �� result from

T by adding a new axiom �� As in step �ii�� there is a universal model UT of T in

I�UT �� Let us also write

� �df �UT � ��  

for the interpretation of the sentence � with respect to UT �here  is the subobject

classi�er of I�UT ��� This morphism classi�es a unique subobject of ��

���� ��

and we let the object ��� of I�UT � be the domain of a mono representing this subobject

�observe that our use of the square bracket notation ��� here does not con'ict with

the use made of it in x��� We claim that the slice topos

I�UT �����

classi�es models of T ��

First� observe that a model of T � in a topos E is a model M of T in E such that

�M � true � ��  ����

in E� where �M is the interpretation of � with respect to M � and true � ��  is the

subobject classi�er of E� Now �M � ��  classi�es a unique subobject ��M �� � of �

in E� and �M � true as in ���� just if ��M � �� �� just if there exists in E a �necessarily

unique� point �� ��M �� Now let

M� � I�UT �� E

classify the model M � then clearly

M���� �� ��M �



��

sinceM� is logical� In sum�M is a T ��model as in ���� just ifM���� has a �necessarily

unique� point� By the slice lemma� this is the case just if there is a �necessarily unique�

factorization

I�UT ��Z
M�

� E

�
�
�
�
�

M�

�

I�UT ��

����

�

of M� through the canonical pullback functor ���� � I�UT � � I�UT ������ Thus

I�UT ����� is a classifying topos for T ��models� as claimed� Indeed� we have the com�

mutative square�

Log�I�UT ������ E� � ModT ��E�

Log�I�UT �� E�

Log������ E�

�

� ModT �E��
�

in which the right�hand vertical arrow is the evident inclusion functor of T ��models

into T �models�

The universal T ��model is then� of course� the image �����UT � of the universal T �model

UT under ���� � I�UT �� I�UT ������ In xIII�
 we shall see that I�UT ����� is a �quotient

topos��much like a quotient ring�obtained from I�UT � by stipulating the equation

� � true� i�e� by �forcing� the universal T �model to satisfy the further axiom ��

�iv� Let T be a theory with n basic types X�� � � � �Xn and no further constants or

axioms� We construct a classifying topos I�X�� � � � �Xn� for T from I�X�� � � � �Xn���

by �universally splitting Xn�� in two�� as follows�

Write X for Xn��� and consider the topos

I�X�� � � � �X��� 
X��

with canonical pullback functor

� X�� � I�X�� � � � �X�� I�X�� � � � �X��� 
X ��



��

where  is the subobject classi�er in I�X�� � � � �X�� For any object A of I�X�� � � � �X��

let us write more simply A� for � X��A� By step �ii� there is a universal point

u �df ���X� � �� � X�� �� � ��X
�

in I�X�� � � � �X��� X�� Since  � is a subobject classi�er� the transpose

�u � X
� �  �

of u classi�es a �unique� subobject

U � X ��

which is thus a universal subobject of X� Indeed� the topos I�X�� � � � �X��� X�

plainly classi�es models of the theory with n � � basic types and a unary relation

symbol u on the type X�

Now let � be the sentence

� �df �x�X�x � u � 
x � u��

which is satis�ed just if the subobject U � X � is complemented� and consider the

further slice topos

�I�X�� � � � �X��� 
X�������

in the notation of step �iii� above� One sees easily that

�I�X�� � � � �X��� 
X������ � I�X�� � � � �X����

X��

since

�X �� �u � PX � ���  X �

In I�X�� � � � �X����X� is the object

X �� �df ��
X��X�



��

and by step �iii� the subobject

C �df ���
�U � ����X � �� X ��

is then a universal complemented subobject of X� We then have the n objects

X ��
� � � � � �X

��
n��� C�
C����

in I�X�� � � � �X����
X�� where 
C is �the domain of a mono representing� the comple�

ment of the subobject C � X ��� and each X ��
i is ��

X��Xi�

To show that ���� is the universal n�tuple of objects� it plainly su"ces to show that

in any topos E� the groupoid E i � E i of pairs of objects is equivalent to the groupoid

Mod�X�C��E� of objects�with�a�distinguished�complemented�subobject� for the �rst

n� � objects can clearly be held �xed� and we have just established that

Log�I�X����X�� E� � Mod�X�C��E������

To this end� consider the functors

E i � E i ��Mod�X�C��E��

hA�Bi ��� hA�B�Ai�

Mod�X�C��E� �� E i � E i�

hXM � CMi ��� hCM �
CM i�

From

XM
�� CM � 
CM �

B �� 
A� A�B�

it follows directly that these functors are mutually inverse �up to natural isomor�

phism�� Thus Mod�X�C��E� � E i � E i as claimed� and the equivalence is plainly

natural in E� We therefore have natural equivalences

Log�I�X����X�� E� � Mod�X�C��E� by �����

� E i � E i�



�	

Whence�

I�X�� � � � �X����
X� � I�X�� � � � �Xn��

Finally� consider the case of a theory with no basic type symbols �to which e�g� one

could still add constant symbols and axioms� as in the case of a so�called propositional

theory�� A classifying topos for this �empty theory� is clearly just an initial topos in

Log� which we shall denote

I�

It has the property that for any topos E there is an equivalence of categories� natural

in E�

Log�I� E� � ��

where � is the terminal category� with a single object and its identity morphism� We

claim that

I � I�X���X �� �������

i�e� that the topos I�X���X �� �� is initial� where the sentence X �� � is

X �� � �df �	x�X�x � x� � ��x�x��X�x � x���

First� observe that for any object E in any topos E�

E j� �X �� �� i� E
�
�� ��

The topos I�X���X �� �� therefore classi�es terminal objects by step �iii�� Since any

two terminal objects are uniquely isomorphic� this establishes the claim ����� The

universal object X is� so to speak� shrunk to a point in I�X���X �� ���

�v� Finally� for an arbitrary theory T � �X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k� we con�

struct the classifying topos I�UT � by applying step �i� to obtain I�X��� then step

�iv� to obtain I�X�� � � � �Xn�� followed by m applications of step �ii� for the constant

symbols c�� � � � � cm� followed by k applications of step �iii� for the axioms ��� � � � � �k�



�


This completes the proof of the classifying topos theorem�

Let E be a topos� A an object of E� and f � Df � A an object of E�A� Then

there is an obvious equivalence of categories�

�E�A��f � E�Df �

Furthermore� this equivalence is clearly �over E� in the sense that the following dia�

gram of logical morphisms commutes �up to natural isomorphism��

E�A
f�

� E�Df

�
� �E�A��f

�
�
�
�
�

D�
f

�

E

A�

�

A�
� E�A

�

f�

Brie'y� �a slice of a slice is a slice��

Since each of steps �ii���iv� in the proof of the classifying topos theorem

proceeds by slicing a previously constructed classifying topos� and since the construc�

tion begins with I�X�� the classifying topos I�UT � for a logical theory T is always

equivalent to a topos of the form I�X��A for a suitable object A of I�X�� which fact

we record�

Corollary �� For any theory T there exists an object A in I�X� such that

I�UT � � I�X��A�

Indeed� in light of the proof of the theorem this can now easily be seen

directly as follows� For a theory

T � �X� c�� � � � � cm� ��� � � � � �k�

with a single basic type� take the object

AT � ��c�� � � � � cm� � �� � � � � � �k�����



�


of I�X� determined by the associated term f�c�� � � � � cm� � �� � � � �� �kg of T �in the

sense of remark I�	���� For a theory

T � �X�� � � � �Xn� c�� � � � � cm� ��� � � � � �k�

with several basic types� reduce to the previous case by considering instead the new

theory T � with a single basic type X� basic constants X�� � � � �Xn of type PX� and

axioms

�x�X � x � X� � � � � � x � Xn�

�x�X� 
�x � Xi � x � Xj� �for all � � i �� j � n��

plus the constants and axioms of T � Now take the object AT � in I�X� as in ����� the

classifying topos I�X��AT � is then clearly equivalent to I�UT � as constructed in the

proof of the theorem�

Convention �� �i� Let T be a theory with language L�T � and classifying topos I�UT ��

When no confusion is possible� for each type Z we shall also write Z for the object

ZUT of I�UT � interpreting Z with respect to the universal model UT �the subobject

classi�er of a classifying topos I�UT � will thus be written P � rather than the usual  ��

Similarly� for any closed term � of type Z with free variable type V � we also write �

for the interpretation �UT � V � Z of � in I�UT ��

�ii� If M is a T �model in a topos E� with classifying morphismM� � I�UT �� E and

T �model isomorphism h �M�UT
�
��M � then we have a commutative diagram in E

�with canonical isomorphisms unlabeled��

M�V
M��
���� M�Z��y�� ��

��y
VM�UT �����

�
M�UT

ZM�UT

hV

��y�� ��

��yhZ
VM ����

�M
ZM �

����
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which� as the reader will surely have noticed� occasioned a good deal of bother in the

proof of the classifying topos theorem� To avoid such unnecessary verbiage hereafter�

when nothing turns on the isomorphism h we shall assume that M� � I�UT � � E

has been chosen in such a way that M�UT � M and h � �M �say� by replacing M

by M�UT �� Furthermore� we shall assume that M�Z � ZM for each type Z� as can

plainly always be arranged� Under these conventions� for any term � as above the

commutative diagram ���� can then be written as the equation

M�� � �M �����

which will simplify calculations considerably� To remind the reader of this convention�

we shall indicate that it is being invoked by saying that an equation such as ���� holds

up to canonical isomorphism�

Now let T be any theory and let us consider the relationship between the

sentences of the language L�T � of T and the interpretations of these as points � �

P of the subobject classi�er in the classifying topos I�UT �� Such points of course

correspond to subobjects of � in I�UT �� and we are interested in particular in the

relationship between the usual partial ordering of such subobjects and the relations

�T and j�T of syntactic and semantic entailment de�ned in chap� I� x��	 and x��	�

As before� let FormT ��� be the set of T �sentences� and now let
T
� and

T
� be the

equivalence relations of mutual syntactic and semantic entailment on FormT ���� i�e�

for any �� � � Form����

�
T
� � �df � �T � and � �T �

and similarly for
T
� using j�T � Observe that one can recover entailment from equiva�

lence� say by the familiar

� �T � i� � � �
T
� ��

and similarly for the semantic notions�
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Proposition � �Generic Model�� The universal model UT in I�UT � is 
generic��

in the sense that it has all and only those properties of T �models enjoyed by all such

models� Moreover�

�i� For any point p � � � P of the subobject classi�er in I�UT � there exists a

T �sentence � with p � ��

�ii� For any T �sentence ��

�T � i� UT j�
T ��

�iii� There are isomorphisms of posets�

FormT ���� T
�

�� I�UT ���� P � �� FormT ���� T
�
�

Proof� By a property of T �models we of course mean a T �sentence �or� if you wish�

a
T
� or

T
� equivalence class of such sentences�� First� observe that for any sentence �

and model M in a topos E�

M j� � i� M�� � true � �� P���	�

where the equation on the right holds up to canonical isomorphism� in the sense of

convention 	 above� Now if the universal model UT has a property � then � � true

in I�UT �� then for any model M � we have M�� �M�true � true� so M j� � by the

above observation� Since the converse is trivial� UT is thus generic�

For �i�� �rst consider morphisms f � Z � P in the object classi�er I�X�� for Z a

type� With a bit of ingenuity� one shows by formal deductions that for any functional

relation f from Z to P �

�z� p� � f
T
� ��z��� � f� � p�



��

Therefore every morphism f � Z � P in I�X� is the interpretation of some formula �

with free variable type Z �namely� the formula �z��� � f�� Now� using the adjunction

Z� a &Z � I�X��Z �� I�X� �cf� �	� above�� there are isomorphisms�

I�X��Z�P � �� I�X���� PZ�

�� I�X����&ZZ
�P �

�� �I�X��Z��Z��� Z�P �

�� �I�X��Z���� P ��

Hence �i� for the case I�UT � � I�X��Z for a type Z� But for any object A of I�X�

there is a monomorphism i � A� Z to a type� and so for any classifying topos I�UT �

there is a logical morphism

i� � I�X��Z � I�X��A � I�UT �

with Z a type� using corollary �� Since i is mono� the induced map i�� �pullback of

subobjects� in the following diagram is epi�

SubI�X
�Z���
i��

� SubI�X
�A���
��

� SubI�UT 
���

�I�X��Z���� P �

��

�

i�
� �I�X��A���� P �

��

�

��
� I�UT ���� P �

�

��

So the lower horizontal composite is also epi� this shows �i��

The statement �ii� is obviously true for I�X�� by the construction thereof� For arbi�

trary I�UT � take an object A in I�X� with I�UT � � I�X��A� by corollary �� Recall

from remark I�	�� that

�T � i� � �A�����
�

Using the familiar adjunction

A� a �A � �I�X��A���� P � �� SubI�X 
�A���� SubI�X
��� �� I�X���� P ����
�
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we thus have�

�T � i� � �A�� by ��
�

i� true � �A�� in I�X���� P �

i� true � � in �I�X��A���� P �� by ��
�

i� UT j�
T ��

Hence �ii��

Now� the map

FormT ��� �� I�UT ���� P ��

� ��� �UT �

factors through the quotient of FormT ��� by
T
� by the �if� part of �ii�� The resulting

map FormT ���� T
�

�� I�UT ���� P � plainly preserves order� is surjective by �i�� and is

injective by the �only if� part of �ii�� Hence the �rst of the claimed isomorphisms�

FormT ���� T
�

�� I�UT ���� P � �� FormT ���� T
�
�

The second of these isomorphisms then follows directly from the �rst and the fact

that UT is generic� as was already shown�

To conclude this section� composing the two isomorphisms in �iii� of the

foregoing proposition shows the identity of syntactic and semantic equivalence� which

is the theorem announced at the close of chapter I�

Theorem 	 �adequacy of topos semantics�� Deduction is sound and complete

with respect to topos semantics� in the sense that the relations of syntactic and se�

mantic entailment are the same� In particular� for any theory T and any T �sentence

��

�T � i� j�T ��
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Remark �� �i� Compactness� From the theorem and the �lter�quotient topos con�

struction of xIII�
 below� it is evident that higher�order logic is compact with respect

to topos semantics� For if T is any theory and S a set of T �sentences every �nite

subset of which has a model in a non�degenerate topos� then every �nite subset of S

is consistent� so S is consistent� and therefore also has a model �in the evident sense�

in a non�degenerate topos� as is easily seen using the �lter�quotient construction�

�ii� Conservativeness of higher�order logic� Let T be a �rst�order theory

in the customary sense� then T determines an evident �higher�order� theory in our

sense� and every �rst�order sentence in the language of T is also a sentence in our

sense� If such a �rst�order sentence � is �higher�order� provable� i�e� �T �� then in

particular j�T
M � for every T �model M in the topos Sets� By G(odel�s completeness

theorem for �rst�order logic� � is then also �rst�order provable� Thus higher�order

logic is conservative over �rst�order logic� in the sense that a �rst�order sentence that

is higher�order provable is also �rst�order provable�

� Some Classifying Topoi

Initial topos

In the proof of the classifying topos theorem� the initial topos I was constructed

as the classifying topos for the empty theory� Recall from 	����� that there is an

equivalence

I � I�X���X �� ������

where the sentence X �� � is �	x�X�x � x� � ��x�x��X �x � x���

Free topos

The classifying topos I�N� for the theory of natural numbers �example I�
�ii�� has

a logical morphism� unique up to unique natural isomorphism� to any topos having

a natural numbers object �and no logical morphism to a topos without one�� since
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any two models of this theory are uniquely isomorphic� Thus I�N� is initial in the

category of topoi with natural numbers object� This topos is well�known� having been

studied extensively by J� Lambek and others �cf� �	�� 	���� It has come to be known

in the literature�perhaps somewhat unfortunately�as �the free topos��

Boolean classifying topoi

Recall that a topos E is boolean just in case � ��  �canonically�� This is the case

just if

�p � 
p� � true� �  �  �

�since p � 
p classi�es ��  �� hence just if �p�p � 
p� � true� Let us put

� �df �p�p � 
p��

and call this sentence the boolean axiom� For any classifying topos I�UT �� the slice

topos

I�UT ���

therefore classi�es the theory resulting from T by adding the boolean axiom� The

classifying topos of a classical theory is therefore always of this form�

Finite sets

As an example of the foregoing� consider the topos

I��
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classifying the theory consisting only of the boolean axiom � �no basic types or

constants�� For any topos E� the unique logical morphism � � I � E factors through

�� � I � I�� �necessarily uniquely� as in

I
�

� E

�
�
�
�
��

I��

��

�

just if �� � true in E� hence just if E is boolean� So I�� is the initial boolean topos�

But now� the category of �nite sets �and all functions between them�� which

we shall write

S�

is also the initial boolean topos� For given any topos E there is a unique �up to unique

natural isomorphism� �nite coproduct�preserving functor S� E� namely

n ���
a
n

��

This functor is a logical morphism just if E is boolean� as is easily seen� Thus

S � I������

by the uniqueness of classifying topoi� Furthermore� by the generic model proposition


�

Form�����T�
�� �I������ P �

�� S��� �� by ���

�� ��

So there are just two equivalence classes of sentences in Form����� In other words�

every sentence is decidable in the theory consisting of only the boolean axiom �� This
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empty classical theory has been called the �theory of propositional types�� and the

foregoing emphasized statement is a theorem of Henkin� proved in ���� and there

called the completeness of the theory of propositional types�

Observe that since S is the initial boolean topos� a boolean classifying topos

I�UT ��� may be regarded as the category of �nite sets with a model of T freely

adjoined �in the category of boolean topoi�� In this spirit� we shall usually write

S�UT � for I�UT ����

For example� freely adjoining a single object to S in this sense gives the topos S�X�

which� from a logical point of view� is the classifying topos resulting from classical

simple type theory�

Peano arithmetic

The topos

S�N� � I�N����

where I�N� is the free topos as above� is the classifying topos for the the classical

theory of the natural numbers� a�k�a� �Peano arithmetic�� By G(odel�s �rst incom�

pleteness theorem� no sentence of this theory added as a further axiom will result in

a theory in which every sentence is decidable� In other words� the boolean algebra

SubS�N
��� �� FormT ����T� of T �sentences is atomless� since adding a sentence � as a

new axiom amounts to factoring out the principal �lter above � in FormT ����T�� and

that �lter is maximal just if � is an atom� Indeed� since FormT ����T� is obviously

countable� it is �the� countable atomless boolean algebra� for there is only one such

up to isomorphism� namely the compact open subsets of the Cantor space �cf� �
	���

Z�modules

The classifying topos I�M � for the theory of Z�modules as in example I�
�iv� is a slice

I�M � � I�N� G��A
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of the classifying topos I�N� G� for the theory of natural numbers combined with the

theory of groups� where the object A of I�N� G� is the object of Z�actions on G� as

discussed in that example� There is thus a commutative �up to isomorphism� diagram

in Log�

I�M �

�
�
�
�
�

�
� I�

�
�
�
�

UM�

I�N�
�

� I�N� G�

�

A�

�

G�
I�G��

in which UM� classi�es the underlying group UM of the universal Z�module M � In

the next chapter� we shall show that I�N� G� � I�N��I�G� in Log� so that the above

is a coproduct diagram�

Terminal topos

If T is any inconsistent theory� then �
T
� �� Whence

I�UT � �� I�UT ��� �� I�UT ����� � I�UT ����� �� I�UT ��� � ��

so I�UT � is the degenerate topos � with just one object and its identity morphism�

This topos is obviously a terminal object in Log�



Chapter III

The Category Log

This chapter is intended to build a bridge� on a very small scale� between logic and

algebra� by developing the analogy between classifying topoi and polynomial algebras�

Speaking loosely� we regard a model of a theory as something which satis�es a system

of equations �the axioms� in several unknowns �the language�� and we then wish to

regard a classifying topos as freely generated by a universal such solution� in the same

way that an algebra of polynomials is freely generated by a universal root of a system

of polynomial equations� We develop this idea in the present chapter by studying the

category of classifying topoi�called ��nitary topoi��and drawing out the parallel

between it and the category of such polynomial algebras� i�e� the category of �nitely

presented rings �or k�algebras for a ground ring k��

Thus in x� we identify the category at issue� and complete the transition

begun in chapter I from the syntactic point of view to the �nitary algebraic� x�

develops the analogy between �nitary topoi and �nitely presented algebraic objects�

culminating in theorem �� which gives this a precise statement� The purpose of x	

is two�fold� �rst� to examine the position of �nitary topoi among all topoi� showing

that it is much like that of �nitely presented rings among all rings� this then opens

the way toward the chief goal of the section� namely� the shift to the relative point

of view over an arbitrary base topos� This is to be compared with the usual practice

in commutative algebra of working over an unspeci�ed ground ring� about which as

little is assumed as possible� in order to achieve more general results� In the fourth

and �nal section on quotient topoi we identify the kernel of a logical morphism and

�
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prove for topoi the usual �and useful�� homomorphism theorem of universal algebra�

on this point� the ring�theoretic analogy requires no comment�

� A Category of Theories

Given a logical theory T with classifying topos I�UT � and any topos E� by the classi�

fying topos theorem of xII�	 there is an equivalence of categories� natural in E�

Log�I�UT �� E� �ModT �E�����

between logical morphisms I�UT � � E and models of T in E� Letting UT be the

universal model in I�UT �� associated to the identity morphism I�UT �� I�UT � under

���� by naturality this equivalence is then given by the assignment f �� f�UT � for any

logical morphism f � I�UT �� E� Let us henceforth write

f � �df f�UT �

for this T �model in E associated to f under ���� Recall that if M is any model of

T in E� we are also writing M� � I�UT � � E for the classifying map of M � i�e� the

unique �up to isomorphism� logical morphism such thatM��UT � �M � Thus we have

f �� �� f and M�� �� M for any logical morphism f � I�UT �� E and any T �modelM

in E�

Now let T and T � be theories� By a translation of T into T � we shall mean a

logical morphism I�UT �� I�UT �� of classifying topoi� Such a translation t � T � T �

thus determines a model t� of T in I�UT ��� Recalling the construction of I�UT �� in

terms of the language L�T �� of T �� it is a simple matter to spell to out what this means

syntactically� namely t� consist of certain terms in L�T �� interpreting the basic type

and constant symbols of T and satisfying the axioms of T in the obvious sense� Thus

our de�nition of a translation agrees�at least in spirit�with the more familiar logical

notion of a syntactical translation �or �interpretation�� of one theory into another�

