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The effective 1-topos Eff1

Recall the effective 1-topos Eff1 of Hyland (1982):

1. Eff1 is an elementary topos that is not Grothendieck.

2. All maps f : N → N on the NNO in Eff1 are computable.

3. The global sections functor Γ has a fully faithful right adjoint.

Γ : Eff1 ⇄ Set : ∇

4. Eff1 has a complete internal category D that is not a poset.

5. Every object E in Eff1 is covered by a projective object P ↠ E .

6. So Eff1 models extensional MLTT with an impredicative
universe, quotient types, W-types, and enough projectives.



A higher effective topos Eff∞

We have a higher version Eff∞ such that:

1. Eff∞ is a non-Grothendieck “elementary higher topos” with

Eff1 ≃ (Eff∞)≤0 ⊂ Eff∞ .

2. N in Eff1 is still an NNO in Eff∞ for which all maps
f : N → N are computable.

3. The global sections functor Γ factors through truncated
spaces S<∞ ⊂ S and then has a right adjoint.

Γ : Eff∞ ⇄ S<∞ : ∇

4. There are complete internal categories D1 ⊂ D2 ⊂ · · · ,
and each Dn is properly an n-category.

5. Every object E in Eff∞ is covered by a projective P ↠ E .

6. Eff∞ models∗ HoTT with impredicative, univalent universes.



Eff1 as an exact completion

The 1-category Eff1 is the ex/lex completion of the category
P of partitioned assemblies.

P Asm Eff1
reg/lex ex/reg

As subcats of the colimit completion y : P ↪→ P̂ :

P indecomposable projectives yP

Asm image factorizations yP ↠ A ↣ yQ

Eff1 exact quotients of assemblies A′ ⇒ A ↠ E

The third step uses a result of Lack (1999).



Two theorems about exact completions

Recall the following:

Theorem (Carboni, 1995)

If C is weakly LCC, then Cex/lex is LCC.

Theorem (Menni, 2000)

If C has a “generic proof”, then Cex/lex has a subobject classifier.

Since P is weakly LCC and has a generic proof, its ex/lex
completion Eff1 = Pex/lex is a topos.



Generalization in two steps

We generalize the 1-exact completion Eff1 = P(ex/lex) in two steps:

i . Eff2 = P(2ex/lex) = coherent presheaves of 1-groupoids on P.

ii . Eff∞ = P(∞ex/lex) = coherent presheaves of ∞-groupoids on P.

We shall have “elementary higher n-toposes”,

Eff1 ⊂ Eff2 ⊂ ... ⊂ Eff∞

each with Effn = (Effn+1)<n.

So Eff1 = (Eff2)<1 is the 1-category of 0-types in a 2-topos.



A warning about too much exact completion

It might be thought that we could present Eff∞ by Eff ∆op

1

(with the Kan–Quillen model structure), but there is a problem.

The constructive Kan–Quillen model structure (of Gambino et al.)
does not give what we want:

Since Eff1 is already an exact completion, and Eff ∆op

1 is an ∞-exact
completion of that, the subcategory of 0-types in Eff ∆op

1 will be
bigger than Eff1.



Coherent presheaves

Definition
• A presheaf Q is quasicompact if it is covered by a
representable

yP ↠ Q

• A map Y → X of presheaves is quasicompact if its pullbacks
over representables are all quasicompact.

Q Y

yP X

⌟

• A presheaf C is coherent if both it and its diagonal

C −→ C × C

are quasicompact.



Eff1 as coherent presheaves

Theorem
The presheaves E in Eff1 ⊂ P̂ are exactly the coherent ones,

Eff1 = P̂coh ⊂ P̂.

For the proof, recall that in with P ↪→ Asm ⊂ Eff1 ⊂ P̂ we had:
E is in Eff1 iff for assemblies A,A′ there is

A′ ⇒ A → E exact.

The result then follows by unwinding the definitions.

