
What is HoTT?

Steve Awodey
CMU

Prospects of Formal Math
Hausdorff Institute
Bonn, May 2024



Overview

▶ Homotopy Type Theory (HoTT) is based on a connection
between logic (type theory) and topology (homotopy).

▶ It extends Martin-Löf’s constructive type theory (MLTT) with
new principles of reasoning that strengthen this connection.

▶ MLTT is a constructive system of foundations that is well
suited for computer proof systems.

▶ HoTT allows such systems to directly formalize “higher” math
like homotopy theory and higher category theory.

▶ It has recently been shown that HoTT also preserves the
constructive character of MLTT.



Type Theory



Constructive Type Theory (Howard, Martin-Löf, Tait)

Constructive type theory replaces logical formulas and proofs by
type and term constructors.

- types: N, 0, 1, A+ B, A× B, A → B

- terms: n, ∗, [a, b], ⟨a, b⟩, λx .b(x)

- dependent types: x : A ⊢ B(x)

- sum and product types: Σx :AB(x), Πx :AB(x)

A term
t : Πx :AΣy :BR(x , y)

determines computable function t : A → B, so that for all a : A,
we have the term ta : B and a term

t̃a : R(a, ta).



The Curry-Howard Correspondence

The type constructors thus replace the logical operations.

0 1 A+ B A× B A → B Σx :AB(x) Πx :AB(x)

⊥ T α ∨ β α ∧ β α ⇒ β ∃x :αβ(x) ∀x :αβ(x)



The Curry-Howard Correspondence

The type constructors thus replace the logical operations.

0 1 A+ B A× B A → B Σx :AB(x) Πx :AB(x) Id(a, b)

⊥ T α ∨ β α ∧ β α ⇒ β ∃x :αβ(x) ∀x :αβ(x) a = b

Martin-Löf introduced identity types Id(a, b) with rules that
preserves the constructive character of the system.

But their meaning was mysterious, as there can be different terms:

p, q : Id(a, b)



The Homotopy Interpretation

We can extend Scott’s topological interpretation of λ-calculus:

types X ⇝ spaces

terms t : X → Y ⇝ continuous functions

identities p : IdX (a, b) ⇝ paths p : a ∼ b in X

dependent types x : A ⊢ B(x) ⇝ fibrations B // // A

Recall that a path p : a ∼ b from point a to point b in a space X
is a continuous function

p : [0, 1] → X

with p(0) = a and p(1) = b.

Theorem (Awodey-Warren)

This interpretation satisfies Martin-Löf’s rules for identity types.



The Homotopy Interpretation of Identity Types

Identity types endowed each type X with higher structure:

a, b : X

p, q : IdX (a, b)

α, β : IdIdX (a,b)(p, q), . . .

These terms correspond to (higher) homotopies:

a, b : X ⇝ points of X

p : IdX (a, b) ⇝ paths p : a ∼ b

α : IdIdX (a,b)(p, q) ⇝ homotopies α : p ≈ q, . . .

Theorem (Lumsdaine, van den Berg-Garner)

The identity types make each type X into an ∞-groupoid.



Homotopy Levels (Voevodsky)

The types in MLTT are stratified by the level where their
∞-groupoid becomes degenerate. A type A is called:

contractible: Σx :AΠy :AIdA(x , y) (A is a point)

proposition: Πx ,y :A Contr(IdA(x , y)) (identity is contractible)

set: Πx ,y :A Prop(IdA(x , y)) (identity is a proposition)

1-type: Πx ,y :A Set(IdA(x , y)) (identity is a set)

(n+1)-type: Πx ,y :A nType(IdA(x , y)) (identity is an n-type)



Propositions as Homotopy Types

propositions sets groupoids ... n-types

U0

U1

U2

U3

h-level

size



Univalence

Voevodsky proposed adding the Univalence Axiom to MLTT:

IdU (X ,Y ) ≃ (X ≃ Y )

It has many remarkable consequences: function extensionality,
closure of the h-levels under the type-formers, identification of
isomorphic structures, ...