Two theories T and T � will be said to be equivalent just if their classifying

topoi I�UT �� I�UT �� are equivalent categories� For example� by corollary � any theory
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is equivalent to one with a single basic type� a single basic constant� and a single

axiom� Observe that two theories T and T � are thus equivalent just if there are

translations t � T � T �� u � T � � T such that the resulting model �ut�� of T in

I�UT � is �isomorphic to� the universal one UT � and similarly for �tu��� Equivalence of

theories can plainly be speci�ed in strictly syntactical terms� though we shall bother

to spell this out�

Now� given any translation

t � T � T �

of theories� for any topos E there is an induced �restriction� functor along t�

t� �Mod�T �� E� �Mod�T� E�

�note the direction�� de�ned by composing around the square

Mod�T �� E�
t�

�Mod�T� E�

Log�I�UT ��� E�

)

�

�

Log�t� E�
� Log�I�UT �� E��

�

�

�

So given a T ��modelM in E with classifying mapM� � I�UT ��� E� the T �model t�M

is that classi�ed by the composite M� � t � I�UT �� I�UT ��� E� Brie'y�

t�M � �M� � t���

Example �� �i� Let T be a theory and let T � result from T by adding basic type and

constant symbols and axioms� as e�g� the theory of rings results from that of groups

or the theory of modules from that of rings� Then any model of T � in a topos E has an

evident underlying T �model� and similarly for any T ��model morphism� Thus there is

a forgetful functorMod�T �� E��Mod�T� E� on each categories of models� Consider

the universal T ��model UT � in I�UT ��� with its underlying T �modelU � Restricting along

the classifying map U� � I�UT �� I�UT �� of this �universal underlying T �model� then
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gives� for any topos E� a functor U�� �ModT ��E� �ModT �E�� which is plainly the

forgetful functor just mentioned�

�ii� Let I�X�O�X�� be the classifying topos for topological spaces and I�L�

the classifying topos for lattices� Let us also write O�X� � P �X� for the object of

opens of the universal space X in I�X�O�X��� obtained as the the subobject classi�ed

by the transpose of �the interpretation of� the constant O�X� � � � PP �X�� Since

O�X� is a lattice �with subobject intersection and union as meet and join�� there is

a classifying map

O�X�� � I�L�� I�X�O�X���

restriction along which� say at E � Sets� is the functor Spacesi � Latticesi that

takes a space to its lattice of opens and a homeomorphism to a lattice isomorphism�

Unlike the previous example� this induced functor does not preserve the underlying

object of a model �the set of opens of a space is not the set of its points��

�iii� If A and A� are isomorphic objects of I�X�� then the slices I�X��A

and I�X��A� are equivalent topoi� and so for any topos E there is an equivalence of

categories

Log�I�X��A� E� � Log�I�X��A�� E��

If I�X��A classi�es models of a theory T and I�X��A� of a theory T �� then the induced

equivalence of categories ModT �E� �ModT ��E� preserves the underlying objects of

models� as is the case e�g� with boolean algebras and boolean rings� However� this need

not be the case whenever two classifying topoi are equivalent� For example� the theory

of categories may be axiomatized in two ways�objects and arrows� or arrows only�

resulting in an equivalence of classifying topoi of the form I�X��A � I�X��X���B�

To put the same point another way� both I�X��A and I�X��A� may be classifying

topoi for the same theory T � without the objects A and A� being isomorphic�

The notion of equivalence of theories resolves the issue mentioned in remark

I�����
 of when two theories are �su"ciently similar�� in some appropriate sense� As a
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check on the adequacy of this notion� observe that if two theories T� T � are equivalent

then the associated categories of models in any topos E are naturally equivalent�

Mod�T� E� �Mod�T �� E��

And indeed� by the classifying topos theorem� the converse also holds� For let us say

that two theories are semantically equivalent if their model categories are naturally

equivalent� we then have the following by a simple application of Yoneda�s lemma�

Proposition �� If two theories are semantically equivalent� then they are equivalent�

Proof� Since for any theory T � Log�I�UT �� E� � ModT �E� naturally in E� if for

theories T� T �� ModT �E� � ModT ��E� naturally in E then also Log�I�UT �� E� �

Log�I�UT ��� E� naturally in E� So I�UT � � I�UT �� by Yoneda�s lemma �in suitable

form� for which see �
����

� Finitary Topoi

In the foregoing section� it was seen how a category of theories can be de�ned by taking

as morphisms the logical morphisms between classifying topoi� Rather than pursuing

this point of view� we shall focus instead in this section on a certain subcategory of

the category Log of topoi and logical morphisms� which is equivalent to the category

of theories and� moreover� is of particular interest from an algebraic point of view�

Recall from corollary � that� up to equivalence� every classifying topos has the form

I�X��A for a suitable object A in the object classi�er I�X�� Conversely� any topos

of this form is plainly a classifying topos for a theory with a single basic type� a

single basic constant� and a single axiom� For the object A is given by a closed term

fz � �g in L�X�� taking a constant c of the same type as the variable z� the theory

�X� c� c � fz � �g� is then clearly classi�ed by I�X��A�

De�nition �� A topos E is called �nitary if it is equivalent to one of the form I�X��A

for an object A in I�X�� i�e� if

E � I�X��A�
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Next� we wish to de�ne the notion of a �nitary morphism of topoi and show

some basic properties of these� For this purpose� some preliminary considerations

regarding colimits of topoi are required� First� it is well known that the category of

topoi and logical morphisms is complete and cocomplete� when regarded as a simple

category rather than a ��category �cf� ��	��� This results by well�known means from

the fact that the elementary theory of topoi is essentially algebraic in the sense of

Freyd ����� whence the �usual� category of models thereof is algebraic over the category

of sets �cf� ����� Moreover� as mentioned in ��	�� this completeness carries over�in

an appropriate sense�to the ��category Log� essentially for the same reason but by

the more involved methods of what may be termed ��categorical universal algebra�

i�e� the ��categorical generalization of the categorical treatment of universal algebra

�as in ��
� 
��� However� the construction �and even the de�nitions� of the various ��

and bicategorical limits and colimits� including �indexed� pseudolimits� lax limits� and

bilimits� is a rather complicated a�air� surely best conducted in a setting more general

than would be appropriate for the purposes at hand� In this section and the next� we

shall therefore give the notions only in the degree of generality subsequently required�

Moreover� our purpose is to show how such limits and colimits can be constructed

explicitly using the methods at hand� rather than to establish their existence� which

is not really in doubt� While our intention is thus not to conduct a systematic study

of the completeness and cocompleteness of Log �worthwhile as this might be�� we

shall nonetheless proceed systematically� de�ning the �co�limits at issue� using only

those already constructed� and recording our results�



��

We begin with the pushout of topoi�� Given a corner of topoi and logical

morphisms as indicated in the following diagram�

E

S

e

�

f
� F �

by a pushout of e and f in Log we mean just a coproduct thereof in LogS � Thus a

pushout consists of a topos p � S � P over S and logical morphisms p� � E � P and

p� � F � P over S� which are universal in the expected sense� given any topos G over

S� the evident precomposition functor along p� and p� is an equivalence of categories

LogS�P�G� � LogS�E�G�� LogS�F �G�����

This means in particular that there is a natural isomorphism 	 � p� � e
�
�� p� �f � and

given any logical morphisms g� � E � G and g� � F � G and natural isomorphism

� � g� � e
�
�� g� � f � there exists a logical morphism u � P � G and natural

isomorphisms �� � g�
�
�� up� and �� � up�

�
�� g� such that

� � ��f � u	 � ��e�

The situation is pictured in the following diagram�

E
g�

� G

��
��

�
�
�
�
�

u

�

E

wwwwwwwwww
p�

� P

�
��

����

S

e

�

f
� F

�

p�

���������F �

�

g�

�Where possible� we follow the custom of using the more familiar 
co�limit terms�such as
�pushout
 rather than �pseudo�pushout�
 �bipushout�
 or �cocomma object
� cf	 ���� for some
other named limits in ��categories	



��

The equivalence ��� also entails an evident similar condition on natural isomorphisms�

which we leave to the reader to spell out� One usually writes E�SF for P and �g�� g��

for u in the above diagram� and as usual we shall suppress reference to as much of

the ��categorical data as clarity permits�

Lemma �� Let S be a topos� A an object in S� and e � S � E a topos over S� Then

E�eA � E �S S�A�

i�e� the following is a pushout diagram�

S�A
e�A

� E�eA

S

A�

�

e
� E�

�

�eA��

Proof� The logical morphism e�A � S�A � E�eA is as de�ned in the slice lemma of

xII�	� from which the result follows easily�

For any object B in S� taking the pullback functor B� � S � S�B for

e � S � E in the foregoing lemma then gives the following� which we record for later

use�

Proposition �� For any objects A�B in a topos S� the canonical functor ����� �
�
�� �

S�A�S S�B � S��A�B� is an equivalence of topoi�

S�A�S S�B � S��A�B��

Remark �� Relative classifying topoi� Given any base topos S and theory T � by a

classifying topos for T over S we shall mean a topos S�UT � over S with the property

that for any topos E over S there is an equivalence of categories� natural in E�

LogS�S�UT �� E� �ModT �E�����
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If S�UT � is such a classifying topos for T over S� then clearly

S�UT � � S � I�UT �

in Log� i�e� the following diagram is a pushout�

I�UT � � S�UT �

I

�

� S�

�

�	�

where the upper horizontal map classi�es the universal model in S�UT �� I is the initial

topos� and the remaining maps are the canonical ones �we are using the equivalence

between Log and LogI � which takes ��� to ��I��� In virtue of its evident universal

mapping property� S�UT � can be regarded as resulting from S by freely adjoining a

model UT of T �

Of particular interest is of course the object classi�er S�X� over S� which

results from S by freely adjoining a new object X� The objects and morphisms of

S�X� can thus be viewed as �polynomials� in the indeterminateX with coe"cients in

S� indeed� this point of view can be pursued rigorously to give an explicit construction

of S�X�� We shall� however� take a di�erent course� constructing S�X� in the next

section as the coproduct of topoi S � I�X�� We are now in a position to de�ne the

notion of a �nitary morphism of topoi and state some basic properties thereof�

De�nition 	� For any base topos S� a topos e � S � E over S is said to be �nitary

over S if there is an equivalence of topoi over S�

E � S�X��A�

for some object A in the object classi�er S�X� over S� A logical morphism e � S � E

is said to be �nitary if it is so as a topos over S�

We obviously next want to know that S�X� exists� This is easily seen for

�nitary S� as the following proposition shows�
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Proposition 
� For any �nitary topos S and any theory T � the classifying topos

S�UT � for T over S exists� Moreover� if I�UT � � I�X��A and S � I�X��B �as is

always the case for suitable objects A�B in I�X��� then

S�UT � � I�X��A� I�X��B � I�X��X���A� �B��

where A� denotes the image of A under the �rst coproduct inclusion

I�X�� �I�X� � I�X�� � I�X��X���

and similarly for B�� In particular�

S � I�X��A � S�X��A�

Proof� First� consider the object classi�er S�X� over S� Let S � I�X��B� and

consider the diagram

I�X� � I�X��X��
B�
�

� I�X��X���B�

I

�

� I�X�

�

B�
� I�X��B�

�

�
�

The outer rectangle is a pushout since the righthand square is one by lemma �� and

the lefthand square is plainly one� Thus

S�X� � I�X��X���B��

But now� given an object A in I�X� such that I�UT � � I�X��A� by the same reasoning

the outer rectangle in the diagram

I�X��A � S�X��A

I�X�

A�

�

� S�X�

�

A�

I

�

� S�

�



�


is also a pushout� where the lower square is the outer rectangle in �
� and we have

also written A for the image thereof under the center horizontal map I�X�� S�X��

Therefore

S�X��A � S � I�X��A � S�UT ��

It remains to show that S�X��A � I�X��X���A� � B�� But this is clear from the

foregoing together with proposition 	�

The following gives some of the essential properties of �nitary topoi and

�nitary logical morphisms� The hypothesis is only temporary� in the next section we

shall see how to construct S�X� for any topos S�

Proposition �� Let S be a topos with an object classi�er S � S�X��

�i� Given a triangle of topoi and logical morphisms�

E
f

� F

�
�
�
�
�

f � e

�

S�

e

�

if e is �nitary� then f is �nitary just if f � e is so�

�ii� Given any pushout square in Log�

F � F �R S

R

f

�

� S

�

f �

if f is �nitary� so is f ��

�iii� For any �nitary topoi E and F over S� the pushout topos E �S F exists and is

�nitary over S�
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�iv� Any slice topos S�A of S is �nitary� In particular� �S � S � S is �nitary�

Proof� For �i� let E � S�X��A and suppose that F is �nitary over E� say F � E�X��B

for a suitable object B of E�X�� As in the proof of proposition ��

E�X� � �S�X���A��X�� � S�X��X���A��

by considering the diagram of pushouts

S�X��A � S�X��X���A�

S�X�

A�

�

� S�X��X��

�

A�
�

S

�

� S�X��

�

�
�

But S�X��X�� is �nitary over S� indeed

S�X��X�� � S�X����X�

as was shown in the proof of the classifying topos theorem� Thus

F � E�X��B�

� �S�X��X���A���B�

�
�
�S�X���X��A�

�
�B�

which is obviously �nitary over S� The proof of the converse is deferred until state�

ments �ii���iv� have been established�

For �ii�� we make use of the stated �temporary� hypothesis that S�X� exists� Given

this� if F � R�X��A then clearly

F �R S � R�X��A�R S � S�X��A�
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by a diagram of pushouts similar to �
�� This proves �ii��

For �iii�� the pushout of two �nitary topoi E � S�X��A and F � S�X��B over S can

be constructed as indicated in the diagram

S�X��A � S�X��X���A� � S�X��X����A� �B��

S�X�

A�

�

� S�X��X��

A�
�

�

B�
�

� S�X��X���B�

�

S

�

� S�X�

�

B�
� S�X��B�

�

similar to �
�� in which each square is a pushout� To see that the resulting pushout

topos is �nitary over S� observe that the right vertical composite in the above diagram

is �nitary by �ii� since the left one is� and thus the composition across the bottom

and up the right is �nitary by �the proven half of� �i� since the bottom composite is

�nitary� This proves �iii��

To see that every slice S�A of S is �nitary� consider the diagram of pushouts

S�A � S�X��A �
�
S�X���X �� ��

�
�A

S

A�

�

� S�X�

A�

�

�X �� ���
� S�X���X �� ���

�

A�

in which we have also written A for the image thereof under the lower horizontal

maps� and the object �X �� �� in S�X� is the subobject of � interpreting the formula

�	x�X�x � x� � ��x�x��X �x � x��� as in the construction of the initial topos �xII�
��

Also as there� the lower horizontal composite of this diagram is then an equivalence

of topoi �the universal object X is �shrunk to a point��� Thus the upper horizontal

composite is also an equivalence�

S�A �
�
S�X���X �� ��

�
�A�
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and the topos
�
S�X���X �� ��

�
�A is obviously �nitary� Hence �iv��

Returning to the proof of �i�� we are given topoi and logical morphisms

E
f

� F

�
�
�
�
�

g

�

S�

e

�

with e and g � f � e both �nitary� and we want to see that f is �nitary� We shall

consider several cases� labeled for reference�

��� First� observe that if E and F are slices� say E � S�E and F � S�F for objects

E�F in S� then �up to isomorphism� f is a pullback functor f �� A� along a �unique�

morphismA � F � E in S� For since S�E classi�es points of E� there are equivalences

and isomorphisms

LogS�S�E�S�F � � �S�F ���� F �E�

�� S�%F ���� E� �by %F a F ��

�� S�F�E��

Thus� in this case� for a suitable object A in E�

F � E�A�

��� Now let E � S�X� and e the canonical map S � S�X�� and let F � S and

g � �S � S � S� Then f � �fX�� � S�X� � S classi�es the object fX in

S� We claim that� up to equivalence of topoi� every such classifying morphism is

a slice of S�X�� Let A � fX and let A� be the image of A under the canonical map

S � S�X�� By slicing S�X� overXA� we can adjoin a universal morphism u � A� � X�

and by slicing again we can �force� u to be an isomorphism� Thus there is a slice

S�X���A �� X�� for a suitable object �A �� X� in S�X�� in which A �� X universally�
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in other words� S�X���A �� X� classi�es isomorphisms with domain A �example ��ii�

below gives the construction in greater detail�� Now consider the diagram

S�X���A �� X�

�
�
�
�
�

��A��

R

S�X�

�A �� X��

�

A�

� S

�
�
�
�
�

�S

�

S�

�

���

with the classifying morphism ��A�� of �A � A � A� We wish to show that ��A�� �

S�X���A �� X�� S is an equivalence of topoi� Let

h � S � S�X�� S�X���A �� X�

denote the vertical composite in ���� we claim that h is a �quasi� inverse of ��A���

First� there is a natural isomorphism

��A�
� � h �� �S ����

by the classifying diagram ��� above� Evaluating the other composite

h � ��A�
� � S�X���A �� X�� S�X���A �� X�

at u � hA
�
�� X� which is the universal isomorphism with domain A� one has�

h � ��A�
��u� � h��A� � �hA � hA� hA�

But then u � hA
�
�� X is itself a morphism from �hA � hA� hA� as an isomorphism

with domain A� to the universal one u � hA
�
�� X� simply because u��hA � u� Since

S�X���A �� X� classi�es isomorphisms with domain A� there is a classifying natural

isomorphism�

u� � h � ��A�
� �� �S�X 
��A��X
�
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Combining this with ���� the classifying map ��A�� is an equivalence of topoi�

S�X���A �� X� � S����

up to which A� is the pullback functor �A �� X��� as claimed�

��� Now let E � S�X��A� and let F � S� g � �S as before� We then have to consider

the diagram

S�X��A

�
�
�
�
�

f

R

S�X�

A�

�

f �A�

� S

�
�
�
�
�

�S

�

S�

�

Up to equivalence� the horizontal map f �A� is a slice of S�X� by case ���� thus f is

a slice of S�X��A � E by case ���� In sum� we have shown�

If e � S � E �nitary then� up to equivalence� every retraction f � E � S
of e �meaning fe �� �S� is a slice of E �and hence is �nitary by �iv���

Finally� let e � S � E� f � E � F � and g � f � e � S � F be arbitrary� apart from

the assumption that e and g are �nitary� and consider the diagram

E
g�

� E �S F
�f� �F�

� F

�
�
�
�
�

�F

�

S

e

�

g
� F �

e�

�

in which the indicated pushout square exists by �iii�� Up to isomorphism� the top

horizontal composite is then f � E � F � Since e is �nitary� so is e� by �ii�� thus the

retraction �f� �F� of e� is �nitary by case ���� Since g is �nitary� so is g�� again by �ii��

and so the composite f �� �f� �F� � g� is �nitary by the half of �i� already established�

This completes the proof of the proposition�
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Now consider the ����category of �nitary topoi and �nitary logical mor�

phisms between them �and all natural isomorphisms between these�� which we shall

write

Logf �

By the foregoing proposition� Logf is full in Log and is closed under �nite coproducts

and pushouts� Similarly� for any base topos S one has the sub����category

�LogS�f � LogS

of �nitary topoi over S and �nitary logical morphisms over S� which again by the

above proposition is full and closed under those �nite colimits� A particular colimit

to be required in the sequel is the coequalizer of topoi� which we next consider�

Given topoi E and F and a parallel pair of logical morphisms

E
f�

�

f�
� F �

a coequalizer of f� and f� consists of a logical morphism c � F � C and a natural

isomorphism 	 � c � f�
�
�� c � f� which are universal in the following sense�

�i� Given any topos G� logical morphism g � F � G� and natural isomorphism

� � g � f�
�
�� g � f�� there exists a logical morphism u � C � G and a natural

isomorphism �� � u � c
�
�� g such that � � ��f� � ��f� � u	� as suggested in the

following diagram�

E
f�

�

f�
� F

c
� C

�
��

�
�
�
�
�

��

��
g

R

G
�

u

�
�� �

���

�ii� Furthermore� given any two logical morphisms u� v � C � G and any natural

isomorphism � � uc
�
�� vc satisfying

v	 � �f� � �f� � u	�
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there is a unique natural isomorphism � � u
�
�� v with � � �c�

This rather mysterious de�nition is arrived at as follows� Consider� for any

topos G� the category Coeq�f��f���G�� an object �g� �� of which consists of a logical

morphism g � F � G� and a natural isomorphism � � g�f�
�
�� g�f�� and a morphism

� � �g� ��
�
�� �g�� ��� of which between two such objects is a natural isomorphism

� � g
�
�� g� which is compatible with � and �� in the sense that �f� � � � �� � �f��

i�e� the following square of natural isomorphisms commutes�

gf�

f�

���� g�f�

�

��y ��y��
gf� ����


f�
g�f��

Similarly to the de�nition ��� of the pushout topos� and equivalently to the de�nition

already given� we then de�ne �c � F � C� 	 � cf�
�
�� cf�� to be a coequalizer of the

pair f�� f� � E � F if for any topos G� the evident precomposition functor

Log�C�G� �� Coeq�f��f���G��

�u � C � G� ��� �uc� u	 � ucf�
�
�� ucf��

is an equivalence of categories�

Log�C�G� � Coeq�f��f���G��

As usual� the coequalizer can be constructed as the following pushout�

E � C

E � E

�

�

�f�� f��
� F �

�

c

where � is the codiagonal morphism ��E � �E� � E � E � E�

A special coequalizer deserving mention is the ��nitary� quotient topos� by

which we mean a slice of a topos E over a subobject of �� or more precisely� over an
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object � for which the unique morphism to the terminal object � is mono� � � ��

�The general notion of a quotient topos is to be given in x
 below�� Since such an

object � has at most one point �� �� and has one just if � �� � �necessarily uniquely��

the usual universal mapping property of the slice topos E�� �given in the slice lemma

of xII�	� takes a particularly simple form� for any logical morphism f � E � F � there

exists a factorization� necessarily unique up to isomorphism� as in

E
f

� F

�
�
�
�
�

f

�

E��

��

�

����

just in case f� �� � in F �

Convention �� We shall say that the quotient map �� � E � E�� forces � � �

�regarding � as a subobject of ���

Observe that �� � E � E�� is indeed a coequalizer� for the parallel pair of

classifying morphisms

I�X�
��

�

��
� E�����

From a logical point of view� if E � I�UT � is a classifying topos for a theory T then

by the generic model proposition of xII�	� � corresponds to a T �sentence �unique up

to logical equivalence� and I�UT ��� classi�es models of the theory resulting from T

by adding � as a further axiom �as in step �iii� of the proof of the classifying topos

theorem of xII�	��

Example 
� �i� Given any parallel pair of morphisms x� y � A� B in a topos E� one

can force x � y by slicing E over the subobject of �

�x � y�� ��
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which is the image of the equalizer E � A� B under the usual universal quanti�er

�A � SubE�A�� SubE����

For x � y just if E � A is maximal� which is the case just if �A�E � A� is maximal�

In particular� one can therefore force any diagram in E to commute� And furthermore�

one can therefore universally invert any given morphism x � A� B in E� i�e� force it

to be an isomorphism� by �rst adjoining a universal morphism u � B � A �by slicing

over AB�� and then forcing ux � �A and xu � �B� Equivalently� one can slice E over

the subobject of � interpreting the evident sentence �x is iso�� Similarly� one can also

force any given morphism in E to be monic� or epic�

�ii� As an application of the foregoing� if in the coequalizer diagram ��� the

topos E is �nitary� say E � I�X��A� then it is easy to give an explicit description of

the coequalizer topos� Let us also write X and A for the images of these objects under

the pullback functor A� � I�X� � I�X��A� and let a � � � A denote the universal

point of A in I�X��A� In F there are then objects f�X� f�A� f�X� f�A and points

f�a � �� f�A and f�a � �� f�A� Adjoin to F a universal morphism u � f�X � f�X�

by slicing F over the object f�X
f�X � and then force u to be iso by taking a quotient

of F��f�Xf�X� as just explained� Call the resulting slice topos

F��f�X �� f�X��

Since I�X� is the object classi�er and u � f�X
�
�� f�X in F��f�X �� f�X�� there is a

�classifying� natural isomorphism

u� � �f�X �� f�X�
�f�A

� �
�� �f�X �� f�X�

�f�A
��

the component of which at A is an isomorphism u�A � f�A
�
�� f�A� Finally� slice

F��f�X �� f�X� over a subobject of �� call it �f�a � f�a�� �� to force the triangle

f�A
u�A

� f�A

�
�
�
�
�

f�a

�

�

f�a

�
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to commute� Let �f� �� f��� �f�X �� f�X� be the subobject in F corresponding to

�f�a � f�a�� � in F��f�X �� f�X�� The resulting slice topos

F �
�
F��f�X �� f�X�

�
��f�a � f�a� � F��f� �� f��

is then clearly a coequalizer of f� and f�� Observe that if F is also �nitary� then so

is the coequalizer topos F��f� �� f���

�iii� A further application of the quotient topos is the universal identi�cation

of a pair of natural transformations 	�� � f� � f� between two logical morphisms

f�� f� � E � F �a �coequi�er� in the terminology of ������ for the case that the topos

E is �nitary� say E � I�X��A� For then 	�� are fully determined by their components

	X� �X � f�X � f�X

at the universal object X in I�X��A� in the sense that 	 � � just if 	X � �X by

the classifying topos theorem� The quotient q� � F � F�q that forces 	X � �X is

therefore universal among all logical morphisms g � F � G with the property g	 �

g�� By ���� 
���� any �nite �indexed� colimit in Log can be constructed from �nite

coproducts� coequalizers� and such universal identi�cations of natural isomorphisms�

thus� by proposition � above� we have shown the �rst part of the following� while the

second part follows by the obvious analogous argument�

Proposition ��� The category Logf of �nitary topoi has all �nite colimits� as does

�LogS�f for any base topos S�

To conclude this section we show that� in addition to being precisely the

classifying topoi for logical theories� there is another�more �algebraic��way to

characterize the �nitary topoi� namely� as those that are ��nitely�presented� over

the category of �nite graphs� in the sense of �iii� of the proposition below ��graph�

is always to mean �directed graph��� For this we shall require the notion of a free

topos I�G� on a �nite graph G� Here again� we do not intend to give a systematic

account of the �various� �� and bicategorical notions of adjoints� free objects� and

�nite presentability� but only to specify the terms of the following theorem�
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Theorem ��� For any topos E� the following statements are equivalent�

�i� E is a classifying topos E � I�UT � for a logical theory T �

�ii� E is �nitary� i�e� E � I�X��A for some object A in the free topos I�X� on one

object�

�iii� E is a �nitary quotient of a free topos I�G� on a �nite graph G�

�iv� For some �nite graphs G�G�� E is a coequalizer of logical morphisms

I�G��
f�

�

f�
� I�G� � E�

De�nitions before proofs� Let G be a �nite graph� i�e� G is a pair of �nite

sets G�� G� ��vertices� and �edges�� and a pair of functions s� t � G� � G� ��source�

and �target��� A �rst attempt to de�ne the free topos I�G� on G might be to require

for any topos E a natural isomorphism

Log�I�G�� E� �� Graphs�G� E��

where Graphs�G� E� is the set of graph homomorphisms G � E to the underlying

graph of E� But since Log�I�G�� E� is a category and Graphs�G� E� is just a set� it�s

not likely that one will ever �nd such a topos I�G�� The problem� of course� is that

Log has a signi�cant ��categorical structure� while the category of graphs does not�

Thus we adopt the following approach� For any �nite graph G� let FG

denote the free category on G �the objects are the vertices of G and the morphisms

are strings � � � � � � �� � of edges�� Then let

Cat�FG� E�i

be the groupoid of all functors FG � E and natural isomorphisms between them�

We then say that a topos I�G� is free on G if for any topos E there is an equivalence

of categories� natural in E�

Log�I�G�� E� � Cat�FG� E�i�
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Now� it is plain that Cat�FG� E�i is none other than the category of models

in E of the theory TG with the vertices of G as basic types and the edges of G as basic

�function� constants� More formally� TG has a basic type Xv for each vertex v � G��

and for each edge e � G� a basic constant ce of type �Xte��Xse� �no axioms�� The free

topos I�G� on the �nite graph G therefore exists� and is just the classifying topos

I�G� � I�UTG�����

for this theory TG� We can now proceed with the proof of the theorem�

Proof of theorem ��� The equivalence of �i� and �ii� is included only for the sake

of completeness� having already been established in corollary �� xII�	� We have just

shown that I�G� is �nitary �by ������ since a coequalizer of �nitary topoi is �nitary by

proposition ��� we have �iv�
�ii�� Furthermore� as was already noted in ���� above�

any �nitary quotient q� � I�G�� I�G��q is a coequalizer of the pair of morphisms

I�X�
q�

�

�
� I�G��

Since I�X� is free on the graph � with just one vertex and no edges� we also have

�iii�
�iv�� thus we need only show �ii�
�iii��

To this end� let the �nitary topos E � I�X��A be given� we shall construct a �nite

graph G such that I�X��A � I�G��q for a subobject q� � of the terminal object �

in I�G�� The object A of I�X� has a mono i � A � Z with Z a type� as usual� we

shall also write X and i � A� Z for the images of these under the pullback functor

A� � I�X� � I�X��A� Let a � � � A be the universal point of A in I�X��A� The

universal model in I�X��A then looks like

A �
i

� Z

�

a

�

X�

��	�
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Let G be the graph pictured in

v�
e�

� v�

v�

e�

�

v
�

and let us call the associated objects and morphisms in the free topos I�G� on G by

those same names� Let the object Z�v
� in I�G� be the interpretation of the type Z

with respect to the object v
� i�e� Z�v
� � �v
��Z� where �v
�� � I�X�� I�G� is the

classifying map� and similarly for X� A� and i � A� Z �of course� X�v
� � v
�� Now�

as in example ��i�� introduce a universal isomorphism Z�v
� �� v� by slicing I�G� over

a suitable object� which we denote �Z�v
� �� v�� as in example ��ii�� We now make

the following claims� which plainly su"ce to complete the proof�

��� for some p� � in I�G���Z�v
� �� v���

I�X��A �
�
I�G���Z�v
� �� v��

�
�p�

��� for some �nite graph G� and some q� � in I�G���

I�G���q � I�G���Z�v
� �� v���

To show ���� in I�G���Z�v
� �� v�� we have a universal diagram of the form

v�
e

� Z�v
�

v�

e�

�

v
�

where e is the composite of e� with v� �� Z�v
�� We can then force e � v� � Z�v
�

to be monic� and we obtain a classifying morphism �e � Z�v
��  � the subobject

classi�er�� Next� force v� � A�v
� �as subobjects of Z�v
�� by forcing �e � �i�v���
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where �i�v�� � Z�v
� �  classi�es i�v
� � A�v
� � Z�v
�� Finally� we have already

seen how to force v� �� �� The resulting topos then has a universal diagram of the

form

A�v
� �
i�v
�

� Z�v
�

�

e�

�

v
�

with v
 and e� arbitrary� and so it is equivalent to I�X��A �by comparing with ��	���

Since each of these forcing steps is a ��nitary� quotient of I�G���Z�v
� �� v��� this

proves ����

For ��� we proceed by induction on the complexity of the type Z� showing how to

achieve Z�v
� �� v� as a �nitary quotient of a topos I�G�� for a suitable �nite graph

G�� If Z � X we simply take G� to be G n fv
g �and rename the vertices�� If Z � P �

the type of propositions� add to G a new vertex v and edge e of the form e � v � v��

force v �� �� then force the classifying map �e � v� �  to be iso� If Z is a product�

say Z � Z ��Z ��� and we already have in G vertices v� �� Z ��v
� and v�� �� Z ���v
�� add

to G new edges e�� e�� as indicated in

v� �
e�

v�
e��

� v���

then force the resulting morphism he�� e��i � v� � v��v�� to be iso� Finally� if Z has the

form Z � �Z ���Z
�

�Z �� may as well be P � and we already have in G vertices v� �� Z ��v
�

and v�� �� Z ��v
�� add to G a new vertex v and edges e� f� g as indicated in�

v� �
e

v
f

� v��

v��
�

g

using e and g� force v �� v�� v� as in the previous step� then transpose the composite

v� � v� �� v
f
� v�� to obtain a map v� � �v���v

�

� which can be forced to be an

isomorphism� This proves ���� and completes the proof of the theorem�
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� Change of Base

The purpose of this section is to collect some facts pertaining to the relationship

between the categories Logf of �nitary topoi and Log of all topoi� The intention is

to better understand �nitary topoi and to illustrate their applications� rather than to

prove results about Log which� as already mentioned� are better understood in the

context of ��categorical universal algebra� Thus in this section we shall occasionally

omit details involving only standard ��category theory� providing enough information

so that the interested reader familiar with such methods should have no trouble

reconstructing full proofs� In brief� this section is presented �modulo standard ��

category theory�� A case in point is the following proposition� which we state without

proof�

Proposition �� Limits �resp� �ltered colimits� of topoi exist� and can be calculated

as limits �resp� colimits� in Cat�

The statement means that if F � J � Log is any �pseudo��functor from a

small index category J � then the �pseudo��limit of F taken in Cat �i�e� the ordinary

�pseudo��limit of categories and functors� is also a limit in Log� and similarly for the

colimit if the index category J is �ltered� This fact can be veri�ed directly �tedious but

routine�� or inferred from ��categorical generalities and the fact that Log is algebraic

over Cat �cf� �
� �	���

In the proof of the following proposition we shall make use of the morphism

classi�er� which is a topos I�X�
u
� X�� with a universal morphism u � X� � X��

i�e� the free topos on the graph � � �� The morphism classi�er can be constructed

by universally adjoining a morphism to the free topos on a pair of objects I�X��X���

simply by slicing it over the exponential XX�
� �

I�X�
u
� X�� �df I�X��X����X

X�
� �����

for this adds to I�X��X�� a universal point �u� � � � XX�
� which is then transposed

to give u � X� � X�� as in example ����ii�� Given any morphism e � E � E� in any
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topos E� there is then a ��classifying�� logical morphism e� � I�X�
u
� X��� E with

e � e�u �up to canonical isomorphism�� We leave it to the reader spell out the rest

of the universal mapping property of I�X�
u
� X���

Proposition �� Every topos is a colimit of �nitary topoi� moreover� the colimit can

be constructed in Cat�

Proof� By the preceding proposition� it su"ces to show that every topos can be

written as �ltered colimit in Log of �nitary topoi� To show this� let S be a topos�

we �rst de�ne the index category J as follows� An object hF � fi of J is a �nitary

topos F and a logical morphism f � F � S� A morphism hh� 	i � hF � fi � hF �� f �i

of J between two such objects is a logical morphism h � F � F � and a natural

isomorphism 	 � f
�
�� f � � h� as indicated in

F
h

� F �

�
�
�
�
�

f
R

�
�	

	

��
�
�
�
�

f �

S�

For any two such morphisms hh� 	i and hh�� 	�i � hF �� f �i � hF ��� f ��i� composition in

J is de�ned simply by

hh�� 	�i � hh� 	i � hh� � h� 	�h � 	i�

as shown in

F
h

� F � h�
� F ��

�
�
�
�
�

�
�	

	
f

R ��
�
�
�
��

�	

	�

f ��

S�
�

f �

The identities� domains� and codomains of J are the evident ones�� Observe that

every morphism hh� 	i � hF � fi � hF �� f �i in J has h � F � F � �nitary� since Logf

�Strictly speaking� we should take as J a small category equivalent to the one just speci�ed�
which clearly exists when S is small	
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is full in Log by proposition ����i�� and so J is indeed �ltered� since Logf has �nite

colimits �by proposition ������

The functor F � J � Log of which S is to be a colimit is� of course� the evident

forgetful functor� taking hh� 	i � hF � fi � hF �� f �i to h � F � F � which� note� is

�nitary� as just mentioned� The colimiting cocone c � F *�S is just that given by

chF�fi �df f � F hF � fi � F � S�

�with the evident ��cells��

To see that S is indeed a colimit of F � we shall use the fact that the topos lim�� JF

is the colimit of F constructed in Cat� Thus every object and morphism in lim�� JF

comes from one in some �nitary topos F � F hF � fi via the canonical map �hF�fi �

F � lim�� JF � and furthermore� two morphisms are equal in lim�� JF just if they are

already equal in some �nitary topos F � lim�� JF �

First� observe that every object S of S is �isomorphic to� the image of one in a �nitary

topos F hF � fi under some chF �fi � hF � fi � S� namely of the universal objectX under

the classifying map S� � I�X�� S� so the canonical map lim�� Jc � lim�� JF � S from

the colimit topos is essentially surjective� Similarly� then� lim�� Jc � lim�� JF � S is

full� using the morphism classi�er I�X�
u
� X�� of ��� above� To show that lim�� Jc is

also faithful� let i � A � B and i� � A� � B� be any morphisms in �nitary topoi F

and F �� with logical morphisms f � F � S and f � � F � � S such that fi � f �i� in

S� We wish to show that then �hF�fii � �hF ��f �ii
� in the colimit topos lim�� JF � where

�hF�fi � F � lim�� JF and �hF ��f �i � F
� � lim�� JF are the canonical maps� Now� taking

the coproduct map �f� f �� � F � F � � S �which is in J�� since fi � f �i�� one also

has �f� f ��i� � �f� f ��i��� where i� is the image of i under the �rst coproduct inclusion

F � F�F � and similarly for i��� But then �f� f
�� � F�F � � S must factor through the
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coequalizer q � F�F � � Q of the classifying maps �i���� �i���
� � I�X�

u
� X��� F�F �

�as in example ��ii��� as indicated in the diagram�

I�X�
u
� X��

�i���
�

�i���
�
� F � F � q

� Q

�
�
�
�
�

�f� f ��
R

S�
�

�f� f ��

And �f� f �� � Q � S is then also in J � by example ��ii�� Since qi� � qi��� we must

then already have �hF�fii � �hF ��f �ii
� in lim�� JF � as claimed� �The ��categorically

knowledgable reader will wish to insert the words �up to isomorphism��or even

speci�c natural isomorphisms�at appropriate places in the foregoing argument��

Remark �� �i� Free topoi� In x� above� it was shown how to construct the free topos

on any �nite graph� Using this� one can also construct the free topos I�C� on any

�nite category C� simply by �rst taking the free topos I�jCj� on the underlying graph

jCj of C� and then forcing every equation of morphisms that holds in C to also hold

in I�jCj�� The result is a quotient topos I�C� � I�jCj��q� with q the conjunction of

su"ciently many such equations ��nitely many of course su"ce�� and hence is �nitary�

Now� every category is a �ltered colimit of �nite categories� Thus� by proposition

�� we can construct the free topos I�C� on any category C� by �rst writing it as

C � lim�� j�JCj with J a �ltered index category and each category Cj �nite� and then

letting I�C� � lim�� j�JI�Cj�� where the colimit is taken in Cat� i�e� the usual colimit of

the underlying categories of the �nitary free topoi I�Cj�� A similar remark of course

holds for free topoi on arbitrary graphs� or sets�

�ii� Colimits of topoi� In the same spirit� by applying the foregoing proposi�

tion � we can also give explicit constructions of arbitrary colimits in Log in terms of

�nitary colimits in Logf � as constructed in x�� and �ltered colimits in Cat� By way

of example� �rst consider the coproduct

S�X� � S � I�X�
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of the object classi�er I�X� with an arbitrary topos S� By proposition � above� we

can write S as a colimit in Cat�

S � lim�� j�JSj �

with J a �ltered index category and each Sj a �nitary topos� Thus we can put

S�X� � lim�� j�JSj � I�X��

� lim�� j�J�Sj � I�X���

� lim�� j�JSj �X��

where each �Sj � I�X�� � Sj�X� is the coproduct of �nitary topoi as in proposition

����iii�� and the colimit is again taken in Cat by proposition � above� Note that

the hypothesis of proposition ��� is therefore always satis�ed� i�e� S�X� always exists�

Furthermore� for any �nitary topos I�X��A� the coproduct

S � I�X��A � S�X��A���

therefore also exists� And if f � S � F is any logical morphism� the pushout topos

F �S S�X��A � F �X��A in the following diagram thus also exists�

S�X��A � F �X��A

S

�

f
� F �

�

Now consider the pushout of any pair of logical morphisms as indicated in�

E

S

e

�

f
� F �

�	�
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Again by proposition � we can write E � lim�� j�JEj with J �ltered and each Ej �nitary�

Thus the topos e � S � E over S is a ��ltered� colimit over S�

E � lim�� j�J�Ej � S��

with each topos �Ej � S� �nitary over S� By the previous case� we can then take

E �S F � lim�� j�J�Ej � S� �S F

� lim�� j�J�Ej � F��

to obtain the pushout topos E �S F of the morphisms in �	� as a �ltered colimit over

F of the �nitary topoi Ej � F over F �

�iii� Relative classifying topoi� In ��� above we have the coproduct S �

I�X��A � S�X��A of any topos S with any �nitary topos I�X��A� So if T is any

logical theory� with classifying topos I�UT �� for any base topos S we can also construct

the �relative classifying topos� S�UT � for T over S� as de�ned in remark ��
� by taking

an object A in I�X� such that I�UT � � I�X��A and applying

S�UT � � S � I�UT � � S � I�X��A � S�X��A�

We record this last observation as the following�

Relative classifying topos theorem� For any theory T and any base topos S� the

classifying topos S�UT � for T over S exists� thus for any topos E over S there is an

equivalence of categories� natural in E�

LogS�S�UT �� E� � ModT �E��

� Quotient Topoi

By way of orientation� we begin by recalling some basic facts about Heyting algebras�

For details� the reader is referred to ���� ��� which also give the basic terminology of

lattices� assumed familiar� Lattices will be understood to be distributive with � and

�� and a homomorphism of lattices is to preserve those elements�
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A Heyting algebra is a lattice A with an additional binary operation 


satisfying

x � y � z i� x � y 
 z

for all x� y� z � A� A homomorphism of Heyting algebras is a lattice homomorphism

preserving 
� We write x� y for �x
 y� � �y 
 x�� note that

x� y � � i� x � y�

Let A be a Heyting algebra and F � A a �lter� Two elements x� y � A

are said to be F �equivalent if x � y � F � The �lter�quotient A�F of A by F is the

quotient lattice of A by this congruence� A�F is a Heyting algebra� and the quotient

projection � � A � A�F is a homomorphism of Heyting algebras with ������ � F �

When F � ��a� is principal� we also write A�a for A� ��a��

For any Heyting algebras A� B and any homomorphism of Heyting algebras

h � A� B� the �lter

ker�h� �df h
����� � A

is called the kernel of h� The homomorphism h � A� B is injective just if ker�h� is

�trivial�� meaning ker�h� � f�g� One has the usual relationship between �lters in A

and homomorphisms out of A� namely�

Homomorphism theorem for Heyting algebras� Let A and B be Heyting alge�

bras� h � A � B a Heyting algebra homomorphism� and F � A a �lter� Then

F � ker�h� just if there exists a homomorphism h � A�F � B of Heyting algebras

such that h � h � �� i�e� the following diagram commutes�

A
h

� B

�
�
�
�
�

h

�

A�F�

�

�

���
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Furthermore� the quotient projection � � A � A�F is epic� so there is at most one

such h � A�F � B �

It clearly follows that any homomorphism h � A � B of Heyting algebras factors

uniquely as a �lter�quotient followed by an injective Heyting algebra homomorphism�

simply by taking F � ker�h� in the the above diagram ����

We now indicate how the homomorphism theorem for Heyting algebras car�

ries over to the category Log of topoi and logical morphisms� For any topos E� the

lattice SubE��� of subobjects of the terminal object � is a Heyting algebra �cf� �	
�

IV����� with q 
 p being the exponential pq for any subobjects p and q of ���

Let E be a topos� given any subobjects p � q of �� there is an evident

pullback functor

E�q � E�p����

which is a logical morphism �cf� II�	����� Since the pullback of a pullback is a pullback�

the assignment p �� E�p �with the maps ���� is a �pseudo�� functor


E� � SubE���
op � Log �

For any �lter F � SubE��� we then have the evident restriction of E� to F � also

denoted�

E� � F op � SubE���
op E�
�� Log ��	�

De�nition �� For any topos E and any �lter F � SubE���� the ��lter�� quotient

topos E�F of E by F is the colimit topos�

E�F �df lim�� p�F �E�p��

with E� � F op � Log as in �	�� The canonical logical morphism � � E � E�F is

called the quotient morphism�

�As usual� we sometimes say that an object p is a subobject of � when we really mean that the
unique map � � p � � is monic� and so represents such a subobject	

�see xV	� for a fuller discussion of the functor E�	
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Note that by proposition 	��� the quotient topos E�F can be constructed as

a ��ltered� colimit inCat� Thus clearly� if F � ��p� is principle for some p � SubE����

then there is an equivalence of topoi E�p � E� ��p�� between the slice topos over p and

the quotient topos by the principle �lter on p� Observe that there is an isomorphism

of Heyting algebras�

SubE�p��� �� SubE����p�

More generally� therefore� for any �lter F � SubE����

SubE�F ��� �� SubE����F�

De�nition �� For any logical morphism f � E � F � the kernel of f is the �lter�

ker�f� �df fp � SubE���jfp � �g�

Note that ker�f� � ker�Subf ���� where Subf ��� � SubE��� � SubF��� is

the evident morphism of Heyting algebras induced by f � Indeed� kernels of logical

morphisms and those of Heyting algebra homomorphisms share several important

properties� among them the following�

Lemma �� A logical morphism f � E � F of topoi is faithful just if ker�f� is trivial�

Proof� Since ker�f� � ker�Subf����� as just noted� it su"ces to show that f is faithful

just if Subf ��� is injective� Suppose the latter is the case and let i� j � A� B be any

morphisms in E with fi � fj � fA� fB in F � Then for the equalizer

Ehfi�fji � � fA
fi

�

fj
� fB

of fi� fj in F one has

Ehfi�fji � � in SubF �fA��

whence

�fA�Ehfi�fji � � in SubF ����
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where �fA � SubF�fA� � SubF ��� is the usual universal quanti�er along fA � ��

Then since f preserves universal quanti�ers and equalizers�

�fA�Ehfi�fji � f��A�Ehi�ji��

where Ehi�ji� A� B is the equalizer of i� j in E� Thus

�A�Ehi�ji � � in SubE����

since Subf��� is injective� Hence� reversing the above argument�

Ehi�ji � � in SubE�A��

so i � j � A� B� The converse is obvious�

Theorem � �Homomorphism theorem for topoi�� Let f � E � F be a logical

morphism of topoi E and F � and F � SubE��� a �lter in E� Then F � ker�f� just if

there is a logical morphism f � E�F � F and a natural isomorphism 	 � f�
�
�� f �

where � � E � E�F is the quotient morphism� as indicated in the diagram�

E
f

� F

�
�
�
�
��

��
f

�

E�F�

�

�

Furthermore� given any two logical morphisms g� g� � E�F � F with natural isomor�

phisms � � g�
�
�� f and �� � g��

�
�� f � there is a unique natural isomorphism

� � g
�
�� g� with � � �� � ���

Proof� Clearly� F � ker�f� just if fp � � for every p � F � As a statement about topoi

over E� the theorem now follows immediately from the universal mapping properties

of the �nitary quotients E�p �	���� and the colimit topos E�F � lim�� p�FE�p�

Like any functor� a logical morphism f � E � F is said to be essentially

surjective if every object in F is isomorphic to one in the image of f � also� f is said



���

to be full on subobjects �resp� conservative� if� for each object E in E� the induced

map

Subf�E� � SubE�E� �� SubF �fE��

�S � E� ��� �fS � fE�

is surjective �resp� injective�� We shall say that a logical morphism f � E � F is

a quotient �simpliciter� if f is essentially surjective and full on subobjects� which

terminology is justi�ed by the following�

Proposition 	� A logical morphism f � E � F is a quotient just if there is a �lter

F � SubE��� in E and an equivalence of topoi over E�

E�F � F �

Proof� First� for any object E in E� we have the commutative square�

SubE�E�
Subf�E�

� SubF �fE�

E�E� �

��

�

fhE��i
� F�fE� f ��

�

���
�

where  is a subobject classi�er in E� and therefore f is also one in F � So f is full on

subobjects just if the lower map fhE��i � E�E� �� F�fE� f � in the above diagram

is surjective for each object E in E� which is of course the case if f is full� Observe

also that if f is faithful then by the same diagram �
� f is conservative� Thus if f

is both full and faithful� then it is both full on subobjects and conservative� Indeed

the converse also holds� since if f is conservative then it is faithful by lemma 	� so

the property of being a graph is re'ected back along f � whence f is also full if full on

subobjects� We record these observations before continuing the proof�

Lemma 
� A logical morphism f � E � F is full on subobjects if it is full� con�

servative just if faithful� and both full on subobjects and conservative just if full and

faithful�



���

Returning to the proof of the proposition� for any subobject p � � of � in E� the

forgetful functor %p � E�p � E is a right �quasi�� inverse for the pullback functor

p� � E � E�p� i�e�

p�%p
�� �E�p � E�p � E�p�

So any such �nitary quotient p� � E � E�p is both essentially surjective and full�

Since the colimit E�F � lim�� p�FE�p is a �ltered one in Cat� the quotient projection

� � E � E�F is then also essentially surjective and full� hence full on subobjects by

the lemma just inserted�

To show the converse� let f � E � F be any logical morphism of topoi that is

essentially surjective and full on subobjects� and let

E
f

� F

�
�
�
�
�

��
f

�

E� ker�f��

�

�

be the factorization given by the homomorphism theorem 
 above� We claim that f

is an equivalence� Clearly� f is essentially surjective since f is so� whence f is also full

on subobjects� since f is so� Finally� we claim that kerf is trivial� Since � � E � E�F

is full on subobjects� as was just shown above� any p� � SubE�ker�f���� has p
� � �p for

some p � SubE���� thus if p� � kerf then � � fp� � f�p � fp� So p � ker�f�� whence

p� � �p � �� as claimed� Therefore� f is faithful by lemma 	� So f is full and faithful

by the inserted lemma �� which completes the proof�

Corollary �� Let E be a topos and q � E � Q any quotient topos� For any topos F �

the restriction functor along q

q� � Log�q�F� � Log�Q�F�� Log�E�F�

is full and faithful�



���

Proof� By the preceding proposition� we have Q � E�F �over E� for some �lter

F � SubE��� in E� Take any logical morphisms f� f � � E � F and natural isomorphism

	 � f � q
�
�� f � � q� By �the uniqueness of clause of� the homomorphism theorem


� there is a unique natural isomorphism 	 � f
�
�� f � with 	 � 	q� But since

q��	� � 	q � f � q
�
�� f � � q� this is exactly what was to be shown�

Theorem � �kernel factorization�� Every logical morphism f � E � F factors as

a quotient q � E � Q followed by a conservative logical morphism f � Q � F � i�e�

f �� f � q� as indicated in�

E
f

� F

�
�
�
�
�

��
f

�

Q�

q

�

�
�

Indeed� one may take Q � E� ker�f�� The factorization is unique� in the sense that

if q� � E � Q�� c � Q� � F is another such factorization of f � then there is an

equivalence of topoi e � Q � Q�� unique up to unique natural isomorphism� such that

q� �� eq and f � ce� as indicated in the diagram�

E
q�

�Q�

�
�
�
�
�

e
�

�

Q

q

�

f
� F �

�

c

Proof� Take the factorization

f � � � f���

of f given by the homomorphism theorem 
� so in the diagram �
� above Q �

E� ker�f� and q � � � E � E� ker�f�� which is a quotient by the preceding proposition


� Then� as already shown in the foregoing proof� f is faithful �� is full on subobjects

of �� so ker�f� is trivial� whence f is faithful by lemma 	��



��	

For the uniqueness statement� suppose q � E � Q is any quotient� c � Q � F a

conservative logical morphism� and

f �� c � q����

Since c is conservative and q full on subobjects� plainly ker�q� � ker�c � q� � ker�f��

Thus by proposition 
 there is an equivalence of topoi e � E� ker�f� � E� ker�q� � Q

over E� i�e� with

q �� e � �����

and e is unique up to unique natural isomorphism �over E� by the homomorphism

theorem� It remains to see that f �� c � e� We have

f � � �� f by ���

�� c � q by ���

�� c � e � � by ����

Since � is a quotient� the proof is complete by the preceding corollary ��

Remark �� �quasi�kernel factorization� There is another factorization theorem for log�

ical morphisms which can be arrived at by a similar chain of reasoning� and so is worth

sketching here� Call a logical morphism q � E � Q a quasi�quotient if every object Q

in Q has a mono Q� qE to some object qE in the image of q �i�e� for any object E

in E�� Given any logical morphism f � E � F � we de�ne the quasi�kernel qker�f� of

f to be the comma category

qker�f� �df ��� f��

an object �a�E� of which is an object E of E and point a � � � fE of E in F � and

a morphism e � �a�E� � �a�� E �� of which between two such objects is a morphism

e � E � E� in E such that fe � a � a� in F �more precisely� morphisms are triples

he� �a�E�� �a�� E��i of such things�� There is an evident forgetful functor qker�f�� E�



��


and one sees easily that qker�f� is �ltered category� Now de�ne the topos E� qker�f�

to be the slice colimit�

E� qker�f� �df lim�� �a�E��qker�f�E�E�

i�e� the colimit �constructed in Cat� if you wish� of the composite functor

qker�f�op � Eop
E�
�� Log�

where E� � Eop � Log is the �pseudo�� functor

�i � Y � X� ��� �i� � E�Y � E�X��

The canonical map � � E � E� qker�f� is then a quasi�quotient� and every quasi�

quotient q � E � Q is of this form� with E� qker�q� � Q over E� The property of

logical morphisms that is �orthogonal� to being a quasi�quotient is that of being full

and faithful� every logical morphism f � E � F factors �essentially uniquely� into a

quasi�quotient � � E � E� qker�f� followed by a unique �up to isomorphism� full and

faithful logical morphism f � E� qker�f� � F � Such quasi�quotient morphisms will

play a role in the sheaf representation theorem of chapter V� but no use will be made

of this remark�



Chapter IV

Interpolation and De�nability

In this chapter we begin to study the model theory of higher�order logic by categori�

cal methods� employing the connection now established between higher�order theories

and their models� on the one hand� and the category Log of topoi and logical mor�

phisms on the other� In the �rst�order setting� Pitts �
�� 
�� and Makkai �	�� 	��

use such methods to derive generalizations to many�sorted �intuitionistic� logic of the

well�known Craig interpolation and Beth de�nability theorems� via considerations on

the category of pretopoi� Here we shall establish those two theorems for single�sorted

theories in higher�order logic� using similar considerations on the category Log� The

generalized �many�sorted� versions of those theorems are then shown to fail for higher�

order theories� re'ecting a signi�cant dissimilarity between the categories of pretopoi

and topoi� In x� we focus on higher�order de�nability� extending the Beth theorem

to some cases in which interpolation fails�

� Interpolation

Recall the Craig interpolation theorem for �classical� �rst�order logic �see e�g� ����

p� ����� Let L be a single�sorted� �rst�order language �a �nite set of basic relation�

function� and constant symbols� and let ��� be sentences in L� Let L��� � L �resp�

L��� � L � be the subset of L consisting of those basic symbols occurring in � �resp�

in ��� so that L����L��� is the language common to � and �� The Craig interpolation

theorem says that if � � �� then there exists a sentence 	 � L��� � L��� such that

� � 	 and 	 � � �such a 	 is called an interpolant for � � � �� The relation � is here

��




���

understood to be deductive entailment in classical predicate logic� The theorem may

of course also be stated �equivalently� in terms of semantic entailment� or in terms of

�syntactic or semantic� entailment in intuitionistic predicate logic �in which case it is

a stronger statement� still true� see �	���

Now� Heyting pretopoi and their morphisms are related to theories in in�

tuitionistic� �rst�order logic in the same way that topoi and logical morphisms have

been shown here to relate to theories in higher�order logic� which is nearly all that

the reader need know about Heyting pretopoi for what follows �see �	�� for a brief

summary of the relevant facts�� Pitts �
�� derives the interpolation theorem from the

following theorem about the category Hpt of Heyting pretopoi�

Theorem �Pitts�� Let

B � B �A C

A

f

�

� C

�

f �

be a pushout square in Hpt � If f is faithful� then so is f ��

It should be mentioned that Pitts�s proof of this involves a fairly sophis�

ticated argument� beginning from the fact that open surjections in the category of

Grothendieck topoi are stable under pullback there� which itself is no trivial matter�

Let us see how the interpolation theorem follows from Pitts�s theorem� In

the situation stated above for interpolation� let �L����� �L����� �L����L����� �L����

L���� be the free Heyting pretopoi on the languages L���� L���� L����L���� L����

L��� respectively� Then the following diagram

�L���� � �L��� � L����

�L��� � L����

�

� �L����

�

���
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is easily seen to be a pushout square in Hpt when the indicated morphisms are those

induced by the inclusions of languages�

The lattice of subobjects of the terminal object � in the free Heyting pretopos

on a language consists of equivalence classes of sentences modulo provable equality

�the Lindenbaum�Tarski algebra�� For any pretopos P and �lter + � SubP ��� we

write P�+ for the quotient pretopos of P by + �if + �� ��� is principle for some

� � SubP ���� we write P�� instead�� Such �lter�quotients of pretopoi are constructed

just like �lter�quotients of topoi �as colimits�� and share many of their properties�

To show the interpolation theorem� we have

� � Sub�L�	������

� � Sub�L�
�����

with

� � � in Sub�L�	�
L�
������

and we seek an interpolant

	 � Sub�L�	��L�
������

with

� � 	 in Sub�L�	������

	 � � in Sub�L�
������

Let % � Sub�L�	��L�
����� be the �lter of consequences of � in L��� � L����

% � f� � Sub�L�	��L�
�����j � � � in Sub�L�	�����g�

And let %� � Sub�L�
����� be the �lter of consequences of % in L����

%� � f�� � Sub�L�
�����j for some � � %� � � �� in Sub�L�
�����g�
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The square

�L������ � �L��� � L������

�L��� � L�����%

i

�

� �L�����%�

�

i����

resulting from ��� by taking the indicated quotients is then also a pushout� as can be

seen directly� Now� a morphism in Hpt is faithful just if it is injective on subobjects

of �� Thus i in ��� is faithful by the de�nition of %� and so i� is also faithful by

Pitts�s pushout theorem above� Since � � � in Sub�L�	�
L�
����� we have � � � in

Sub�L�	�
L�
���	���� So� since i
� is faithful� � � � in Sub�L�
��������� Thus 	 � � in

Sub�L�
����� for some 	 � %� as required�

Observe that the interpolation theorem also entails Pitts�s theorem� For let

B
g�

� B �A C

A

f

�

g
� C

�

f �

be a pushout square in Hpt satisfying the conclusion of the interpolation theorem

and suppose that f is faithful� Take � � SubC��� with � � f �� in SubB�AC���� Then

g�� � � � f �� in SubB�AC���� So there exists an interpolant 	 � SubA���� with

� � f	 in SubB�����	�

and

g	 � � in SubC�����
�

Since f is faithful� �	� implies � � 	� hence � � � by �
� � So f � is also faithful�

One can consider generalizations of interpolation in at least three indepen�

dent directions� �i� to formulas with free variables� �ii� to many�sorted theories� �iii� to
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higher�order theories� �i� is quite simple from both the logical and categorical points

of view� Both �i� and �ii� are� in e�ect� treated in �
�� and shall not be considered here

independently of �iii�� Below� we give a proof of �iii� the interpolation theorem for

single�sorted higher�order theories that does not depend on the �rst�order theorem�

indeed the proof is considerably simpler than that for �rst�order theories� The case

of interpolation that fails is the combination of �ii� and �iii�� i�e� higher�order theories

with several basic sorts �but in the context of higher�order logic� we follow custom and

use the word �type� rather than �sort��� The failure of the interpolation theorem here

shows that higher�order logic cannot be treated simply as a species of many�sorted

�rst�order logic�

We begin by collecting some terminology and notation� Given a commuta�

tive �up to natural isomorphism� triangle in the category Log

F
e

� F �

�
�
�
�
�

f �

�

S�

f

�

regarded as a morphism in the ���� comma category LogS � �S� Log� of topoi over

S� we shall say that e is a �topos� extension of f � S � F to f � � S � F � over S� As

usual in comma categories� we may omit reference to the arrows from the base topos

once these are clear� saying e�g� that e � F � F � is an extension of F �

Let T be a logical theory� in the sense of chapter I� We can write T in the

form

T � �L�%��

where L is a �nite language of basic type symbols and constants� and % is a �nite set

of sentences in the language L� For any base topos S� we shall write

S�T �



���

for the relative classifying topos of T over S �III�	�	�iii� above�� The topos S�T � is

uniquely determined �up to equivalence� by the equivalence of topoi

S�T � � S � I�T ��

where I is the initial topos and I�T � is the classifying topos for T �in this chapter� it

will be convenient to write I�T � rather than I�UT � for such classifying topoi��

A theory T � � �L��%�� is said to be a �theory� extension of T if L � L� and

% � %�� There are classifying topoi S�T �� S�T �� over S� and L � L� induces an evident

logical morphism e � S�T � � S�T �� over S� making S�T �� a topos extension of S�T �

over S�

Example �� �i� Suppose T � extends T by a single basic type X only� we write

T � � �T�X�

�abusing notation slightly�� The square

S�T �
e�

� S�T�X�

S

f

�

e
� S�X�

�

f �

in which e and f are the canonical logical morphisms and e� and f � the evident

classifying maps is then clearly a pushout� Thus

S�T�X� � S�T � �S S�X��

�ii� If T � extends T only by a new constant c of type C� then

S�T� c� � S�T ��C�

where we also write C for the object of S�T� determined by the type C� as usual�

The pullback functor C� � S�T �� S�T ��C along � � C � � is then the corresponding

extension of S�T ��
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Now let S�T � � S�X��A for a suitable object A of S�X�� as is always possible

�cf� xIII���� and suppose that C �� A�B for some object B of S�X�� Let b be a new

constant of type B� so that also T � � �T� b�� There is then also the theory �X� b� with

classifying topos S�X� b� � S�X��B over S� and S�T� b� �ts into a pushout square

S�T � � S�T� b�

S�X�

�

� S�X� b�

�

Thus� much as in �i��

S�T� b� � S�T � �S�X
 S�X� b��

�iii� Generally� given disjoint extensions T � T �� T �� of a theory T � i�e� such that

T � � �L��%��� L � L�� % � %��

T �� � �L���%���� L � L��� % � %���

L � L� � L��� % � %� � %���

we de�ne the new theory

T � �T T
�� �df �L

� � L���%� � %����

Then plainly� as in the previous examples�

S�T � �T T
��� � S�T �� �S�T 
 S�T

����

That is� the morphisms induced by the inclusions of languages �t into a pushout

square�

S�T �� � S�T � �T T
���

S�T �

�

� S�T ����

�

In such a case� we may call S�T ��T T
��� an extension of S�T �� by S�T ��� over S�T �� and

similarly for the extension of theories�
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Next� recall that a logical morphism e � S � E is called conservative if it

re'ects isomorphisms� One sees easily that a logical morphism is conservative just

if it is a faithful functor� hence just if it is injective on subobjects of the terminal

object �� hence just if it has a trivial kernel �III�
�	�� An extension I�T � � I�T ��

of classifying topoi over the initial topos I is conservative i� the theory T � is a

conservative extension of the theory T in the usual logical sense� viz� i� any sentence

p in the language of T which is provable from the axioms of T � is provable from the

axioms of T � We shall also say that an object e � S � E of LogS is conservative over

S i� it is a conservative extension of the base topos S�

A conservative object e � S � E of LogS is said to be stable if for any

S � S � in Log the extension S � � E �S S � of S by E is conservative� hence i� e� in

the pushout square below is faithful

E � E �S S
�

S

e

�

� S ��

�

e�

Lemma �� The following extensions S � E are stable�

�� S � S�X� �extension by one object��


� A� � S � S�A �extension by a constant of type A� if A� � in S is epi�

�� S � S�T � if the theory T has a model in S�

With reference to a commutative triangle in Log�

E
g

� F

�
�
�
�
�

f

�

S�

e

�

�� f � S � F is stable if e and g are�
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�� if f is stable� so is e�

Proof� Clearly �S � S � S is stable� Suppose an extension e � S � E has a retraction

r � E � S� i�e� r � e �� �S � Then e is plainly faithful� For any S � S � in Log� consider

the double pushout

S � S �

E

r

�

� E �

�

r�

S

e

�

� S ��

�

e�

From r � e �� �S we have r� � e� �� �S� � so e
� is also faithful� whence e is stable� This

shows �i� and �iii�� �v� is the same argument with f in place of �S and g in place of

r� and �iv� is equally trivial�

For �ii�� let A be an object of S with � � A� � epi� To �nd the pullback of a subobject