NB: We recover the description of Eff1 = P(ex/lex) in terms of
pseudo-equivalence relations Q ⇒ P in P by covering both E and
the kernel of the cover.

yQ ↠ K ⇒ yP ↠ E



Eff2 as coherent stacks

This suggests presenting Eff2, the 2ex/lex completion1 of P, by the
coherent groupoids in P̂. These are the presheaves of groupoids
that are quasicompact with quasicompact diagonals:

Definition
A presheaf of groupoids G : Pop → Gpd is coherent iff it is
pointwise equivalent to a strict one K = (K1 ⇒ K0) such that:

1. K0 is a quasicompact object yP ↠ K0,

2. the first diagonal K1 → K0 × K0 is quasicompact,

3. the second diagonal K1 → K1 ×K0×K0 K1 is quasicompact,

K1 K1 ×K0×K0 K1 K1

K1 K0 × K0

⌟

1as a (2, 1)-category



Eff2 as coherent stacks

Theorem (A.–Emmenegger 2025)

The 2-category Eff2 is presented by the 1-category of coherent
presheaves of groupoids,

[Pop,Gpd]coh

with the (restricted) “strong stacks” model structure of
Joyal–Tierney (1991). Its 0-types recover the effective 1-topos.

Eff1 = (Eff2)<1



Eff∞ as coherent ∞-stacks

Similarly, we can describe the ∞ex/lex completion2 of P as the full
subcategory Eff∞ ⊂ [Pop,S] consisting of coherent presheaves of
∞-groupoids on P:

Theorem (AAB 2025)

Eff∞ is equivalent to the following equal subcategories of [Pop,S]:
1. The coherent objects: the E that are truncated,

quasicompact, and with all higher diagonals E → ESn

quasicompact.

2. The truncated objects E with all πnE in Eff1 ⊂ Eff∞.

3. The truncated objects that are colimits of Kan complexes in P.
4. The closure of P under quotients of Segal groupoids.

The proof is similar to some recent works of Anel, Lurie, Stefanich.

2as an (∞, 1)-category



A type-theoretic formulation

We also have the following type-theoretic formulation.

1. Let U in [Pop,S] be a (large enough) univalent universe
(Shulman 2019).

2. Let P ⊂ U be the subuniverse of representable maps.

3. Define a type Q : U to be quasicompact if there merely exist
P : P and a cover P ↠ Q.

4. Define the subuniverses En ⊂ U≤n of coherent n-types by
induction:

– E is in E−2 if it is contractible;
– E is in En+1 if it is quasicompact and all x =E y are in En.

5. We have E0 ⊂ E1 ⊂ ... ⊂
⋃

n En =: E∞ ⊂ U .

We then take global sections to obtain the n-categories Effn and

Eff∞ = Hom(1, E∞).



Properties of Eff∞

The category Eff∞ has the following:

• finite coproducts X + Y

• quotients of Segal groupoids . . .→→
→ G1 ⇒ G0 → Q

• all n-truncations ||X ||n
• exponentials Y X and dependent products Πx :XYx

• subcategories Eff1 ≃ (Eff∞)<1 and Eff2 ≃ (Eff∞)<2

• an NNO 1 → N → N from Eff1

• a subobject classifier 1 ↣ Ω from Eff1

• impredicative univalent universes D0 ⊂ D1 ⊂ · · ·
• each Dn has inductive types Wx :XDx

The category Eff∞ does not have:

• infinite coproducts

• all pushouts (e.g. no S2)

• any untruncated objects



Properties of Γ ⊣ ∇
• ∇ : S<∞ → Eff∞ is fully faithful and exact.

• Γ : Eff∞ → S<∞ is the ¬¬-localization.
• Γ has a partial left adjoint ∆ : Sπ → Eff∞ on π-finite spaces.
It is LCC, exact, and preserves sums.

S<∞ Eff∞

Sπ

∇

Γ

∆

• The discrete objects D ∈ Dn are the n-truncated ones with

∇2 ⊥ D .

• Equivalently, D is discrete if all πkD are in D0, which consists
of the subquotients of N.
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