Algebraic Type Theory

Steve Awodey

CT 2024 Santiago de Compostela

Outline

- 1. Natural models of type theory
- 2. Type formers and polynomials
- 3. Strictifying homotopical models
- 4. A polynomial monad
- 5. Martin-Löf algebras

1. Martin-Löf type theory

The system of dependent type theory to be modeled consists of:

Types: A, B, C, \ldots

Terms: x:A, b:B, c:C,...

Contexts of variables: $(x:A, y:B, ...), ..., \Gamma, \Delta, ...$

Dependent types and terms: $x:A \vdash b:B, \ldots$

Substitutions: $\sigma: \Delta \to \Gamma$,...

Type formers: $\sum_{x:A} B$, $\prod_{x:A} B$, $\operatorname{Id}_A(a,b)$, ...

1. Martin-Löf type theory

Contexts:

$$\frac{\Gamma \vdash C}{[\cdot] \vdash} \qquad \frac{\Gamma \vdash C}{\Gamma, z \colon C \vdash}$$

Sums:

$$\frac{x:A \vdash B}{\sum_{x:A} B} \qquad \frac{a:A \qquad b:B(a)}{\langle a,b\rangle : \sum_{x:A} B}$$

$$\frac{c:\sum_{x:A} B}{\mathsf{fst} \ c:A} \qquad \frac{c:\sum_{x:A} B}{\mathsf{snd} \ c:B(\mathsf{fst} \ c)}$$

$$\mathsf{fst}\langle a,b\rangle = a:A \qquad \mathsf{snd}\langle a,b\rangle = b:B$$

$$\langle \mathsf{fst} \ c,\mathsf{snd} \ c\rangle = c:\sum_{x:A} B(x)$$

1. Martin-Löf type theory

Products:

$$\frac{x:A \vdash B}{\prod_{x:A} B} \qquad \frac{x:A \vdash b:B}{\lambda x.b: \prod_{x:A} B}$$

$$\frac{a:A \qquad f: \prod_{x:A} B}{fa: B(a)}$$

$$x:A \vdash (\lambda x.b)x = b:B$$

$$\lambda x.fx = f: \prod_{x:A} B$$

Substitution:

$$\frac{\sigma: \Delta \to \Gamma \qquad \Gamma \vdash a: A}{\Delta \vdash a\sigma: A\sigma}$$

1. Natural models of type theory

Definition

A natural transformation $p: \dot{\mathsf{U}} \to \mathsf{U}$ of presheaves on a category $\mathbb C$ is **presentable** if the pullback along any element $x: \mathsf{y} \mathcal C \to X$ is representable.

If $\mathbb C$ has finite limits, $p:\dot U\to U$ is presentable iff it is **tiny** in the sense that the pushforward functor

$$p^* \dashv p_* : \widehat{\mathbb{C}}/\dot{\mathsf{U}} \longrightarrow \widehat{\mathbb{C}}/\mathsf{U}$$

has a right adjoint:

$$p_! \dashv p^* \dashv p_* \dashv p^!$$

1. Natural models of type theory

Proposition (A., Fiore 2013)

A presentable natural transformation is the same thing as a category with families in the sense of Dybjer.

1. Natural models as CwFs

The objects and arrows $\sigma:\Delta\to\Gamma$ of $\mathbb C$ are the **contexts and substitutions**.

The presheaves are the **types** and **terms in context**,

$$\mathsf{Ty},\mathsf{Tm}:\mathbb{C}^{\mathrm{op}}\to\mathsf{Set}\,,$$

along with a "typing" map $t: Tm \rightarrow Ty$.

1. Natural models as CwFs

We then interpret:

1. Natural models as CwFs

For the **context extension** $\Gamma.A \rightarrow A$ we use the fact that t is presentable.

2. The type formers and polynomials

Recall that any map $p: \dot{\mathsf{U}} \to \mathsf{U}$ in an LCCC such as $\widehat{\mathbb{C}}$ determines a **polynomial endofunctor**

by

which may be written

$$PX = \sum X^A$$
.

2. The type formers and polynomials

Lemma

Maps $\Gamma \to PX$ correspond naturally to pairs (A, B) where

$$X \stackrel{B}{\longleftarrow} \Gamma.A \longrightarrow \dot{U}$$

$$\downarrow \qquad \qquad \downarrow p$$

$$\Gamma \xrightarrow{A} U$$

The object PU therefore classifies **types in context** $\Gamma.A \vdash B$

2. The type formers: Π

Proposition

The model $p:\dot{U}\to U$ has Π -types just if there are maps λ and Π making the following a pullback.

2. The type formers: Π

Proposition

The model $p: U \to U$ has Π -types just if there are maps λ and Π making the following a pullback.

Proof:

$$A \vdash b : B$$
 $\lambda_A b$

$$\begin{array}{cccc}
P\dot{U} & \xrightarrow{\lambda} & \dot{U} \\
\downarrow & & \downarrow^p \\
PU & \longrightarrow & U
\end{array}$$

$$A \vdash B$$

2. The type formers: Σ

Proposition

The model $p:\dot{U}\to U$ has Σ -types just if there are maps (pair, Σ) making the following a pullback

where $p.p: Q \rightarrow PU$ is such that $P_{p.p} = P_p \circ P_p$.

To model identity types, take (i, ld) making the following commute.