U � � along � � A � �� �rst take the classifying map p � � �  of U � Then the

pullback A�U � A is the subobject classi�ed by the composite p� � A � � �  �

Thus the following diagram commutes�

SubS���
SubA����

� SubS�A���

S��� �

��

�

S��� �
� S�A� ��

�

��



��


Since � � A� � is epi� S��� � is injective� So SubA���� is also injective� whence A� is

faithful� Let f � S � F be any morphism in Log� Then

S�A � F�fA

S

A�

�

f
� F

�

�fA��

is a pushout �III������ Since f � S � F is logical� it preserves epis� so fA � � in F

is also epi� Thus �fA�� � F � F�fA is also faithful� whence �ii��

We record the following useful observation� which the reader can easily verify�

Lemma � �Beck condition�� Let

E
f �

� E �S F

S

e

�

f
� F

�

e�

be a pushout in Log� If E � S�A over S for some object A in S� then E�SF � F�fA

over F � Both e and e� then have left and right adjoints

e� a e a e� � E �� S

e�� a e� a e�� � E �S F �� F �

which satisfy

e�� � f
� �� f � e�

e�� � f
� �� f � e��



��


I�e� the following square commutes �up to isomorphism�� as does the one resulting

from it by putting � for � throughout�

E
f �

� E �S F

S

e�

�

f
� F

�

e��

De�nition �� A pushout square in Log

E
f �

� E �S F

S

e

�

f
� F

�

e�

has the interpolation property if for any

� � SubE����

� � SubF ����

with

f �� � e�� in SubE�SF ����

there exists

	 � SubS����

with

� � e	 in SubE����

f	 � � in SubF ����
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Proposition 	 �Interpolation�� Consider a pushout square in Log

E
f �

� E �S F

S

e

�

f
� F

�

e��
�

If either E � S�A or F � S�A �over S� for some object A in S� then �
� has the

interpolation property�

Proof� Suppose E � S�A for an object A in S� Then� up to equivalence of topoi�

�
� becomes

S�A
f�A

� F�fA

S

A�

�

f
� F �

�

�fA��

Take � � SubS�A��� and � � SubF ��� with

f�A��� � �fA����� in SubF�fA����

The following square commutes by the Beck condition�

SubS�A���
Subf�A���

� SubF�fA���

SubS���

	A

�

Subf���
� SubF ����

�

	fA���

Thus� by adjointness and ����

f�A��� � �fA��� in SubF�fA����

	fA�f�A���� � � in SubF����

f�	A��� � � in SubF�������



���

Furthermore�

� � A��	A��� in SubS�A������

is the unit of the adjunction

	A a A� � SubS���� SubS�A����

Putting

	 �df 	A�� in SubS����

one thus has

� � A�	 in SubS�A���

from ���� and

f	 � � in SubF ���

from ���� If F � S�A� take �A in place of 	A for an analogous proof�

Now let us consider higher�order interpolation from a syntactical point of

view� Suppose given a theory

T � �L�%��

L � X�� � � � �Xn� c�� � � � � cm�

% � ��� � � � � �k�

A basic type or constant symbol of L is said to occur in a term in L if it literally

occurs in that expression �of course� this can also be de�ned by an obvious induction��

Consider �rst a theory of the form

T � L � �X� a� b� c�

with one basic type X and basic constants a� b� c of types� say� A�B�C �no axioms��

Let ��a� b� and ��b� c� be sentences in L in which just the displayed constants occur�



���

For a new variable x of type A� write ��x� b� for the substitution ��a� b��x�a� �as

usual�� Then from

��a� b� � ��b� c�

we have

	x�A���x� b� � ��b� c��

While� as always�

��a� b� � 	x�A���x� b��

Thus putting

	 �df 	x�A���x� b�

provides an interpolant for ��a� b� � ��b� c� �just as in the proof of the foregoing

proposition�� It is plain that the same trick works with �x�C on the right in place of

	x�A on the left� either way� one obtains an explicit interpolant simply by �quantifying

out� the non�common constants� Of course� no such description of the interpolant

is possible in �rst�order languages� where function and relation constants are not

subject to quanti�cation� Observe that� while the constant symbol a no longer occurs

in the interpolant 	x�A���x� b�� the type symbol A does� and with it any basic type

symbol occurring therein� By respecting this latter restriction� the foregoing result

easily extends to theories with �axioms and� several basic types� as follows�

Proposition 
 �Syntactic interpolation�� Let T � �L�%� be a theory and T �

T� T �� extensions of T with

T � � �L��%��� L � L�� % � %��

T �� � �L���%���� L � L��� % � %���

L � L� � L��� % � %� � %���



���

Suppose further that either L� n L or L�� n L consists entirely of constant symbols �no

new basic types�� Let �� � be sentences in L�� L�� respectively with

� � � in T � �T T
���

Then there exists a sentence 	 in the language L such that

� � 	 in T �

and

	 � � in T ���

Proof� We work over the initial topos I� As in example ��iii�� there is a pushout

square of classifying topoi

I�T ��
f �

� I�T � �T T
���

I�T �

e

�

f
� I�T ���

�

e����

in which all maps are the evident induced extensions� Let L� n L consist only of

constants� say c�� � � � � cn of types C�� � � � � Cn respectively� Put C � C� � � � � � Cn

�and as usual� identify C�� � � � � Cn� etc� with the associated objects in the classifying

topos I�T ��� Let � be the conjunction of the sentences in %� As a point of the

subobject classi�er in I�T ��C� � classi�es a unique subobject of �� call it U�� in

I�T ��C� Indeed� in I�T � the subobject of C corresponding to U� is clearly just

f�c�� � � � � cn� � Cj�g� C�

Let A �df f�c�� � � � � cn� � Cj�g be the domain of this subobject� Then

I�T �� � �I�T ��C��U� � I�T ��A�
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Up to equivalence� ��� thus becomes the pushout square

I�T ��A
f�A

� I�T ����fA

I�T �

A�

�

f
� I�T ���

�

�fA��

The result now follows directly from proposition 
�

Remark 	� One can also consider interpolation at objects other than �� Syntactically�

this corresponds to �nding interpolants for formulas with free variables� We shall

indicate the technique in the topos setting only� Suppose the situation of proposition


� Thus we have a pushout square in Log

E
f �

� E �S F

S

e

�

f
� F �

�

e�����

Suppose E � S�A and e � A�� Let C be an object of S and consider subobjects

� � SubE�eC� and � � SubF �fC� such that

f� � e� in SubE�SF�f
�eC� �� SubE�SF�e

�fC��

Then there exists 	 � SubS�C� with � � e	 in SubE�eC� and f	 � � in SubF �fC��

For the proof� reduce to the case C � � by slicing ���� throughout by C� That is to

say� consider in place of ���� the square

E�eC
f ��eC

� �E �S F��f
�eC � �E �S F��e

�fC

S�C

e�C

�

f�C
� F�fC�

�

e��fC

which is clearly also a pushout� The result then follows from proposition 
�
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We shall show �corollary �� below� that the condition in proposition 
 that

at least one leg of the pushout be a slice �syntactically� at least one extension adds no

new basic types� cannot be simply omitted� First� we show that not all conservative

extensions are stable in Log� i�e� the analogue of Pitts�s pretopos pushout theorem

mentioned above fails in Log�

Proposition �� There exists a conservative morphism e � S � E in Log such that

the induced morphism e� � S�X�� E�X� is not conservative�

Proof� Let S be the topos of �nite sets and E any two�valued� boolean topos with a

natural numbers object �NNO�� We have a pushout square

S�X�
e�

� E�X�

S

i

�

e
� E�

�

i�����

The unique map e � S � E from the initial boolean topos S is faithful� since S is

two�valued and E non�trivial� To show that e� is not faithful� consider the diagram

S�N �
e��

� E�N �

S�X�

u

�

e�
� E�X�

�

u�

S

i

�

e
� E�

�

i�

����

in which S�N � �resp� E�N �� is the classifying topos over S �resp� E� for NNO�s� u �resp�

u�� classi�es the underlying object of the generic NNO� and e�� classi�es the generic

NNO N in E�N ��
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Since E has an NNO� it has a classifying map

c � E�N �� E

over E� thus

c � u� � i� �� �E ���	�

We claim that also

u� � i� � c � �E�N 
���
�

The logical morphism

u� � i� � c � E�N �� E�N �

in LogE classi�es an NNO N � in E�N �� Since necessarily N � �� N � ��
� follows by the

universal property of the classifying topos E�N �� Combining ��	� and ��
�� we have

an equivalence�

E�N � � E�

Thus E�N � is also two�valued� But S�N � is not two�valued� essentially by G(odel

incompleteness �II�
�� Thus there exists

p � ker�e��� � SubS�N 
�����
�

with p 
 � �strictly�� Now S�N � is a �nitary topos� i�e� S�N � � S�X��A over S for a

suitable object A in S�X� �cf� III���� Therefore the logical morphism u in ���� has a

right adjoint

u� � S�N �� S�X��

By lemma 	� u� in ���� then also has a right adjoint

u�� � E�N �� E�X��
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and these adjoints satisfy the Beck condition�

u�� � e
�� �� e� � u��

Taking �from ��
�� p � ker�e��� with p 
 �� one then has

e� � u��p� � u�� � e
���p� � u����� � ��

So

u��p� � ker�e
�������

But � � u��p� i� � � u��p� i� u��� � p i� � � p� Since by assumption p 
 � �strictly��

u��p� 
 � �strictly������

By ���� and ����� e� is not faithful� completing the proof�

The following shows that restricting attention to the category Logf of �ni�

tary topoi does not change matters in this connection�

Proposition 
� There exists a �nitary� conservative logical morphism f � S � F in

Logf such that the induced morphism f � � S�X�� F �X� is not conservative�

Proof� Let S � ��nite sets�� S�N � the NNO classi�er over S as in the foregoing

proposition� and let p � SubS�N 
��� such that � �� p �� � �such a p exists by G(odel

incompleteness �II�
��� Consider the following diagram� in which i and u are as in

����� � � S�N � � S�N ��p is the quotient morphism� and the remaining morphisms

are chosen so as to make all squares pushouts�

S�N �
i��

� S�N�X��
u��

� S�N�� N��
���

� S�N�� N���u
�
��i

�
��p��

S�X�

u

�

i�
� S�X��X��

u�

�

u�
� S�X�� N �

u��

�

��
� S�X�� N ��i

�
��p�

u���

�

S

i

�

i
� S�X�

i�

�

u
� S�N �

i��

�

�
� S�N ��p

i���

�

����
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As in the proof of the foregoing proposition� since S�N � has a NNO� the composites

u�� � i
�
� and u�� � i

�
� are equivalences� Indeed� by the universal property of NNO�s

there is a unique isomorphism 	N � N�
�
�� N� between the generic pair of NNO�s

in S�N�� N��� By the universal property of classifying maps� there is thus a �unique�

natural isomorphism 	 � u�� � i
�
�

�
�� u�� � i

�
�� Thus

u�� � i
�
��p� � u�� � i

�
��p� in SubS�N��N�
��������

and so� using the commutativity of �����

��� � u
�
� � i

�
��p� � ��� � u

�
� � i

�
��p�

� u�� � �� � i
�
��p�

� u�� � i
��
� � ��p�

� u�� � i
��
����

� �����

in Sub��� of S�N�� N���u���i
�
��p���

As in the proof of the foregoing proposition� S�N � � S�X��A over S for an object A

of S�X�� Since the upper� long horizontal rectangle of ���� is a pushout� one therefore

has

S�N�� N���u
�
��i

�
��p�� �

�
S�X�� N ��i

�
��p�

�
���� � u� � i��A���

and� up to that equivalence�

u��� � S�X�� N ��i
�
��p� �� S�N�� N���u

�
��i

�
��p��

is pullback along �� � u� � i��A�� � in S�X�� N ��i���p�� Thus by lemma 	 both u and

u��� have adjoints satisfying the Beck condition� As usual� we write �u and �u��� for the

respective right adjoints restricted to subobjects of �� Then

�� � u� � i� � �u�p� � �u��� � �
�
� � u

�
� � i

�
��p� �by Beck�

� �u��� ��� �by �����

� ��
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So

�u�p� � ker��� � u� � i������

But �u�p� �� �� since p �� �� so �� � u� � i� is not faithful�

Since p �� � and S is two�valued� ��u�i � S � S�N ��p is faithful� Taking F � S�N ��p

and f � � � u � i� we then have F �X� � S�X�� N ��i���p� by the lower� long horizontal

rectangle of ����� That rectangle thus becomes the desired pushout square

S�X�
f �

� F �X�

S

�

f
� F �

�

in which f � S � F is faithful� but f � � S�X�� F �X� is not� completing the proof�

Corollary ��� Not every pushout square in Log has the interpolation property� In

particular� for S � ��nite sets� the following pushout does not�

S�X�
i�

� S�X��X��

S

i

�

i
� S�X��

�

i�

Proof� i � S � S�X� is of course the one�object extension of S� We shall �nd

p� q � SubS�X
��� with � �� p � q �� � such that

i��p� � i��q� in SubS�X��X�
��������

This will clearly su"ce� for since S is two�valued there can then be no 	 � SubS���

with p � i	 and i	 � q�

Let S�N � classify NNOs over S� as in the foregoing proof� and again take

� �� r �� � in SubS�N 
����
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With reference to diagram ���� above� one then has

u�� � i
�
��r� � u�� � i

�
��r����	�

as in ����� Thus� chasing around diagram �����

u�� � i
�
��r� � u�� � i

�
��r� by ��	�

	u�� � u
�
� � i

�
��r� � i���r� 	u�� a u��

u� � 	u� � i
�
��r� � i���r� Beck

	u� � i
�
��r� � �u� � i

�
��r� u� a �u�

i� � 	u�r� � �u� � i
�
��r� Beck

i� � 	u�r� � i� � �u�r� Beck��
�

Now put p � 	u�r� and q � �u�r�� both in SubS�X 
���� If � � p � 	u�r� then

	u�r� � �� whence r � � violating � �� r� Hence � �� p� Dually� q �� � since r �� ��

Thus the desired ���� follows from ��
�� concluding the proof�

From a syntactical point of view� the foregoing corollary indicates a failure

of higher�order interpolation in a very basic case� This failure is noteworthy from

an algebraic perspective too� S�X��X�� is free on the two generators X��X�� so it

might be expected that these would be �independent� in the sense of �satisfying no

non�trivial relations�� Yet i��p� � i��q� for non�constant p� q � SubS�X
��� �from �����

appears to be such a relation holding between X� and X�� That something is amiss

algebraically is also suggested by the following two remarks which� taken together�

say that the free topos I�X� on one generator is not projective�
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Remark ��� �i� Let S be any topos and S�N � the NNO classi�er over S� Then the

canonical map j � S � S�N � is �epic� in the sense that the following square is a

pushout�

S�N �
�S�N 


� S�N �

S

j

�

j
� S�N �

�

�S�N 


�ii� Let u � I�X�� I�N � classify the underlying object N of the generic NNO in the

NNO classi�er I�N �� Then u does not factor through the canonical map � � I � I�N �

from the initial topos I� In other words� there is no �lifting� l � I�X�� I making a

commutative diagram�

I

�
�
�
�
�

l
�

I�X�
u

� I�N ��
�

�

� De�nability

We begin by recalling the Beth de�nability theorem for �rst�order theories �cf� ����

p� ����� Let L be a single�sorted� �rst�order language� R an n�place relation symbol

not in L� and %�R� a set of sentences in the extended language

�L�R� � L � fRg�

Take two further n�place relation symbols R�� R� not in L� and for i � �� � let %�Ri�

be the set of sentences� in the language �L�Ri� � L � fRig� obtained from %�R� by

substituting Ri everywhere for R� The sentences %�R� are said to implicitly de�ne

the relation R if

%�R�� � %�R�� � �x � R��x�� R��x�����
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where x represents an n�tuple of distinct variables and � is �rst�order logical entail�

ment� The sentences %�R� are said to explicitly de�ne the relation R if there exists a

formula ��x� in L� with at most the variables x free� such that

%�R� � �x � R�x�� ��x�����

If %�R� explicitly de�nes R� then it clearly also implicitly de�nes R� Beth�s de�n�

ability theorem asserts the converse� every implicitly de�ned relation is explicitly

de�ned�

Implicit de�nability has the following semantic signi�cance� Let �M�� ���

and �M�� ��� be �conventional� set�valued� models of the theory ��L�R��%�R��� with

the relations �� and �� interpreting R� and let h � M�
�
�� M� be an isomorphism

of the underlying L structures �the L�reducts of �M�� ��� and �M�� ���� The image

of �� under h is a relation h���� on the domain of M�� Say that R is L��xed if

h���� � �� for every such �M�� ���� �M�� ��� and isomorphism h � M�
�
�� M�� This

is clearly equivalent to saying that every L structure M can be extended in at most

one way to a model �M��� of ��L�R��%�R��� Using the completeness theorem for

�rst�order logic� one then sees without di"culty that R is L��xed i� R is implicitly

de�ned by %�R� in the sense of ��� above� Beth�s theorem thus infers the existence of

a formula in L� as in ��� above� from the behavior of models of ��L�R��%�R�� under

isomorphisms of L�structures�

For �rst�order theories� the de�nability theorem follows easily from the Craig

interpolation theorem� Brie'y� given ���� one has the entailment

R��x� � R��x� %�R�� � %�R����	�

An interpolant for �	� is a formula ��x� in L � �L�R�� � �L�R�� such that�

R��x� � ��x� %�R���

and

��x� � R��x� %�R���
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From these last two�

� R�x�� ��x� %�R��

from which follows the explicit de�nition ����

To similarly infer a higher�order de�nability theorem from the higher�order

interpolation theorem of the last section �proposition ��� one can consider a higher�

order language L and an extension T � �L��%� of L by constant symbols and axioms

only �no new basic types�� The evident analogue of Beth�s theorem for this case�

which we shall not bother to state�then follows by essentially the same argument

�a routine compactness argument is required if % is not assumed �nite�� However� in

this particular higher�order case the de�nability theorem is a triviality� and can easily

be seen directly�

For example� let X be a basic type of the language L� R a new constant

symbol for an n�place relation onX� and %�R� a �nite set of sentences in the extended

language �L�R� � L � fRg� As before� write x for an n�tuple of distinct variables of

type X� and let R�� R�� �L�R��� �L�R���%�R���%�R�� be as above� Also write x � R

rather than R�x�� etc�� as usual for higher�order theories� Now suppose we have the

implicit de�nition

%�R�� � %�R�� � �x�Xn � x � R� � x � R���
�

Let ��R� be the conjunction of the sentences in %�R�� and for any term � of type

P �Xn� �the type of the constant symbol R� write ��� � for the substitution ����x��

Then from �
� we have

��R�� � ��R�� � R� � R��

from which easily follows the explicit de�nition

��R� � �x�Xn

�
x � R� 	r�P �Xn�� x � r � ��r�

�
��
�

where r is a variable of type P �Xn� not occurring in ��R�� Indeed� one then even has

the �very explicit de�nition�

��R� � R �
�
x � Xnj 	r�P �Xn�� x � r � ��r�

�
�
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In short� if a new constant is implicitly de�nable by axioms alone� then it can already

be de�ned explicitly�

��� De�nable Subobjects

Now consider the general situation of a theory T and an arbitrary ��nite�� extension

T � T �� Since T � may have basic type symbols not in T � neither the procedure just

mentioned nor the higher�order interpolation theorem of the last section �proposition

�� applies� Let

e � S�T �� S�T ��

be the induced extension of classifying topoi �over some base topos S�� as in x�� Recall

that since e preserves monos� for each object A of S�T �� there is a map

eA � SubS�T 
�A�� SubS�T � 
�eA�����

taking a subobject # � A represented by a mono m � M � A to the subobject

eA# � eA represented by the mono em � eM � eA� Recall also that since e is

logical� eA is a Heyting algebra homomorphism� Now� given a subobject ,� eA of

eA in S�T ��� one may ask�

When is , � eA�#� for some subobject #� A in S�T � $�Q�

For example� let X be a basic type symbol of T � S � I the initial topos�

and A � X � X �as objects of I�T ��� Here I�T � is then the classifying topos for

T � and so every subobject # � X � X is given by some formula ��x� x�� in the

language of T � Similarly� I�T �� is the classifying topos for T � and every subobject

,� e�X �X� �� eX � eX is given by a formula ��x� x�� in the language of T �� The

question �Q� in this case becomes� When is a formula of T � equivalent �in T �� to one

of T $ I�e� given ��x� x�� in the language of T �� when do we have

T � � ��x� x��� ��x� x��
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for some formula ��x� x�� in the language of T $ Unlike the trivial case mentioned

above� here the language of T � may have basic types not in the language of T � these

may occur in ��x� x��� but cannot occur in ��x� x��� For any theory T � by a T �de�nable

subobject �resp� relation� resp� morphism� is meant one in the classifying topos for

T � thus one determined by an expression in the language of T � In these terms� the

question �Q� thus asks which T ��de�nable subobjects are already T �de�nable� The

Beth de�nability theorem addressed �Q� in the case�

T � L�

T � � ��L�R��%��

A � X � � � ��X � n times��

# � R�x��

The answer given by Beth�s theorem was that� for this case� R is T �de�nable i� it is

T ��xed� i�e� i� it is preserved by all T �isomorphisms of T ��models� This is the answer

that we shall also pursue in the more general setting�

��� Fixing Subobjects

The following simple lemma will be of frequent use in this section and the next� the

elementary proof is left to the reader�

Lemma �� Let f� g � E � E � be logical morphisms of topoi E� E � and h � f
�
�� g a

natural isomorphism� For any object A in E� let

�hA�
�� � SubE ��gA�� SubE ��fA�

be the Heyting map given by pullback along the component hA � fA � gA� as usual�

Then�

fA � �hA�
�� � gA�
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That is� the following diagram commutes�

SubE�A�

�
�
�
�
�

fA

R

SubE ��gA�

gA

�

�hA���
� SubE ��fA�

Throughout this subsection� let T � T � be a �xed extension of theories with

T � �L�%�� T � � �L��%�� and L � L�� % � %�� Working over a �xed but arbitrary

base topos S� to which we suppress reference when possible� let

u � S�T �� S�T �� in LogS

be the associated extension of classifying topoi� as in x��

Now let M be a T ��model in an S�topos E� with classifying map

M� � S�T ��� E�

As in xIII��� for any such modelM � let u�M be the T �model classi�ed by the restriction

of M� along u� i�e� the composite

M�u � S�T �� S�T ��� E�

There is a �unique� natural isomorphism

�u�M�� ��M�u � S�T �� E���

of classifying maps� by the universal property of classifying topoi� Up to isomorphism

of T models� u�M results from M by forgetting the additional T � structure� in other

words u�M is essentially the so�called L�reduct of M � We shall call u�M the under�

lying T �model of M � Indeed� the logical notion of L�reduction is just this forgetful

functor� induced by restriction along u�

u� �ModT ��E� � LogS�S�T
��� E�� LogS�S�T �� E� �ModT �E��
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Next� recall that given any model M of T � in a topos E� with classifying

map M� � S�T ��� E� each object C in S�T �� has an interpretation CM � M��C� in

E� Any object A in S�T � has an interpretation Au�M with respect to the underlying