But is it constructive?



Higher Inductive Types

Higher inductive types (HITs) define spaces like the spheres Sn.
The circle S1 is an inductive type with a higher generator:

S1 :=

{
base : S1

loop : IdS1(base, base)

We think of loop : IdS1(base, base) as a “free path”,

•
base

loop



Fundamental Groups

The fundamental group π1(X ) of a space X was introduced by
Poincaré in the influential paper Analysis situs (1895). For any
∗ ∈ X it consists of all loops ℓ : ∗ ∼ ∗, up to homotopy.



Homotopy Groups of Spheres

Shulman calculated the fundamental group of the circle S1 in
HoTT to be

π1(S
1) ≃ IdS1(base, base) ∼= Z ,

and formalized the proof in HoTT-Coq in 2011.

The higher homotopy groups of the spheres πk(S
n) are defined in

HoTT as sets of pointed maps Sk→̇Sn identified up to homotopy:

πk(S
n) = ||Sk→̇Sn||0

Some of these were calculated at the IAS special year on Univalent
Foundations in 2012–13.



The IAS Special Year



An Open Problem

At the end of the special year Brunerie calculated the 4th
homotopy group of the 3-sphere in HoTT to be

π4(S
3) ∼= Z/nZ .

But the value of n could not be computed from the proof without
a constructive implementation of HoTT in a proof assistant.





Brunerie’s “Perfect World”

So what we get is that π4(S
3) . . . is equal to Z mod n

for this n. And this is one very concrete and non-trivial
example of why we may want to have canonicity, because
this n is a closed term of type Z, defined with a lot of
univalence and higher inductive types. So in a perfect
world, if you formalize that in a proof assistant with a
computational interpretation of univalence . . . you can
just ask “what is the value of n?” and you will get 2.

Guillaume Brunerie, 23 May 2013, IAS



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs

Coquand and collaborators developed a constructive
version of HoTT with univalence and HITs (2014-16).

2. Implementation in a computational proof assistant

3. Computation of π4(S
3)



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs (2014-16) ✓

2. Implementation in a computational proof assistant

A new proof assistant Cubical Agda that computes with
Univalence and HITs was developed on that basis (2019).

3. Computation of π4(S
3)



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs (2014–16) ✓

2. Implementation in a computational proof assistant (2019) ✓

3. Computation of π4(S
3)

Brunerie’s IAS proof that, for some n : Z,

π4(S
3) = Z/nZ

was formalized in Cubical Agda and the value of n = 2 was
computed from the proof (2022).



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs (2014–16) ✓

2. Implementation in a computational proof assistant (2019) ✓

3. Computation of π4(S
3) (2022) ✓

Related projects are currently underway.



Summary

1. The old idea that computability is modeled by continuity
extends to all of constructive type theory.

2. Type theoretic constructions become homotopy invariant
structures and theorems.

3. Constructive proofs yield programs for calculating homotopy
invariants in a computational proof system.

4. The calculations of πk(S
n) are a proof of concept of HoTT,

which remains experimental.

5. Classical foundations based on sets is a subsystem of this
constructive foundation based on homotopy types.



Gottlob Frege

I am convinced that my Begriffsschrift will find successful appli-
cation wherever particular value is placed on the rigor of proofs,
as in the foundations of the differential and integral calculus.
It seems to me that it would be even easier to extend the domain
of this formal language to geometry. Only a few more symbols
would need to be added for the intuitive relations occurring
there. In this way, one would obtain a kind of analysis situs.

Preface to Begriffsschrift, 1879



Thanks!

For more information consult:

HomotopyTypeTheory.org



Some References
▶ A. Abel, A. Vezzosi and A. Mörtberg. Cubical Agda: A dependently

typed programming language with univalence and higher inductive types.
J. Functional Programming (2019).