This models the formation and introduction rules.

$$x, y : A \vdash \mathsf{Id}_A(x, y)$$

$$x : A \vdash \mathsf{i} x : \mathsf{Id}_A(x, x)$$

Next, take a pullback to get an object I and a map $ho:\dot{\mathsf{U}}\to\mathsf{I}$,

which commutes with the indicated projections to U.

The map $\rho: U \to I$ gives a natural transformation,

$$\rho^*: P_q \to P_p$$

evaluating which at $p:\dot{\mathsf{U}}\to\mathsf{U}$ gives a commutative square,

A weak pullback structure is a section of the comparison map.

Proposition (Garner)

The model $p:\dot{U}\to U$ has **intensional** identity types just if there are maps (i, ld) making the following commute

together with a weak pullback structure J for the resulting comparison naturality square.

This models the standard elimination and computation rules.

$$\frac{x:A\vdash c:C(\rho x)}{x,y:A,z:\mathsf{Id}_A(x,y)\vdash \mathsf{J}_c:C} \qquad x:A\vdash \mathsf{J}_c(\rho x)=c:C(\rho x)$$

3. Strictifying homotopical models

Theorem (A.-Garner 2016, cf. Lumsdaine-Warren 2015)

Let (\mathbb{C},\mathcal{F}) be a Π -tribe in the sense of Joyal. Then the coproduct of the \mathcal{F} -maps in $\widehat{\mathbb{C}}$,

$$\coprod_{f \in \mathcal{F}} \mathsf{ydom} f \xrightarrow{\coprod_{f \in \mathcal{F}} \mathsf{y} f} \coprod_{f \in \mathcal{F}} \mathsf{ycod} f$$

is a natural model with Σ , Π and Id types.

For example, any homotopical model in a right-proper Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category of presheaves $\widehat{\mathbb{C}}$ has a **strictification**:

$$p_{\mathcal{F}}:\dot{\mathsf{U}}_{\mathcal{F}}\to\mathsf{U}_{\mathcal{F}}$$

Consider the rules for a **unit type** T.

 $\overline{\vdash \mathsf{T}}$ $\overline{\vdash * : \mathsf{T}}$ $\overline{x : \mathsf{T} \vdash x = * : \mathsf{T}}$

Proposition

A model $p:\dot{U}\to U$ has a unit type just if there are maps (*,T) making the following a pullback.

The pullback squares for T and Σ

determine cartesian natural transformations between the corresponding polynomial endofunctors.

$$\tau: 1 \Rightarrow P$$
 $\sigma: P \circ P \Rightarrow P$

Summarizing:

Theorem (A.-Newstead 2018)

A natural model $p: \dot{U} \to U$ has T and Σ types just if the associated polynomial endofunctor P has the structure of a cartesian pseudomonad.

$$\tau: 1 \Rightarrow P$$

$$\sigma: P \circ P \Rightarrow P$$

The monad laws express the following type isomorphisms.

$\sigma \circ P \sigma = \sigma \circ \sigma_P$	$\sum_{a:A} \sum_{b:B(a)} C(a,b) \cong \sum_{(a,b):\sum_{a:A} B(a)} C(a,b)$
$\sigma \circ P au = 1$	$\sum_{a:A} 1 \cong A$
$\sigma \circ au_{P} = 1$	$\sum_{x:1} A \cong A$

The pullback square for Π

is an algebra structure

$$\pi: P^{\downarrow}p \Rightarrow p$$

for the lifted endofunctor $P^{\downarrow}:\widehat{\mathbb{C}}^{\downarrow}\to\widehat{\mathbb{C}}^{\downarrow}$ on the cartesian arrow category $\widehat{\mathbb{C}}^{\downarrow}$.

The monad algebra laws also correspond to type isomorphisms.

$\pi \circ P\pi = \pi \circ \sigma$	$\prod_{a:A} \prod_{b:B(a)} C(a,b) \cong \prod_{(a,b):\sum_{a:A} B(a)} C(a,b)$
$\pi \circ \tau = 1$	$\prod_{x:1} A \cong A$

5. Martin-Löf algebras

We can use the foregoing to axiomatize models of MLTT.

Definition

A **Martin-Löf algebra** in an lccc \mathcal{E} is a tiny map $p: U \to U$ equipped with pullback squares:

5. Martin-Löf algebras

By the strictification theorem, a homotopical model of MLTT in a right proper model category $\mathcal E$ determines an ML-algebra $p:\dot{\mathsf U}\to\mathsf U,$ which also has identity types.

Corollary

If $p:\dot{U}\to U$ is univalent, then the monad and algebra structures on the associated polynomial $P:\mathcal{E}\to\mathcal{E}$ satisfy the monad and algebra laws up to identity.

Next: morphisms of M-L algebras, free M-L algebras, etc.

References

- Awodey, S. (2017) Natural models of homotopy type theory, MSCS 28(2). arXiv:1406.3219
- Awodey, S. and C. Newstead (2018) Polynomial pseudomonads and dependent type theory. arXiv:1802.00997
- 3. P.L. Lumsdaine and M. Warren (2015) The local universes model, ACM Trans. Comp. Log. arXiv:1411.1736
- 4. Newstead, C. (2018) Algebraic Models of Dependent Type Theory, CMU PhD thesis. arXiv:2103.06155