T model u�M � The object uA in S�T �� also has an interpretation �uA�M � and

�uA�M �M��uA�

� �M� � u��A�

�� �u�M���A� by ���

� Au�M ����

Let M�N be T � �models in E� and let

h � u�M
�
�� u�N in ModT �E�

be an isomorphism of the underlying T models� By the universal property of S�T �� h

extends to a unique natural isomorphism of classifying maps�

h� � �u�M��
�
�� �u�N�� in LogS�S�T �� E��

Thus for each object A in S�T �� there is a component isomorphism�

h�A � Au�M
�
�� Au�M in E�

inducing �by pullback� an isomorphism of Heyting algebras �note the direction��

�h�A �
�� � SubE�Au�N�

�
�� SubE�Au�M��

The logical morphisms M�� N� � S�T �� � E also induce the following ho�

momorphisms of Heyting algebras� as in ��� of the previous section�

M�
A � SubS�T �
�uA�� SubE�M

�uA� �� SubE�Au�M ��

N�
A � SubS�T �
�uA�� SubE�N

�uA� �� SubE�Au�N ��
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�the isos come from ����� Consider the equalizer of M�
A and �h�A �

�� � N�
A � denoted

Subu�A�h� in the following commutative diagram�

Subu�A�h�
iA
� SubS�T �
�uA�

M�
A
� SubE�Au�M �

�
�
�
�
�

N�
A R

SubE�Au�N �

�

�h�A�
��

We can assume that iA is an inclusion Subu�A�h� � SubS�T �
�uA�� thus a subobject

,� uA is in Subu�A�h� i�

M�
A �,� � �h

�
A �

�� �N�
A �,�����

Observe that� as an equalizer of Heyting algebra homomorphisms� Subu�A�h� is a

sub�Heyting algebra of SubS�T �
�uA�� The subobjects ,� uA that are in Subu�A�h�

can also be described as follows� Let m � D� uA be a mono representing ,� Then�

as the reader can easily verify� , � Subu�A�h� i� there exists an isomorphism f

making a commutative square in E as follows�

M�D �
M�m

� M�uA �� Au�M

N�D

f

�

��

�

N�m
� N�uA �� Au�N

��

�

h�A

De�nition �� A subobject , � uA in Subu�A�h� is said to be preserved by h �

u�M
�
�� u�N � A subobject ,� uA is said to be �xed by u � S�T �� S�T �� if , is

preserved by h for every T �model isomorphism h � u�M
�
�� u�N of T ��models M�N

in any topos� Let

Subu�A� � SubS�T �
�uA�

denote the sub�Heyting algebra of all u��xed subobjects of uA�
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Thus Subu�A� is the intersection of the subalgebras Subu�A�h�� taken over

an awfully large index set� namely all isomorphisms h of underlying T �models of T ��

models in all topoi� Now� this is just what universal things are good for� indeed

Subu�A� can also be speci�ed as Subu�A�h� for a single but universal h � u�M
�
��

u�N � as follows�

Consider the following pushout square in LogS�

S�T ��
u�

� S�T �� �S�T 
 S�T
��

S�T �

u

�

u
� S�T ���

�

u�����

with natural isomorphism�

j � u� � u
�
�� u� � u�

Let G be the universal T �model �in S�T ��� and G� the universal T ��model �in S�T ����

Then u � S�T �� S�T �� classi�es the universal underlying T �model�

u��G�� � u���S�T �
�G
���

�� �S�T �
 � u�G�

� u�G� in ModT �S�T
����

In the pushout square ����� u�� u� classify a pair of T ��models� say

G� � u��G
���

G� � u��G
���

The natural isomorphism j � u�u
�
�� u�u therefore classi�es a unique isomorphism

�also denoted j� between the underlying T �models�

j � u��G�� � u��u��G
��� �� u��u�G��

�
�� u��u�G�� �� u��u��G

��� �� u��G��
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That ���� is a pushout means that j is the universal isomorphism of underlying T �

models� in the following sense� Given any T ��models M�N in a topos E� and an

isomorphism h � u�M
�
�� u�N of the underlying T �models� there is a unique �up to

isomorphism� logical morphism

�M�� N�� � S�T �� �S�T 
 S�T
��� E�

such that �up to canonical isomorphisms��

h � �M�� N��j�����

Now for any object A in S�T �� we can consider Subu�A� j� � SubS�T �
�uA�� i�e� the

subalgebra of those subobjects ,� uA that are preserved� in the sense of de�nition

�� by this universal underlying T �model isomorphism j � u�G�
�
�� u�G��

Lemma �� For any object A in S�T ��

Subu�A� � Subu�A� j��

Explicitly� a subobject ,� uA is �xed by u � S�T �� S�T �� just if it is preserved by

j � u�G�
�
�� u�G� for some �and hence any� pushout square�

S�T ��
u�

� S�T �� �S�T 
 S�T
��

�� j

S�T �

u

�

u
� S�T ���

�

u�

Proof� That Subu�A� � Subu�A� j� is trivial� For the converse� it must be shown that

if a subobject ,� uA is preserved by the universal underlying T �model isomorphism

j � u�G�
�
�� u�G�� then it is preserved by any isomorphism of underlying T �models

in any topos� This is straightforward� using �����

The u��xed subobjects of uA in S�T �� may be regarded as the new subobjects

of A that are �implicitly de�ned� by T � in the sense of Beth�s theorem� Observe that
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every subobject # � A is taken by uA � SubS�T 
�A� � SubS�T �
�uA� to one that is

u��xed� For

�u��uA�uA�#�� � �u�u�A�#��

so jA � u�uA
�
�� u�uA implies

�u��uA�uA�#�� � �u�u�A�#�

� �j��A ��u�u�A�#� by lemma �

� �j��A ��u��uA�uA�#���

Thus uA � SubS�T 
�A� � SubS�T �
�uA� factors through the equalizer Subu�A� �

SubS�T �
�uA� of �u��uA and �j
��
A ��u��uA by a unique �Heyting� map cA� as indicated

in the diagram

Subu�A� � � SubS�T �
�uA�
�u��uA

�

�j��A ��u��uA
� Sub�S�T �
�S�T �S�T �
��u�uA��

�
�
�
�
�

uA

�

SubS�T 
�A�

cA

�

����

De�nition �� The extension u � S�T � � S�T �� is said to have the Beth property if

the map cA of diagram ���� is surjective for each object A in S�T ��

��� Beth Property

In present terms� an extension of theories T � T � with associated logical morphism

u � S�T � � S�T �� has the Beth property i�� given any object A in S�T � and any

subobject ,� uA in S�T ��� the question with which we began this section�

When is , � uA�#� for some subobject #� A in S�T � $�Q�

can be answered� just if , is �xed by u� In this section we identify a class of extensions

easily seen to have the Beth property� and also show that not all extensions have it�
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The reference to theories and classifying topoi in the foregoing is� of course�

super'uous� Let us begin by stating the relevant data more succinctly� We will

suppress reference to the base topos for the remainder of this section �alternately� we

work in Log rather than in some LogS��

Let e � E � E� be a morphism in Log and A an object of E� We wish to

determine the image of the Heyting map

eA � SubE�A�� SubE��eA��

Take a pushout square in Log�

E�
e�

� E�

E

e

�

e
� E�

�

e���	�

with speci�ed natural isomorphism�

j � e�e
�
�� e�e�

The A�component

jA � e�eA
�
�� e�eA

induces �by pullback� a Heyting map

j��A � SubE��e�eA�
�
�� SubE��e�eA��

De�ne the subalgebra

Sube�A� � SubE��eA�
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of e��xed subobjects of eA to be the equalizer of �e��eA and �j
��
A ��e��eA� as in the top

row of the following diagram�

Sube�A� � � SubE��eA�
�e��eA

�

�j��A ��e��eA
� SubE��e�eA��

�
�
�
�
�

eA

�

SubE�A�

cA

�

��
�

Since �j��A ��e��eA�eA� � �e��eA�eA�� the map eA factors �uniquely� through Sube�A�

via the indicated homomorphism cA � SubE�A� � Sube�A�� The logical morphism

e � E � E� is said to have the Beth property i� cA is surjective for each object A in E�

Proposition 	 �De�nability�� If an extension of topoi e � E � E� has a retraction

r � E� � E� then it has the Beth property�

Proof� Suppose we have e � E � E� and r � E� � E with a natural isomorphism

h � �E
�
�� re���
�

Applying e then gives a natural isomorphism

eh � e
�
�� ere�����
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Consider the diagram below�

E�
�E�

� E�

� k

�
�
�
�
�

r�
�

E�

wwwwwwwwww
e�

� E�

� j � i

E

e

�

e
� E�

�

e�

r
� E

�

e

 h

E

wwwwwwwwww
�E

� E�

wwwwwwwwww

����

in which h is ��
�� the inner square is a pushout as in ��	�� and r�� i� k result therefrom

by ����� In particular�

eh � �ie��r�j��ke� � e
�
�� ere�

i�e� the following diagram commutes�

��E��e�������� e�������� e��E��
eh
��

� ere

r�e�e

ke

�

��

��

r�j
� r�e�e�

��

�

ie
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Evaluating this diagram at an object A in E and applying the subobject functor then

gives the following commutative diagram of Heyting algebras�

SubE��eA� �
�ehA���

��
SubE��ereA�

SubE��e�r�eA�

�keA���

�

��

�

��

�r�jA���
SubE��e�r�eA��

��

�

�ieA���

So

�ehA�
�� � �keA�

���r�jA�
���ieA�

�������

Now let ,� eA be a subobject �xed by e� i�e� such that

�e��eA�,� � �jA�
���e��eA�,� in SubE��e�eA������

We want to show that

, � eA#����

for some # � SubE�A�� Applying �keA����r��e�eA to ����results in

�keA�
���r��e�eA�e��eA�,� � �keA�

���r��e�eA�jA�
���e��eA�,� in SubE��eA������

But since k � �E�
�
�� r�e�� by lemma � we have

�keA�
���r��e�eA�e��eA � � � SubE��eA�� SubE��eA��

Hence from ����

, � �keA�
���r��e�eA�jA�

���e��eA�,� in SubE��eA������

Now

�r��e�eA�jA�
�� � �r�jA�

���r��e�eA � SubE��e�eA�� SubE��r�e�eA����	�
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since r� preserves pullbacks� And since i � r�e�
�
�� er� by lemma ��

�ieA�
���e�reA�r�eA � �r��e�eA�e��eA � SubE��eA�� SubE��r�e�eA����
�

Thus

�r��e�eA�jA�
���e��eA�,� � �r�jA�

���r��e�eA�e��eA�,� by ��	�

� �r��jA��
���ieA�

���e�reA�r�eA�,� by ��
��

Substituting this equality into ���� then gives

, � �keA�
���r��jA��

���ieA�
���e�reA�r�eA�,� in SubE��eA��

Whence� from ����� we have

, � �ehA�
���e�reA�r�eA�,� in SubE��eA����
�

Finally� similarly to ��	�� since eA preserves pullbacks�

eA�hA�
�� � �ehA�

���e�reA � SubE�reA�� SubE�eA��

Thus from ��
��

, � eA�hA�
���r�eA�,� in SubE��eA������

The subobject �hA����r�eA�,� � SubE�A� is the image of �r�eA�,� � reA under

�hA��� � SubE�reA�� SubE�A�� Put

# � �hA�
���r�eA�,��

so that ���� becomes , � eA#� which has the desired form ���� and completes the

proof�

The foregoing proposition can be cast syntactically as a de�nability criterion

for extensions of theories satisfying an analogous retraction condition that we can

state in logical terms as follows� Call an extension of theories T � T � retractable
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if the universal T �model in the classifying topos I�T � for T is the underlying T �

model of some T ��model� This is clearly equivalent to requiring that the associated

extension u � I�T �� I�T �� of classifying topoi has a retraction� i�e� a logical morphism

r � I�T ��� I�T �such that � � I�T �� I�T � and ru � I�T �� I�T ��� I�T � are naturally

isomorphic� Again equivalently� T � T � is retractable i� every T �model M �in every

topos E� is �isomorphic to� the underlying model u�M � of at least one T � model M ��

hence i� the induced forgetful functor

u� �ModT ��E��ModT �E�

is essentially surjective for every topos E�

For example� the theory of topological groups is a retractable extension of

that of groups� since every group is a topological group with the discrete topology�

For any theory� the theory of an additional n�place relation on a basic type is also a

retractable extension� for one can always take the maximal n�place relation� or the

empty one� on that type� But the theory of an object with a distinguished point is

not retractable over the theory of an object� since e�g� the null object usually does

not have a point�

For any extension T � T � of theories with T � �L�%�� T � � �L��%��� L � L��

% � %�� de�ne the new extension

T � T � �T T
�

as follows� For each basic symbol s � L� n L� take two new symbols s�� s�� the

language of T � �T T
�� denoted L� �L L

�� consists of L together with all such pairs� For

any formula � in L� let ��� �� be the formulas in L� �L L
� resulting from substituting

s�� s� respectively for every occurrence of s in �� for each basic symbol s � L� n L

occurring in �� The set of axioms of T � �T T � consists of % together with all pairs

��� �� for each � � %� n %� Of course� for the classifying topoi of these theories one

then has

I�T � �T T
�� � I�T �� �I�T 
 I�T

���

as in x��



�



Proposition 
 �Syntactic de�nability�� Let T � T � be a retractable extension of

theories� Z a type symbol of T �not necessarily basic�� and ��z� a formula in the

language L� of T �� possibly with the free variable z of type Z� The following are

equivalent�

�i� T � �T T
� � �z � ���z�� ���z��

�ii� there exists a formula ��z� in the language L of T such that

T � � �z � ��z�� ��z��

Proof� Consider the associated extension u � I�T �� I�T �� of classifying topoi� One

sees easily that �i� i� the subobject

fz � Zj��z�g� Z in SubI�T �
�Z�

is �xed by u� while �ii� i� fz � Zj��z�g � uZfz � Zj��z�g for some subobject

fz � Zj��z�g� Z in SubI�T 
�Z��

Thus the two statement are equivalent i� u has the Beth property� which it does by

the previous proposition 
� since T � T � is retractable�

Example �� �i� As a special case of proposition 
� for any topos S the extension by

one object u � S � S�X� has the Beth property� Recall from corollary �� that for

S � ��nite sets� this extension does not have the interpolation property� This is to

be contrasted with the �rst�order �Heyting pretopos� case� in which every extension

has the interpolation property and the de�nability theorem is a simple consequence

thereof� as was discussed at the beginning of this section�
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�ii� For S � ��nite sets� the extension u � S � S�N � by a natural numbers object

does not have the Beth property� For the proof� recall from remark �� that the

following is a pushout square

S�N �
�S�N 


� S�N �

S

u

�

u
� S�N �

�

�S�N 


With reference to the notation of ��	� at the beginning of this subsection� one then

has e� � e� � �S�N 
� and the natural isomorphism j is the identity �S�N 
�u� �S�N 
�u�

For the terminal object � of S as the �test object� A� the subsequent diagram ��
�

then becomes the following� in which the top row is an equalizer�

Subu��� � � SubS�N 
�u��
�S�N 


�

�S�N 


� SubS�N 
�u���

�
�
�
�
�

u�

�

SubS���

c�

�

So Subu��� � SubS�N 
�u��� i�e� every subobject of u� is �xed by u� Now SubS�N 
�u�� ��

SubS�N 
��� since u� �� �� and SubS�N 
��� is in�nite� But SubS��� � f�� �g� so c� cannot

be surjective�



Chapter V

Sheaf Representation and Logical

Completeness

The main result of this chapter is the following�

Theorem �Sheaf representation for topoi�� For any small topos E there is a

sheaf of categories eE on a topological space� such that�

�i� E is equivalent to the category of global sections of eE�
�ii� every stalk of eE is a hyperlocal topos�

Before de�ning the term �hyperlocal�� we indicate some of the background of

the theorem� The original and most familiar sheaf representations are for commutative

rings �see ����� ch� 
 for a survey�� e�g� a well�known theorem due to Grothendieck

���� asserts that every commutative ring is isomorphic to the ring of global sections

of a sheaf of local rings� In Lambek � Moerdijk ���� it is shown that topoi admit a

similar sheaf representation� every topos is equivalent to the topos of global sections

of a sheaf of local topoi �cf� also ���� II����� A topos E is called local if the Heyting

algebra SubE��� has a unique maximal ideal� in analogy with commutative rings� It

is easily seen that a topos E is local i� the terminal object � of E is indecomposable�

for any p� q � SubE���� if p� q � � then p � � or q � �� In logical terms� a classifying

topos I�UT � is thus local i� the theory T has the �disjunction property�� for any

T �sentences p� q� if T � p � q then T � p or T � q�

A sheaf representation such as those just mentioned yields an embedding

theorem� which in the case of topoi yields a logical completeness theorem �just how

�
�
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is shown in x	 below�� From a logical point of view� however� the local topoi of the

Lambek�Moerdijk representation fall short of being those of interest for completeness�

For� by other methods� one can already prove logical completeness with respect to a

class of topoi that are evenmore �Set�like� than local ones� in that the terminal object

� is also projective� Such topoi� in which � is both indecomposable and projective�

shall here be called hyperlocal� In logical terms� a classifying topos I�UT � is hyperlocal

i� the theory T has both the disjunction property mentioned above and the so�

called existence property� for any type X and any formula ��x� in at most one free

variable x of type X� if T � 	x��x� then T � ��c� for some closed term c of type X�

Hyperlocal topoi are called �models� in �	�� �see xx����� for the related completeness

theorem�� In Lambek ���� the above�mentioned logical shortcoming of the Lambek�

Moerdijk sheaf representation is noted� and the following improvement is given� for

every topos E there is a faithful logical morphism E � F into a topos F that is

equivalent to the topos of global sections of a sheaf of hyperlocal topoi� The sheaf

representation theorem of the present chapter� stated above� thus �ts into this pattern

of theorems� it states that every topos is equivalent to the topos of global sections of

a sheaf of hyperlocal topoi� It follows that every boolean topos is equivalent to the

topos of global sections of a sheaf of well�pointed topoi� With respect to the logical

completeness theorems mentioned above� these are the desired results�

The chapter is arranged as follows� In x� it is shown that every topos can

be represented as a sheaf of categories on a Grothendieck site �rather than a space��

The sheaf in question arises most naturally� not as a sheaf� but as something more

general called a �stack�� Most of x� is devoted to the technical problem of turning

this �or any� stack into a sheaf� In x� a recent theorem in topos theory due to Butz

� Moerdijk is used to transport the sheaf constructed in x� from the site to a space�

A comparison of the transported sheaf with the original one then completes the proof

of the sheaf representation theorem� In x	 several logical completeness theorems are

derived as corollaries�

In this chapter both small elementary topoi and �necessarily large� Grothen�

dieck topoi are considered� We maintain the convention that �topos� unquali�ed
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means the former� but we may still add the quali�cation �small� for emphasis when

called for� We assume familiarity with the basic theory of Grothendieck topoi� e�g� as

exposed in �	
��

� Slices� Stacks� and Sheaves

Throughout this section� let E be a �xed small topos� We begin by de�ning the E�

indexed category E- �for indexed categories� see �	
�� �

��� Recall that an E�indexed

category A is essentially the same thing as a pseudofunctor A � Eop � CAT� i�e� a

contravariant �functor up to isomorphism� on E with values in the category CAT of

�possibly large� categories� Precisely� an E�indexed category is given by the following

data�

� for each object I in E� a category AI �

� for each morphism � � J � I in E� a functor �� � EI � EJ �

� for each composable pair of morphismsK
�
� J

�
� I in E� a natural isomorphism

��� � ����
�
�� ��� ����

� for each object I in E� a natural isomorphism �I � ��I �
� �
�� �AI �

These are required to satisfy the following so�called coherence conditions�

�C�� for any three composable morphisms L
�
� K

�
� J

�
� I in E�

����� � �
����� � ����� � �����

��

�C�� for any morphism � � J � I in E�

���I � ��I���

Since the only indexed categories to be considered here are E�indexed� henceforth

indexed category shall mean E�indexed category�



�
�

The indexed category

E� � Eop � CAT

is de�ned as follows� For each object I of E�

�E��I �df E�I �the slice topos��

For each morphism � � J � I in E� choose a pullback functor

�� � E�I � E�J�

Note that each such functor �� is determined up to a unique natural isomorphism

as the right adjoint of the composition functor %� � E�J � E�I along �� For any

composable pair of morphisms K
�
� J

�
� I� take �� � E�I � E�J � �� � E�J � E�K

and consider the composite

���� � E�I � E�J � E�K�

Since both ���� and ����� are pullback functors along ��� there is a uniquely

determined natural isomorphism

���� � �
���

�
�� ��������

For any further composable morphism � � L� K in E� taking �� � E�K � E�L� one

therefore has a commutative square of natural isomorphisms�

������
������

� �������

�������

�����
�

�

�����
� �������

�

�����

Thus the natural isomorphisms ���� in ��� above� for each composable pair �� ��

necessarily satisfy the coherence condition �C��� condition �C�� similarly results from



���

the uniqueness of pullbacks� Observe that since E is small� each E�I is a small

category and so E� is a small indexed category�

An indexed category is called strict if all of its canonical natural isomor�

phisms ���� and �I are identities� Thus a small� strict indexed category is the same

thing as a presheaf of categories on E� i�e� a �proper� functor Eop � Cat� and hence a

category in the functor category SetsE
op

� Now� since E� need not be strict� it makes

no sense to ask whether E� is a sheaf �of categories� for a given Grothendieck topology

on E� We shall show� however� that E� is equivalent� as an indexed category� to a

strict indexed category which� furthermore� is a sheaf� The Grothendieck topology

considered is the so�called �nite epimorphism topology� generated by covers consist�

ing of �nite epimorphic families� when we refer to E as a site we shall always mean E

equipped with this topology� Given indexed categories A and B� an indexed functor