▶ S. Awodey, T. Coquand. Univalent foundations and the large scale
formalization of mathematics. The IAS Letter (Spring 2013).

▶ S. Awodey, M. Warren. Homotopy theoretic models of identity types,
Mathematical Proceedings of the Cambridge Philosophical Society (2009).

▶ M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical
sets. TYPES 2014.

▶ G. Brunerie. The James construction and π4(S
3). Institute for Advanced

Study, March 2013.
▶ C. Cohen, T. Coquand, S. Huber and A. Mörtberg. Cubical type theory:

A constructive interpretation of the univalence axiom. TYPES 2015.
▶ B. van den Berg, R. Garner. Types are weak ω-groupoids, Proceedings of

the London Mathematical Society (2011).
▶ A. Ljungström and A. Mörtberg. Formalizing π4(S

3) = Z/2Z and
Computing a Brunerie Number in Cubical Agda (2023).

▶ P. LeFanu Lumsdaine. Weak ω-categories from intensional type theory,
Logical Methods in Computer Science (2010).

▶ The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics, Institute for Advanced Study (2013).



Appendix: π1(S
1) in HoTT

To compute the fundamental group of the circle S1, as in
classical algebraic topology we shall use the universal cover:

base

0

1

2

In HoTT, this will be a dependent type over S1, so a type family,

cov : S1 // U .



Appendix: π1(S
1) in HoTT

To define such a type family cov : S1 −→ U , by the recursion
property of the circle, we need the following data:

▶ a point A : U
▶ a loop p : IdU (A,A)

For the point A we take the integers Z.

By the univalence axiom, to give a loop p : IdU (Z,Z) in U ,
it suffices to give an equivalence Z ≃ Z.

Since Z is a set, equivalences are just isomorphisms, so we can
take the successor function succ : Z ∼= Z.



Appendix: π1(S
1) in HoTT

Definition (Universal Cover of S1)

The dependent type cov : S1 // U is given by circle recursion,
with:

cov(base) = Z ,

cov(loop) = ua(succ) .



Appendix: π1(S
1) in HoTT

Σx :S1cov(x)

S1

base

0

1

2

Now we use cov to define the “winding number” of any path
p : IdS1(base, base) by wind(p) = p∗(0). This gives a map

wind : IdS1(base, base) // Z.

The map wind is inverse to the map Z // IdS1(base, base) given
by iterated composition of paths,

i 7→ loopi .



Shulman’s Coq proof

(* *** Definition of the circle. *)

Module Export Circle.

Local Inductive S1 : Type :=
| base : S1.

Axiom loop : base = base.

Definition S1_rect (P : S1 -> Type) (b : P base) (l : loop # b = b)
: forall (x:S1), P x
:= fun x => match x with base => b end.

Axiom S1_rect_beta_loop
: forall (P : S1 -> Type) (b : P base) (l : loop # b = b),
apD (S1_rect P b l) loop = l.

End Circle.

(* *** The non-dependent eliminator *)

Definition S1_rectnd (P : Type) (b : P) (l : b = b)
: S1 -> P
:= S1_rect (fun _ => P) b (transport_const _ _ @ l).

Definition S1_rectnd_beta_loop (P : Type) (b : P) (l : b = b)
: ap (S1_rectnd P b l) loop = l.

Proof.
unfold S1_rectnd.
refine (cancelL (transport_const loop b) _ _ _).
refine ((apD_const (S1_rect (fun _ => P) b _) loop)^ @ _).
refine (S1_rect_beta_loop (fun _ => P) _ _).

Defined.



(* First we define the appropriate integers. *)

Inductive Pos : Type :=
| one : Pos
| succ_pos : Pos -> Pos.

Definition one_neq_succ_pos (z : Pos) : ~ (one = succ_pos z)
:= fun p => transport (fun s => match s with one => Unit | succ_pos t => Empty end) p tt.

Definition succ_pos_injective {z w : Pos} (p : succ_pos z = succ_pos w) : z = w
:= transport (fun s => z = (match s with one => w | succ_pos a => a end)) p (idpath z).

Inductive Int : Type :=
| neg : Pos -> Int
| zero : Int
| pos : Pos -> Int.

Definition neg_injective {z w : Pos} (p : neg z = neg w) : z = w
:= transport (fun s => z = (match s with neg a => a | zero => w | pos a => w end)) p (idpath z).

Definition pos_injective {z w : Pos} (p : pos z = pos w) : z = w
:= transport (fun s => z = (match s with neg a => w | zero => w | pos a => a end)) p (idpath z).

Definition neg_neq_zero {z : Pos} : ~ (neg z = zero)
:= fun p => transport (fun s => match s with neg a => z = a | zero => Empty
| pos _ => Empty end) p (idpath z).

Definition pos_neq_zero {z : Pos} : ~ (pos z = zero)
:= fun p => transport (fun s => match s with pos a => z = a
| zero => Empty | neg _ => Empty end) p (idpath z).

Definition neg_neq_pos {z w : Pos} : ~ (neg z = pos w)
:= fun p => transport (fun s => match s with neg a => z = a
| zero => Empty | pos _ => Empty end) p (idpath z).



(* And prove that they are a set. *)

Instance hset_int : IsHSet Int.
Proof.

apply hset_decidable.
intros [n | | n] [m | | m].
revert m; induction n as [|n IHn]; intros m; induction m as [|m IHm].
exact (inl 1).
exact (inr (fun p => one_neq_succ_pos _ (neg_injective p))).
exact (inr (fun p => one_neq_succ_pos _ (symmetry _ _ (neg_injective p)))).
destruct (IHn m) as [p | np].
exact (inl (ap neg (ap succ_pos (neg_injective p)))).
exact (inr (fun p => np (ap neg (succ_pos_injective (neg_injective p))))).
exact (inr neg_neq_zero).
exact (inr neg_neq_pos).
exact (inr (neg_neq_zero o symmetry _ _)).
exact (inl 1).
exact (inr (pos_neq_zero o symmetry _ _)).
exact (inr (neg_neq_pos o symmetry _ _)).
exact (inr pos_neq_zero).
revert m; induction n as [|n IHn]; intros m; induction m as [|m IHm].
exact (inl 1).
exact (inr (fun p => one_neq_succ_pos _ (pos_injective p))).
exact (inr (fun p => one_neq_succ_pos _ (symmetry _ _ (pos_injective p)))).
destruct (IHn m) as [p | np].
exact (inl (ap pos (ap succ_pos (pos_injective p)))).
exact (inr (fun p => np (ap pos (succ_pos_injective (pos_injective p))))).

Defined.



(* Successor is an autoequivalence of [Int]. *)

Definition succ_int (z : Int) : Int
:= match z with

| neg (succ_pos n) => neg n
| neg one => zero
| zero => pos one
| pos n => pos (succ_pos n)

end.

Definition pred_int (z : Int) : Int
:= match z with

| neg n => neg (succ_pos n)
| zero => neg one
| pos one => zero
| pos (succ_pos n) => pos n

end.

Instance isequiv_succ_int : IsEquiv succ_int
:= isequiv_adjointify succ_int pred_int _ _.

Proof.
intros [[|n] | | [|n]]; reflexivity.
intros [[|n] | | [|n]]; reflexivity.

Defined.

(* Now we do the encode/decode. *)

Section AssumeUnivalence.
Context ‘{Univalence} ‘{Funext}.

Definition S1_code : S1 -> Type
:= S1_rectnd Type Int (path_universe succ_int).



(* Transporting in the codes fibration is the successor autoequivalence. *)

Definition transport_S1_code_loop (z : Int)
: transport S1_code loop z = succ_int z.

Proof.
refine (transport_compose idmap S1_code loop z @ _).
unfold S1_code; rewrite S1_rectnd_beta_loop.
apply transport_path_universe.