F � A� B such that F I � AI � BI is an ordinary equivalence of categories for each

object I of E is called an �indexed� equivalence� A and B are said to be equivalent if

there exists such an equivalence �cf� ��� ������

In these terms� our aim in this section is to prove the following�

Proposition �� E� is equivalent to a sheaf�

The proof employs the notion of a stack� to be reviewed below� and the following

three technical lemmas�

Lemma �� E� is equivalent to a small� strict indexed category�

Lemma �� E� is a stack�

Lemma �� Any small� strict stack is equivalent to a sheaf�

Before proceeding� observe that the proposition then follows directly�

Proof of proposition �� By remark � below� any indexed category equivalent to a

stack is itself a stack� thus E� is equivalent to a small� strict stack E� by lemmas �

and 	� By lemma 
� E� is equivalent to a sheaf E�� whence E� is also equivalent to

E��



���

As shall be evident� lemma � holds for any small indexed category� Thus

the same proof also serves to establish the following�

Corollary 	� Any small stack �on a topos� is equivalent to a sheaf�

We now proceed to the proofs of the lemmas�

Lemma �� E� is equivalent to a small� strict indexed category�

Proof� Indeed� as just claimed� this is true for any small indexed category A� For

let A� be the indexed category given by setting

�A��I � ind��I��A��

where ind��� $� is the category of indexed functors from � to $ and indexed natural

transformations between them� and the indexed category �I� is the so�called �exter�

nalization� of the object I in E� regarded as a discrete category �cf� �

��� Speci�cally�

for each object J in E� the category �I�J is the discrete one on the set of objects

E�J� I��

��I�J�� � E�J� I��

and for each � � K � J in E�

����� � E��� I� � E�J� I�� E�K� I��

Observe that A� is small� since A is� and that A� is equivalent to A by the indexed

Yoneda lemma ��

� ��
����� To see that A� is strict� let

K
�

� J
�

� I

be any composable morphisms in E� There are then indexed functors

�K�
���

� �J �
���

� �I��

satisfying

��� � ��� � �����
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Here ��� � �J � � �I� is the indexed functor with object part ���� � E��� ��� and

similarly for ��� and ����� Taking any F � �I� � A in �A��I � ind��I��A�� we

therefore have�

�����F � � ���F � �����

� F � ��� � ����

� F � �����

� ������F ��

and similarly for natural transformations� Thus A� is indeed strict�

Turning to lemma 	� the notion of a stack was introduced by Giraud in

���� and is treated by Bunge � Par�e in ���� Roughly speaking� stacks are to indexed

categories what sheaves are to presheaves� Since the use that we intend to make of

stacks is quite restricted� rather than developing the theory in detail we shall assume

familiarity with the second of the above mentioned references� henceforth referred to

as �BP�� An adjustment of the de�nition of a stack given there is required� however�

to account for the di�erence in the Grothendieck topologies considered there and here

�cf� also ��
���

De�nition 
� An indexed category A is a stack if the following conditions are met�

�S�� For any pair of objects I and J of E� the canonical functor

AI�J �� AI �AJ

is an equivalence of categories�

�S�� For any epimorphism � � J � I in E� the canonical functor

AI � des���

is an equivalence of categories� where des��� is the category of objects of AJ

equipped with descent data relative to � � J � I�



��	

Remark 	� Observe that if A is a stack and B an indexed category equivalent to A�

then B is plainly also a stack�

For the reader�s convenience� we recall the de�nition of the descent category

des��� �denoted D� in �BP� de�nition ����� Let A be �xed indexed category and

� � J � I an epimorphism in E� Consider the following commutative diagram in E�

in which the ��s are the evident projections from the indicated pullbacks�

J �I J �I J

���
�

���
�

���
�

J �I J
��

�

��
� J���

We have the equations

����� � ������

����� � ������

����� � ������

�	�

ApplyingA to the diagram ��� yields the following diagram of categories and functors

AJ
��� �

���
�A

J�IJ

����
�

����
�

����
�

AJ�IJ�IJ�
�

with natural isomorphisms �from �	��

	� � �
�
���

�
�

�
�� �����

�
��

	� � �
�
���

�
�

�
�� �����

�
��

	� � �
�
���

�
�

�
�� �����

�
��

�
�

By descent data �relative to � � J � I� on an object A of AJ is meant an isomorphism

� � ���A
�
�� ���A in AJ�IJ

satisfying

�	��A � �
�
��� � �	��A � ����� � �	��A � �

�
��� in AJ�IJ�IJ ����



��


That is� schematically�

����� � ����� � �
�
����

up to the canonical isomorphisms �
�� The objects of des��� are pairs �A��� where A

is an object of AJ and � is descent data on A� A morphism f � �A���� �A�� ��� of

des��� between two such objects is a morphism f � A� A� in AJ that is compatible

with the descent data� in the sense that ���f �� � ������f � i�e� such that the following

diagram in AJ�IJ commutes�

���A
���f

� ���A
�

���A

�

�

��

���f
� ���A

��

��

�

��

Composition� identity morphisms� domains� and codomains of des��� are the evident

ones� There is an obvious forgetful functor u � des���� AJ � taking �A��� to A� and

the various descent data � are then the components of a natural isomorphism

� � ��u
�
�� ��u�

which by ��� satis�es

	�u � �
�
��� � 	�u � ����� � 	�u � �

�
����

Indeed� the pair �u � des��� � AJ � � � ��u
�
�� ��u� is clearly universal among all

pairs �v � C� AJ � � � ��v
�
�� ��v� satisfying

	�v � �
�
��� � 	�v � ����� � 	�v � �

�
�������

For brevity� let us say that such a pair �v� �� satisfying ��� pseudo�equalizes the

diagram �
�� which we call the descent diagram for A with respect to � � J � I� In

these terms the pair �u� �� is the universal pseudo�equalizing pair� Of course� des���



��


�together with the evident functors and natural isomorphisms� can also be described

as the pseudo�limit of the descent diagram �
�� Finally� since

��� � ��� � J �I J
��

�

��
� J

�
�� I�

we have a natural isomorphism

�	 � ����
� �
�� ����

�� � AI ��
� AJ

���
�

���
�A

J�IJ �

and ��� � AI � AJ � 	� then plainly pseudo�equalizes the descent diagram for A with

respect to �� Thus there is an essentially unique �comparison functor� c � AI �

des���� as indicated in the following diagram�

des���
u

�AJ

�
�
�
�
�

��

�

AI �

c

�

It is this canonical functor c that is mentioned in condition �S�� of de�nition � above�

Lemma �� E� is a stack�

Proof� Condition �S�� is a special case of �BP� corollary ���� A proof can also be given

from the descent theorem of Joyal � Tierney ��	�� For if a morphism e � J � I in E is

epi� then the geometricmorphism E�J � E�I with inverse image e� � E�I � E�J is an

open surjection� hence an e�ective descent morphism by the Joyal�Tierney theorem�

For �S��� we must consider the canonical functor

E��I � J� �� E�I � E�J�

This is easily seen directly to be an equivalence of categories� with quasi�inverse�

�X � I� Y � J� ��� �X � Y � I � J��
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Lemma �� Any small� strict stack is equivalent to a sheaf�

Proof� Let C be a small� strict stack on E� regarded as a presheaf of categories�

We shall prove that the canonical functor C� aC to the associated sheaf aC is an

equivalence of indexed categories�

First� recall that aC can be constructed by two successive applications of the so�called

plus construction �cf� �	
� III�
��� As a functor� the plus construction

� � SetsE
op

� SetsE
op

preserves �nite limits� and hence also category objects in SetsE
op

� The canonical

natural transformation with components �P � P � P� for each presheaf P therefore

determines two �internal� functors in SetsE
op

�

�C �C� C��

�C� �C� � C�� � aC�

the composite of which is the canonical functor C� aC� Since the property of being

a stack is inherited along equivalences� it will plainly su"ce to show that �C is an

equivalence when C is a stack�

Next� given any presheaf P on E� recall that P� is de�ned by

P��I� � lim�� S�J�I�Hom�S� P ����

for each object I � E� where the Hom is that of the category of presheaves SetsE
op

�

The colimit in ��� is taken over the set J�I� of all covering sieves S of I� regarded as

subobjects of the representable functor yI � E��� I�� and ordered by reverse inclusion

��re�nement��� For each such sieve S there is a category Hom�S�C� with objects and

morphisms

Hom�S�C�� � Hom�S�C���

Hom�S�C�� � Hom�S�C���
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and with the evident structure maps coming from those of C� Since J�I� is a �lter�

the colimit in ��� is �ltered� Thus C��I� is the �ltered colimit of the categories

Hom�S�C��

C��I� �� lim�� S�J�I�Hom�S�C�����

Now let K�I� � J�I� be the set of covering sieves R of I for which there is a �nite

epimorphic family ��n � An � I�n that generates R� We order K�I� by re�nement

too� Since any S � J�I� has a re�nement R � S with R � K�I�� from ��� we have�

C��I� �� lim�� S�K�I�Hom�R�C������

We now claim that for each R � K�I�� the canonical inclusion R � yI induces an

equivalence of categories

Hom�yI�C� � Hom�R�C������

Given this� from ���� and ���� we shall have �isomorphisms and� equivalences�

C�I� �� Hom�yI�C��

�� lim��R�K�I�Hom�yI�C��

� lim��R�K�I�Hom�R�C� by �����

�� C��I� by �����

Whence � � C � C� as desired�

The proof of the claim is a lengthy but straightforward argument which we give for

the sake of completeness� assuming some familiarity with descent theory�

Let ��n � An � I�n be a covering family �hence �nite�� Apply the Yoneda embedding

y � E � SetsE
op

to ��n � An � I�n and take the coproduct in Sets
Eop to get the

morphism

�y�n� �
a
n

yAn � yI in SetsE
op

�����



���

Put

A� �df

a
n

yAn�

�� �df �y�n� � A
� � yI�

��	�

Now factor �� � A� � yI as an epi followed by a mono by taking the kernel pair

q�� q� � A��yI A
�
� A� of ��� then the coequalizer q � A�

� R of q� and q�� as indicated

in the diagram

A� �yI A
�

q�
�

q�
� A

�
q
� R

r
�

��
� yI���
�

The resulting monomorphism

r � R� yI

then represents �the subpresheaf associated to� the sieve generated by the covering

family ��n � An � I�n�

Next� apply the functor Hom���C� to ��
� to obtain the following equalizer diagram

of categories�

Hom�R�C�
q�
� Hom�A��C�

q��
�

q��
� Hom�A

� �yI A
��C��

�
�
�
�
�

�����

�

Hom�yI�C�

r�

�

��
�

Now extend ��
� to the left by the further pullbacks and projections indicated in the

diagram

A� �yI A
� �yI A

�

q��
�

q��
�

q��
�

A� �yI A
�

q�
�

q�
� A

�����

We have the usual equations

q�q�� � q�q���

q�q�� � q�q���

q�q�� � q�q���

����
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There is then a corresponding right hand extension of ��
��

Hom�A��C�
q��

�

q��
� Hom�A

� �yI A
��C�

q���
�

q���
�

q���
�

Hom�A� �yI A
� �yI A

��C�����

and we have the corresponding equations�

q���q
�
� � q���q

�
��

q���q
�
� � q���q

�
��

q���q
�
� � q���q

�
��

����

Next� there are �canonical� isomorphisms of categories�

Hom�yI�C� �� C�I��

Hom�A��C� �� Hom�
a
n

yAn�C��

��
Y
n

Hom�yAn�C��

��
Y
n

C�An��

Hom�A� �yI A
��C� �� Hom��

a
n

yAn��yI �
a
n

yAn��C��

�� Hom�
a
n�m

�yAn �yI yAm��C��

��
Y
n�m

Hom�yAn �yI yAm�C��

��
Y
n�m

Hom�y�An �I Am��C��

��
Y
n�m

C�An �I Am��

Hom�A� �yI A
� �yI A

��C� ��
Y
n�m�k

C�An �I Am �I Ak� �similarly��

����
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Furthermore� since C is a stack� by the stack condition �S�� there are canonical

equivalences of categories

C�
a
n

An� �
Y
n

C�An��

C�
a
n�m

An �I Am� �
Y
n�m

C�An �I Am��

C�
a
n�m�k

An �I Am �I Ak� �
Y
n�m�k

C�An �I Am �I Ak��

����

Now put

A �df

a
n

An�

� �df ��n� � A� I�

����

In E there are then canonical isomorphisms

a
n�m

�An �I Am� �� �
a
n

An��I �
a
n

An��

�� A�I A�a
n�m�k

�An �I Am �I Ak� �� �
a
n

An��I �
a
n

An��I �
a
n

An��

�� A�I A�I A�

��	�

where A�IA is the pullback of � � A� I against itself� and similarly for A�IA�IA�

Thus� collecting �������	��

Hom�yI�C� �� C�I��

Hom�A��C� � C�A��

Hom�A� �yI A
��C� � C�A�I A��

Hom�A� �yI A
� �yI A

��C� � C�A�I A�I A��

��
�
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Now� since C is a stack� by condition �S�� the comparison functor c � C�I�� des���

in the following diagram �with the evident morphisms� is an equivalence of categories�

des���
u

�C�A� �
�C�A�I A�

�
�
�
C�A�I A�I A��

�
�
�
�
�

��

�

C�I�

c

�

���
�

Whence �� � C�I�� C�A� is the pseudo�equalizer of the evident descent diagram in

��
� for C with respect to � � A� I�

Combining ��
� and ���� we obtain the commutative diagram

Hom�R�C�
q�
� Hom�A��C�

q��
�

q��
� Hom�A

� �yI A
��C�

q���
�

q���
�

q���
�

Hom�A� �yI A
� �yI A

��C��

�
�
�
�
�

�����

�

Hom�yI�C�

r�

�

����

in which q� is the strict equalizer of q�� and q
�
�� as in ��
��

Connecting ��
� and ���� by the equivalences ��
�� we see that ����� � Hom�yI�C��

Hom�A��C� is a pseudo�equalizer of the evident descent diagram ����� since �� �

C�I� � C�A� is one in ��
�� The requisite natural isomorphism q����
���

�
�� q����

���

is just the identity natural transformation

q����
��� � ���q��

� � ���q��
� � q����

��������

since the same is true for ��
� because C is strict� Observe that ����� is faithful since

u in ��
� is evidently so�

Summing up the foregoing� in ���� q� is the strict equalizer of q�� and q��� and ��
���

�together with the identity natural isomorphism ����� is the pseudo�equalizer of the

evident descent diagram� Since q� �together with q��q
� � q��q

�� also pseudo�equalizes

that descent diagram� by the universal property of ����� there is a functor�

s � Hom�R�C�� Hom�yI�C�����
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and a natural isomorphism

	 � �����s
�
�� q�����

such that

q��	 � q��	��	��

The form of �	�� results from the other natural isomorphisms at issue being identities�

i�e� from ���� and ����� The situation is pictured in the diagram

Hom�R�C�
q�
� Hom�A��C�

�
�
�
�
�

	  
�����

�

Hom�yI�C��

r�

�

�

s

in which r�� q�� ����� are as in ����� To show that r� is an equivalence� by ���� we

have�

�����sr� �� q�r��

� �rq���

� ����� by ��
��

Whence

sr� �� �C�I���	��

by the universal property of ������ We also have

q�r�s � �rq��s�

� �����s by ��
��

�� q� by �����
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However� we cannot therefrom infer the desired r�s �� �Hom�R�C�� since q
� is a strict

equalizer� from which nothing follows about natural isomorphisms� But let us perse�

vere� observing that s is essentially surjective by �	��� and that it is faithful by ����

since� as an equalizer� q� is faithful � We next show that s is full�

To this end� let x� y � R� C be objects of Hom�R�C� and f � sx� sy in Hom�yI�C��

Consider the composite morphism

f � � q�x
	��x
��

� �����sx
�����f

� �����sy
	y
��

� q�y�	��

in Hom�A��C�� We have

q��f
� � q���	y � ��

���f � 	��x � by �	��

� q���	y� � q
�
���

���f � q���	
��
x �

� q���	y� � q
�
���

���f � q���	
��
x � by �	��

� q���	y� � q
�
���

���f � q���	
��
x � by ����

� q���	y � ��
���f � 	��x �

� q��f
� by �	���

Thus� since q� is a �strict� equalizer of q�� and q�� there exists a morphism h � x � y

in Hom�R�C� such that

q�h � f � � q�x� q�y��		�

By �����

	y � ��
���s�h� � q��h� � 	x�

whence�

�����s�h� � 	��y � q��h� � 	x�

� 	��y � f � � 	x by �		��

� 	��y � 	y � ��
���f � 	��x � 	x by �	���

� �����f�
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Therefore s�h� � f � since ����� is faithful as was already observed� Since f was

arbitrary� s is indeed full�

Thus s is an equivalence� whence by �	���

r� � Hom�yI�C�� Hom�R�C�

is also an equivalence as claimed in ����� completing the proof of lemma 
�

� Sheaf Representation

As before� let E be a �xed but arbitrary small topos� equipped with the �nite epi

topology when regarded as a site� By proposition � of the previous section� the

indexed category E� is equivalent to a sheaf of categories on E� Let us write

E�� � Eop � Cat

for a �xed such sheaf� Speci�cally� this means that for each object I of E there is an

equivalence of categories� natural in I�

E��I � E�I����

When confusion with E� is unlikely� we may also write

�� � E��I � E��J

rather than E��� for the e�ect of E�� on a morphism � � J � I of E�

Now let a � Sets� Sh�E� be a geometric morphism into the Grothendieck

topos Sh�E� of sheaves on E� and consider the e�ect of its inverse image a� � Sh�E��

Sets on the sheaf E��� or� as we shall say more brie'y� the �stalk� of E�� at the

�point� a � Sets� Sh�E��

Lemma �� For any geometric morphism a � Sets � Sh�E�� a��E��� is a hyperlocal

topos�
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Proof� First� a��E��� is a category since E�� is a category in Sh�E� and a� preserves

�nite limits�

Next� we show that a��E��� is a topos� Let A � E � Sets be the composite functor

A � E
y

� Sh�E�
a�

� Sets�

where y is the shea��ed Yoneda embedding� Observe that A is left exact and con�

tinuous� since each of its factors is� For any sheaf F on E� the stalk a��F � can be

calculated as a colimit

a��F � � lim��
R
AF �I����

over the category
R
A of elements of A �cf� �	
� VII����	���� Recall that an object of

R
A

is a pair �I� x� with I an object of E and x � A�I�� and a morphism � � �I� x�� �J� y�

of
R
A between two such objects is a morphism � � I � J of E with A����x� � y�

adorned with domain and codomain objects �i�e� morphisms of
R
A are such triples

��� �I� x�� �J� y��� We shall simply write � � �I� x� � �J� y� for such a morphism�

There is a projection functor � �
R
A � E� taking � � �I� x� � �J� y� to � � I � J �

The colimit in ��� is understood to be the colimit of the composite functor F��

lim��
R
AF �I� � lim���

Z
A

�
� E

F
� Setsop��	�

Since A is left exact�
R
A is a �ltered category� as can easily be seen directly� Thus�

from ����

a��E��� � lim��
R
AE��I�
�

is a �ltered colimit of the categories E��I� Now E��I � E�I is a topos for each object

I of E� And for each � � J � I in E� the functor E��� � E��I � E��J is logical� since

the pullback functor �� � E�I � E�J is logical and the square

E��I � E�I

E��J

E���

�

� E�J
�

E��
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commutes up to natural isomorphism � E�� � E� is natural�� Since the �ltered colimit

in Cat of a diagram of topoi and logical morphisms is again a topos �proposition

III�	���� by �
� the �ltered colimit category a��E��� is indeed a topos�

It remains to show that a��E��� is hyperlocal� The functor A � E � Sets preserves

covers� Thus if ��n � Cn � I�n is a cover of the object I in E� then �A�n � ACn � AI�n

is a �nite epimorphic family� and the canonical map

�A�n� �
a
n

ACn � AI�
�

is thus an epimorphism in Sets� hence surjective� Let �I� x� �
R
A� so x � A�I�� For

any cover ��n � Cn � I�n there is then some n and an element y � ACn such that

�n�y� � x� This �n � Cn � I therefore determines a morphism �n � �Cn� y�� �I� x�

in
R
A� In sum�

��� For any �I� x� �
R
A and any cover ��n � Cn � I�n� for some n there is a

map �n � �Cn� y�� �I� x� in
R
A�

Next we prove the following two statements�

��� For any object I of E and any subobjects p and q of � in E��I with

p � q � �� there exists a cover ��n � Cn � I�n such that� for each n�

��np � � or �
�
nq � � in E��Cn�

��� For any object I of E and object X of E��I with X � � epi� there exists

a cover ��n � Cn � I�n such that� for each n� there exists a morphism

�� ��nX in E��Cn�

Since E��I � E�I naturally� it su"ces to prove the statements for E� rather than

E��� For ���� a subobject p� � in E�I is represented by a mono mp � p � I of E�

If two such monos mp � p � I� mq � q � I are such that p � q � � in E�I� then

�mp�mq� � p� q � I in E is epi� Thus fmp�mqg is itself a cover of I with �mp��p � �

and �mq��q � �� For ���� an object X of E�I is a morphism fX � DX � I of E� If

X � � is epi in E�I� then fX is epi in E� and so ffX � DX � Ig is a one�element cover�



���

The object f�XX in E�DX is then the pullback f�X�fX�
�� �DX�IDX � DX� in E�DX

of fX against itself� which of course has the diagonal h�X � �Xi � DX � DX �I DX as

a morphism �� f�X�fX�� This proves ��� and ����

Combining ��� with ��� and ��� respectively gives�

��� For any object �I� x� �
R
A and any subobjects p and q of � in E��I with

p � q � �� there is a map � � �C� y�� �I� x� in
R
A such that ��p � � or

��q � � in E��C�

���� For any object �I� x� �
R
A and any object X of E��I with X � � epi�

there is a map � � �C� y� � �I� x� in
R
A and a morphism � � ��X in

E��C�

Now by �
�� a��E��� is a colimit of the topoi E��I over the �ltered category
R
A�

From this fact� one shows that a��E��� is hyperlocal using ��� and ����� We show

that a��E��� is local using ���� that � is projective in a��E��� follows similarly using

����� Let p and q be subobjects of � in a��E��� with p�q � �� Then there are objects

�Ip� xp�� �Iq� xq� �
R
A and subobjects p�� � in E��Ip and q

�
� � in E��Iq projecting

to p and q respectively in the colimit a��E���� Since
R
A is �ltered� there exist an

object �I� x� and morphisms

�Ip� xp� �Iq� xq�

I�
�
�
�
� �

�
�
�
��

�I� x�

in
R
A� Restricting p� and q� along these morphisms gives subobjects p��� q�� � � in

E��I� of course still projecting to p and q respectively� Since p� q � � in the colimit�

there is some h � �J� y� � �I� x� in
R
A such that the restriction h��p�� � q��� � �

in E��J � So also h�p�� � h�q�� � h��p�� � q��� � �� Applying ��� gives a morphism

� � �C� z�� �J� y� in
R
A such that ��h�p�� � � or ��h�q�� � � in E��C� Since ��h�p��

also projects to p and ��h�q�� to q� either p � � or q � � in a��E���� So a��E��� is

local� This completes the proof of the lemma�
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Theorem �� For any small topos E� the indexed category E� is equivalent to a sheaf

of hyperlocal topoi on the site E� Thus any small topos is equivalent to the topos of

global sections of a sheaf of hyperlocal topoi on a site�

The problem with theorem � is� of course� that we have not de�ned the

notion of a sheaf of hyperlocal topoi on a site� On a topological space� this may be

understood in the usual �in sheaf theory� way� every stalk of the sheaf is a hyperlocal

topos � But on a site this condition is generally not very informative� since e�g� there

may be no points at which to take stalks� A satisfactory alternative for sites would

be to use the internal language of sheaf topoi to de�ne a hyperlocal�topos�object in

a topos� but this is rather involved� In the present case� the two options are in fact

equivalent� as shall be indicated� For our purposes we will therefore simply de�ne a

sheaf of hyperlocal topoi on a site to be a sheaf of categories� every stalk of which is

a hyperlocal topos� The theorem then follows directly from the preceding lemma and

proposition � of the previous section� since for the category Sh�E���� E��� of global

sections we have Sh�E���� E��� �� Sh�E��y�� E��� �� E��� � E�� �� E� where y is the

shea��ed yoneda embedding�

The reason why� in the present case� the internal condition on sheaves alluded

to above is equivalent to the condition given in terms of stalks is that the topos Sh�E�

of sheaves on the site E has plenty of points� and so there will be plenty of stalks�

More precisely� recall that a Grothendieck topos G is said to have enough points if

the collection of all geometric morphisms a � Sets � G is jointly surjective �cf� e�g�

�	
� IX������ If G has enough points� then any geometric property of models of a

geometric theory is enjoyed by a model M in G i� it is had by every stalk of M �

since the inverse images of the points are then jointly faithful �cf� ibid� X���� Recall

that as a site� the small topos E is given the topology generated by �nite epimorphic

families� the Grothendieck topos Sh�E� is thus coherent� and so it has enough points

by Deligne�s theorem �ibid� IX����� Theorem � could therefore be made considerably

more informative by adjusting the de�nition of a sheaf of �hyperlocal� topoi to include

the condition that the site have a topos of sheaves with enough points� A virtue of
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the sheaf representation theorem stated at the outset of this chapter is that it avoids

the necessity of such �ddling� since a topological space always has enough points� The

theorem can now also be stated more simply as follows�

Theorem � �Sheaf representation for topoi�� Any small topos is equivalent to

the topos of global sections of a sheaf of hyperlocal topoi on a topological space�

Proof� We begin with a sheaf E�� of hyperlocal topoi on E such that

E�� � E������

as in theorem �� We shall transport E�� to a topological space XE in such a way

that the resulting sheaf eE on XE is still a hyperlocal topos and has �the same� global

sections as E��� For this purpose� we make use of the following recent theorem due

to Butz � Moerdijk �the statement given below is only part of theorem �	�
 of �����

cf� also ������

Butz�Moerdijk covering theorem� Let G be a Grothendieck topos with enough

points� There exists a topological spaceX and a connected� locally connected geometric

morphism � � Sh�X�� G�

Recall that a geometric morphism � � G� � G between Grothendieck topoi is called

connected if its inverse image �� � G � G � is full and faithful� and locally connected if

�� has a Sets�indexed left adjoint �cf� �
�� for equivalent conditions�� We shall make

no use of the local connectedness of the covering map � � Sh�X�� G�

As was noted above� the Grothendieck topos Sh�E� has enough points by Deligne�s

theorem� So by the covering theorem there is a topological space XE and a connected

geometric morphism

� � Sh�XE�� Sh�E�����

As is customary� we shall write �� � Sh�E� � Sh�XE� and �� � Sh�XE� � Sh�E� for

the inverse and direct image parts� respectively� of �� Recall that the left adjoint ��

also preserves �nite limits� so in particular it preserves terminal objects�
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Applying �� to the sheaf E�� gives a sheaf of categories

eE �df �
��E�����	�

on XE � Since �� is full and faithful� the unit � of the adjunction �� a �� is a natural

isomorphism ��		� p� �����

� � �Sh�E�
�
�� ���

��

The components of � at E�� are therefore �the object and morphism part of� an

isomorphism of �sheaves of� categories

E�� �� ���
��E������
�

Let y � E � Sh�E� by the shea��ed yoneda embedding� which of course preserves ��

For the category Sh�XE���� eE� of global sections of the sheaf eE on XE � we now have

the following equivalences of categories �indeed� all but one are isomorphisms��

Sh�XE���� eE� �� Sh�XE���
��� eE�

�� Sh�E���� �� eE� �� a ��

�� Sh�E���� ���
��E���� by ��	�

�� Sh�E���� E��� by ��
�

�� Sh�E��y�� E���

�� E��� by Yoneda

� E�� by ����

�� E���
�

Now consider the stalks of the sheaf eE � Each point p � XE determines a unique �up

to isomorphism� geometric morphism p � Sets� Sh�XE� with inverse image

p��F � �� Fp �the stalk of F at p�����

for each sheaf F on XE � Composing such a point p � Sets� Sh�XE� with the covering

map � � Sh�XE�� Sh�E� we obtain a point

�p � Sets� Sh�XE�� Sh�E�����
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of Sh�E�� For the stalk eEp of eE at a point p � XE we then have

eEp �� p��eE� by �����

� p�����E���� by ��	��

�� ��p���E����

the last of which is a hyperlocal topos by lemma �� since it is a stalk of E�� at the

point �p of ����� Thus every stalk of eE is a hyperlocal topos� Since� by ��
�� E is
equivalent to the category of global sections of eE � this completes the proof of the
theorem�

Let E be a topos and take eE and XE as in the theorem� i�e� eE is a sheaf

of hyperlocal topoi on the space XE � and E is equivalent to the category of global

sections of eE� Given any point p � XE � there is a canonical logical morphism

�p � E � eEp����

by the de�nition of the stalk eEp as a ��ltered� colimit of slices of E �
��
Now suppose that E is boolean� Then every such stalk eEp is also boolean�

since it has a logical morphism from a boolean topos� namely �
� �recall that a topos

E is boolean i� the canonical morphism h���i � � � ��  in E is an isomorphism��

Now� a boolean� hyperlocal topos is necessarily also well�pointed� Indeed� schemati�

cally�

hyperlocal � boolean � well�pointed�����

The simple proof of this fact is deferred to the next section� Summing up� we see that

every stalk in a sheaf representation of a boolean topos is therefore a well�pointed

topos� whence by theorem 	�

Theorem � �Sheaf representation for boolean topoi�� Any small boolean top�

os is equivalent to the topos of global sections of a sheaf of well�pointed topoi on a

topological space�
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Remark �� �i� A somewhat stronger statement of theorem 
 can be given� If eE is the
sheaf representation of a topos E� then E is boolean if and only if eE is a sheaf of well�
pointed topoi� The �only if� part was just shown� for �if�� observe that E is boolean if

it has a faithful logical morphism E � B to some boolean topos B� For� as just noted�

a topos is boolean i� h���i � � � ��  is iso� and faithful logical morphisms re'ect

isos� Since every well�pointed topos is boolean by ����� and a product of boolean

topoi is again boolean �as is clear�� the statement then follows from the next remark�

�ii� If eE is the sheaf representation of a topos E� then the canonical logical
morphism

h�xi � E �
Y
x�XE

eEx����

is faithful� Here
Q

x�XE

eEx is the product of the stalks of eE � taken over all the points
x � XE � and h�xi is the canonical map to the product determined by the maps

�x � E � eEx of ����� The logical morphism ���� is faithful simply because E � +�eE��
where + � Sh�XE� � Sets is the global sections functor� and for any sheaf F on a

space X� the canonical map +�F ��
Q

x�X Fx is plainly injective�

� Logical Completeness

Lemma �� A topos is well�pointed just if it is hyperlocal and boolean�

Proof� First� observe that any local boolean topos B is two�valued� For given any

subobject p � SubB���� p � 
p � � since B is boolean� hence p � � or 
p � � since B

is local� thus p � � or p � � �and not both� since local implies non�degenerate�� Now

let B be hyperlocal and boolean� and let f �� g � X � Y in B� Then the equalizer

e � E � X of f and g is not the maximal subobject� and so 
e � 
E � X is not

null since B is boolean� Since B is two�valued� 
E � � must be epi� so there exists

a morphism a � �� 
E since B is hyperlocal� The point

x �df 
e � a � �� 
E � X
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then has fx �� gx � � � X � Y � for otherwise x � E� which is impossible since

x � 
E� Thus B is well�pointed�

Conversely� assume B is well�pointed� Then B is easily seen to be two�valued and

boolean� �cf� e�g� �	
� VI������ as there� well�pointed is here taken to imply non�

degenerate�� Thus B is local� If X � � is epi� then X �� �� So there are morphisms

f �� g � X �  classifying the least and greatest subobjects of X� Since B is

well�pointed� there is a point x � �� X with fx �� gx� So B is hyperlocal�

We next introduce the following terminology for the sake of brevity �the

logical notions of theory� model� satisfaction� etc� are as given in chapter I��

Convention �� For T a theory� � a T �sentence� and E a topos�

E j� � �df M j� � for each M �ModT �E��

and for E a collection of topoi�

E j� � �df E j� � for each E � E�

E su"ces for T �df E j� � implies T � � for each T �sentence ��

and for T a collection of theories�

E su"ces for T �df E su"ces for each T � T�

Thus a collection E of topoi su"ces for a collection T of theories i�� for every theory

T � T and every T �sentence �� T � � if M j� � for every T �modelM in every topos

E � E� The idea� of course� is that E provides complete semantics for the theories T�

In these terms� the adequacy of topos semantics �theorem II�	�
� implies that �small�

topoi su"ce for theories in intuitionistic logic� and �small� boolean topoi for classical

theories� The following now results from the sheaf representation theorems of the

previous section�

Theorem � �Strong completeness�� Hyperlocal topoi su�ce for theories in intu�

itionistic logic� and well�pointed topoi for classical theories�
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Proof� Let T be a theory� I�UT � the classifying topos of T � and E any topos� For

any T �sentence � and any modelM �ModT �E��

M j� � i� M�� � �����

where M� � I�UT � � E classi�es M and we identify � with the corresponding sub�

object of the terminal object � of I�UT �� as usual �cf� proposition II�	�
�� Let�I�UT �

be a sheaf representation of I�UT � on a space X� and consider the faithful logical

morphism

h�xi � I�UT ��
Y
x�X

�I�UT �x

of remark ��
�ii� above� For each point x � X� let

Ux � �x�UT � in ModT ��I�UT �x��

So Ux is the T �model classi�ed by the canonical logical morphism �x � I�UT ���I�UT �x

to the �hyperlocal� stalk of�I�UT � at x� Now if the T �sentence � is such that H j� �

for any hyperlocal topos H then� for each x � X� Ux j� � and so �x� � � by ����

Since h�xi is faithful� � � � in I�UT �� whence T � �� Thus hyperlocal topoi su"ce�

If T is classical� I�UT � is boolean and so each stalk�I�UT �x is also boolean� The result

then follows from the foregoing� together with lemma ��

One essential ingredient of theorem 	� namely the logical embedding of any

�boolean� topos into a product of �well�pointed� hyperlocal topoi� goes back to �����

cf� also �	�� II�����

Remark �� �i� Adding logical conditions other than �classical� permits a similar re�

striction of the collection of topoi required for su"ciency� The classical example is

the addition of the �rule of choice� to the basic logical calculus� say in the form

�x�X	y�Y � ��x� y� � 	f�YX�x�X� ��x� fx�

for each suitable formula ��x� y�� Call a theory in such an extended logic a �theory

with the choice rule�� and �as usual� say that a topos �has choice� if every epimor�

phism therein has a right inverse� Then one easily infers from the foregoing theorem
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that two�valued topoi with choice are su"cient for theories with the choice rule� In�

deed� if a theory T has choice then the classifying topos I�UT � satis�es the so�called

internal axiom of choice� and so is boolean �cf� �	
� VI����� every stalk of a sheaf

representation of I�UT � is then well�pointed and also satis�es the internal axiom of

choice� and so is two�valued and has choice� as is easily seen �cf� also �	�� II���� for a

related argument��

�ii� From a logical point of view� it is also of interest to note that well�pointed

topoi arise naturally as models of so�called bounded Zermelo set theory Zb� hyperlocal

topoi as models of the intuitionistic analogue thereof� and two�valued topoi with choice

as models of Zb with the usual axiom of choice� Each of these set theories has been

studied independently of the logical completeness theorems �cf� �
��� �

�� ���� ��	��

�	
� VI���� and the further references there�� The strong completeness theorem above

can thus also be stated in terms of models �of theories� in topoi which� themselves�

are models of a particular set theory� For example� if � is a sentence in the language

of a classical theory T � then T � � if � is true in every T �model in every model of the

set theory Zb�

While the preceding interpretation of the strong completeness theorems

seems conceptually quite satisfactory� perhaps less intuitive are the traditional higher�

order completeness theorems using �non�standard� models in the single topos Sets�

in the style of Henkin ����� We conclude this section by indicating how to pass from

theorem 	 to such a Henkin�style completeness theorem�

Pseudo�Models

Let E be a topos� By a pseudo�model of E �in Sets� we mean a functorM � E � Sets

that is left exact and continuous �with respect to the �nite epi topology�� Thus a

functor M � E � Sets is a pseudo�model i� it preserves �nite limits and �nite

epimorphic families� which is easily shown to be equivalent to preserving �nite limits�

�nite coproducts� and quotients of equivalence relations�
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Of course� in calling a functor a model we are generalizing from the case in

which E � I�UT � is a classifying topos for a theory T and a logical functor I�UT � �

Sets is associated to a model of T in Sets under the equivalence Log�I�UT ��Sets� �

ModT �Sets�� With respect to the internal logic of an arbitrary topos E� a pseudo�

model clearly preserves the logical operations ��������	 �viz� �nitary geometric

logic�� Thus if E � I�UT � classi�es a theory T that can be axiomatized in this

fragment of higher�order logic� then the image of the universal T �model UT under

a pseudo�model M � I�UT � � Sets is a model of T in Sets� in the usual sense of

elementary model theory�

The point of considering pseudo�models is summarized in the following

proposition� which in logical terms states that such models su"ce for intuitionistic

logic� and that these always have a special form�

Proposition 	� Let E be a topos� There exists a jointly faithful set of pseudo�models

E � Sets� Every pseudo�model M � E � Sets factors as a composite

M � E
�
�� Em

�
�� Sets

with Em a hyperlocal topos� � � E � Em a logical morphism� and

+ � Em����� � Em � Sets

the global sections functor of Em� Furthermore� + is then a pseudo�model�

Proof� Let m � Sets� Sh�E� be a point of the Grothendieck topos Sh�E� of sheaves

on E� with inverse image m� � Sh�E� � Sets� Let y � E � Sh�E� be the shea��ed

yoneda embedding� Then

M �df m
� � y � E � Sets

is left exact and continuous� i�e� a pseudo�model� and �up to isomorphism� every

pseudo�model arises in this way from a point of Sh�E� �by Diaconescu�s theorem� cf�

�	
� VII�
�
�� Since y is faithful and Sh�E� has a jointly faithful set of points �by

Deligne�s theorem�� E also has a jointly faithful set of pseudo�models�



���

As in the proof of lemma ���� let
R
M be the category of elements of M � so that for

any sheaf F on E one has

m��F � � lim��
R
MF �I�����

the colimit being that of the sets F �I� for all objects �I� x� �
R
M � as in lemma ���

above� Let Em � m��E��� be the hyperlocal stalk of the sheaf E�� on E� as in theorem

���� and let � � E � lim��
R
ME��I � Em be the canonical logical morphism� Consider

the following diagram of functors�

Sh�E�
m�

� Sets

�
�
�
�
�

M

�

E

y

�

�
� Em�

�

+�	�

in which the upper triangle commutes by the de�nition of M � For any object C of E

we then have�

+��C� � Em��� �C��

� �lim��
R
M E��I���� �C��

�� lim��
R
M ��E�I���� I

�C�� �

�� lim��
R
M E�I� C��

�� lim��
R
M yC�I��

�� m�yC by ����

�MC

The case of morphisms is analogous� Thus the lower triangle of �	� commutes as well

�up to isomorphism��

It remains to show that + is a pseudo�model� Indeed� this is true for any hyperlocal

topos H with global sections functor + � H����� � H � Sets� For + is evidently

left exact� so it su"ces to show that + preserves epis and �nite coproducts� That



���

� is projective in H means exactly that + preserves epis� For preservation of �nite

coproducts� one has +� � H��� �� � ! since H is non�degenerate �by the de�nition of

�local��� Let A and B be objects of H and c � �� A�B� For the evident subobjects

A�B� A�B one then has A�B � � �the maximal subobject�� Pulling back along c

therefore gives subobjects c�A� c�B� � with c�A�c�B � �� But then either c�A � �

or c�B � � since H is local� so either c � A or c � B� Thus +�A � B� �� +A � +B�

which completes the proof�

Call a pseudo�model M � E � Sets elementary if it also preserves the

internal logical operations 
�
�� �hence full �rst�order logic�� and substandard if for

every object X of E� the canonical map M�PX�� P �MX� is injective�

Corollary 
� Let B be a boolean topos� Every pseudo�model of B is elementary and

sub�standard� Thus B has a jointly faithful set of elementary� sub�standard models�

Proof� By the foregoing proposition 
� B has a jointly faithful set of pseudo�models�

so the second statement follows from the �rst�

Next� any pseudo�model M � B � Sets preserves coproducts� so it also preserves

boolean complements� and hence all complements since B is boolean� Thus M pre�

serves 
� But then M also preserves 
 and �� since these are de�nable in terms of


�� and 	 in any boolean topos� Thus any pseudo�model M is elementary�

By proposition 
� every pseudo�model M � B � Sets factors as a composite M �

B
�
� Bm

�
� Sets with Bm a hyperlocal topos� � � B � Bm a logical morphism� and

+ � Bm � Sets the global sections functor of Bm� Since B is boolean� so is Bm�



���

whence Bm is well�pointed by lemma �� The global sections functor + � Bm � Sets

is therefore faithful� For each object X in Bm one then has�

+�PX� � Bm��� PX��

�� Bm��� �
X� Bm boolean�

�� Bm�X� ���

� Sets�+X�+�� + faithful�

�� Sets�+X� �� Bm two�valued�

�� P �+X��

So + is sub�standard� But thenM � +�� is also sub�standard� since � is logical� Thus

every pseudo�model is elementary and sub�standard� which completes the proof�

Remark 	� �i� If I�UT � is the classifying topos of a classical� �rst�order theory T � then

I�UT � is boolean� By the preceding corollary� every pseudo�model M � I�UT �� Sets

is elementary� and therefore takes the universal T �model UT to an ordinary model of

T in Sets� Again by the preceding� such pseudo�models are jointly faithful� Thus the

preceding corollary applied to the classifying topos of a classical� �rst�order theory

entails a variant of the G(odel completeness theorem for classical �rst�order theories�

if a �rst order T �sentence � is true in every T �model in Sets� then M� � � for every

elementary pseudo�model M � I�UT �� Sets� hence � � � in I�UT � by the corollary�

and so T � � �but note that � is higher�order provability here��

�ii� Finally� let T be a �not necessarily �rst�order� classical theory� As in

Henkin ���� one may de�ne a �general model� M of T to consist of sets XM �X
�
M � ���

�interpreting the basic types of T �� plus subsets �PZ�M � P �ZM � for each type Z

�interpreting the power types of T �� plus distinguished elements of these sets �inter�

preting the basic constants of T �� and satisfying suitable closure conditions ensuring

that there are enough sets to interpret the logical operations �e�g� x � y � �PZ�M

if x� y � �PZ�M � cf� ��� pp� ��
f�� for a recent treatment�� By the above corollary�

every pseudo�modelM � I�UT �� Sets of the classifying topos I�UT � for T is elemen�

tary and sub�standard� so in particular for every type Z of T � M�PZ� � P �MZ�



���

canonically� A pseudo�model M therefore gives rise to a general model which� more�

over� satis�es a T �sentence � just if M� � �� Thus� as in the foregoing remark� if

a T �sentence � is true in every general model then M� � � for every pseudo�model

M � I�UT � � Sets� whence T � � by the corollary� In this way� corollary � entails

the classical Henkin completeness theorem for higher�order logic� Observe that by

proposition 
� every general model arising in this way from a pseudo�model is �the

category of global sections of� a well�pointed topos�
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