Defined.

Definition transport_S1_code_loopV (z : Int)
: transport S1_code loop^ z = pred_int z.

Proof.
refine (transport_compose idmap S1_code loop^ z @ _).
rewrite ap_V.
unfold S1_code; rewrite S1_rectnd_beta_loop.
rewrite <- path_universe_V.
apply transport_path_universe.

Defined.

(* Encode by transporting *)

Definition S1_encode (x:S1) : (base = x) -> S1_code x
:= fun p => p # zero.

(* Decode by iterating loop. *)

Fixpoint loopexp {A : Type} {x : A} (p : x = x) (n : Pos) : (x = x)
:= match n with

| one => p
| succ_pos n => loopexp p n @ p

end.



Definition looptothe (z : Int) : (base = base)
:= match z with

| neg n => loopexp (loop^) n
| zero => 1
| pos n => loopexp (loop) n

end.

Definition S1_decode (x:S1) : S1_code x -> (base = x).
Proof.

revert x; refine (S1_rect (fun x => S1_code x -> base = x) looptothe _).
apply path_forall; intros z; simpl in z.
refine (transport_arrow _ _ _ @ _).
refine (transport_paths_r loop _ @ _).
rewrite transport_S1_code_loopV.
destruct z as [[|n] | | [|n]]; simpl.
by apply concat_pV_p.
by apply concat_pV_p.
by apply concat_Vp.
by apply concat_1p.
reflexivity.

Defined.

(* The nontrivial part of the proof that decode and encode are equivalences is
showing that decoding followed by encoding is the identity on the fibers over [base]. *)

Definition S1_encode_looptothe (z:Int)
: S1_encode base (looptothe z) = z.

Proof.
destruct z as [n | | n]; unfold S1_encode.
induction n; simpl in *.
refine (moveR_transport_V _ loop _ _ _).
by apply symmetry, transport_S1_code_loop.
rewrite transport_pp.
refine (moveR_transport_V _ loop _ _ _).



refine (_ @ (transport_S1_code_loop _)^).
assumption.
reflexivity.
induction n; simpl in *.
by apply transport_S1_code_loop.
rewrite transport_pp.
refine (moveR_transport_p _ loop _ _ _).
refine (_ @ (transport_S1_code_loopV _)^).
assumption.

Defined.

(* Now we put it together. *)

Definition S1_encode_isequiv (x:S1) : IsEquiv (S1_encode x).
Proof.

refine (isequiv_adjointify (S1_encode x) (S1_decode x) _ _).
(* Here we induct on [x:S1]. We just did the case when [x] is [base]. *)
refine (S1_rect (fun x => Sect (S1_decode x) (S1_encode x))

S1_encode_looptothe _ _).
(* What remains is easy since [Int] is known to be a set. *)
by apply path_forall; intros z; apply set_path2.
(* The other side is trivial by path induction. *)
intros []; reflexivity.

Defined.

Definition equiv_loopS1_int : (base = base) <~> Int
:= BuildEquiv _ _ (S1_encode base) (S1_encode_isequiv base).

End AssumeUnivalence.



Appendix 2: Dependent Types in HoTT

A consequence of the interpretation of identity terms as paths is
the interpretation of dependent types as fibrations.

A type family x : X ⊢ P(x) should be interpreted as a
“continuously varying family of spaces”, which we can take to be a
continuous map:

x : X ⊢ P(x) ⇝
P

X



Appendix 2: Dependent Types in HoTT

The rules for identity types permit the inference:

p : IdX (a, b) c : P(a)

p∗c : P(b)

This says the predicate P(x) respects identity:

IdX (a, b) & P(a) ⇒ P(b)

Topologically, it is the path lifting property of a fibration:

P

����

c // p∗c

X a p
// b

To lift the path p : a ∼ b use the pathspace x : X ⊢ IdX (a, x).


