A Higher Effective Topos

Steve Awodey joint work with Mathieu Anel Reid Barton

> CT 2025 Brno, July 2025

Source: Prof. Dr. Karl H. Hofmann, 2025

The effective 1-topos $\mathcal{E} f f_1$

Recall the effective 1-topos $\mathcal{E}ff_1$ of Hyland (1982):

- 1. $\mathcal{E} f f_1$ is an elementary topos that is not Grothendieck.
- 2. All maps $f : N \to N$ on the NNO in $\mathcal{E}ff_1$ are computable.
- 3. The global sections functor Γ has a fully faithful right adjoint.

$$\mathsf{\Gamma}:\mathcal{E}\!\mathit{ff}_1\ \rightleftarrows\ \mathsf{Set}:\nabla$$

- 4. $\mathcal{E}\!\mathit{ff}_1$ has a complete internal category $\mathbb D$ that is not a poset.
- 5. Every object *E* in $\mathcal{E}ff_1$ is covered by a projective object $P \twoheadrightarrow E$.
- 6. So *Eff*₁ models extensional MLTT with an impredicative universe, quotient types, W-types, and enough projectives.

A higher effective topos $\mathcal{E}\!\mathit{ff}_\infty$

We have a higher version $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$ such that:

1. $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$ is a non-Grothendieck "elementary higher topos" with

 $\mathcal{E}\!\mathit{ff}_1\simeq (\mathcal{E}\!\mathit{ff}_\infty)_{\leq 0}\subset \mathcal{E}\!\mathit{ff}_\infty$.

- 2. *N* in $\mathcal{E}ff_1$ is still an NNO in $\mathcal{E}ff_\infty$ for which all maps $f: N \to N$ are computable.
- 3. The global sections functor Γ factors through *truncated* spaces $S_{<\infty} \subset S$ and then has a right adjoint.

$$\Gamma: \mathcal{E}\!\mathit{ff}_\infty \ \rightleftarrows \ \mathcal{S}_{<\infty}: \nabla$$

- There are complete internal categories D₁ ⊂ D₂ ⊂ · · · , and each D_n is properly an *n*-category.
- 5. Every object E in $\mathcal{E}ff_{\infty}$ is covered by a projective $P \twoheadrightarrow E$.
- 6. $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$ models* HoTT with impredicative, univalent universes.

$\mathcal{E} f f_1$ as an exact completion

The 1-category $\mathcal{E}ff_1$ is the ex/lex completion of the category \mathbb{P} of *partitioned assemblies*.

As subcats of the colimit completion $y:\mathbb{P}\hookrightarrow\widehat{\mathbb{P}}$:

 $\begin{array}{ll} \mathbb{P} & \text{indecomposable projectives y} P \\ \text{Asm} & \text{image factorizations y} P \twoheadrightarrow A \rightarrowtail yQ \\ \mathcal{E}\!\mathit{ff}_1 & \text{exact quotients of assemblies } A' \rightrightarrows A \twoheadrightarrow E \\ \end{array}$

The third step uses a result of Lack (1999).

Two theorems about exact completions

Recall the following:

Theorem (Carboni, 1995) If \mathbb{C} is weakly LCC, then $\mathbb{C}^{ex/lex}$ is LCC.

Theorem (Menni, 2000) If \mathbb{C} has a "generic proof", then $\mathbb{C}^{ex/lex}$ has a subobject classifier.

Since \mathbb{P} is weakly LCC and has a generic proof, its ex/lex completion $\mathcal{E}\!f\!f_1 = \mathbb{P}^{\mathrm{ex/lex}}$ is a topos.

Generalization in two steps

We generalize the 1-exact completion $\mathcal{E}\!\mathit{ff}_1 = \mathbb{P}^{(\mathrm{ex/lex})}$ in two steps:

i. $\mathcal{E} ff_2 = \mathbb{P}^{(2 ex/lex)} =$ coherent presheaves of 1-groupoids on \mathbb{P} .

ii. $\mathcal{E}ff_{\infty} = \mathbb{P}^{(\infty ex/lex)} = \text{coherent presheaves of } \infty\text{-groupoids on } \mathbb{P}.$

We shall have "elementary higher n-toposes",

$$\mathcal{E}\!\mathit{ff}_1 \subset \mathcal{E}\!\mathit{ff}_2 \subset ... \subset \mathcal{E}\!\mathit{ff}_\infty$$

each with $\mathcal{E}ff_n = (\mathcal{E}ff_{n+1})_{< n}$.

So $\mathcal{E} f f_1 = (\mathcal{E} f f_2)_{<1}$ is the 1-category of 0-types in a 2-topos.

It might be thought that we could present $\mathcal{E}\!f\!f_\infty$ by $\mathcal{E}\!f\!f_1^{\Delta^{op}}$ (with the Kan–Quillen model structure), but there is a problem.

The constructive Kan–Quillen model structure (of Gambino et al.) does not give what we want:

Since $\mathcal{E}ff_1$ is already an exact completion, and $\mathcal{E}ff_1^{\Delta^{op}}$ is an ∞ -exact completion of that, the subcategory of 0-types in $\mathcal{E}ff_1^{\Delta^{op}}$ will be bigger than $\mathcal{E}ff_1$.

Coherent presheaves

Definition

• A presheaf Q is *quasicompact* if it is covered by a representable

 A map Y → X of presheaves is *quasicompact* if its pullbacks over representables are all quasicompact.

• A presheaf C is *coherent* if both it and its diagonal

$$C \longrightarrow C \times C$$

are quasicompact.

$\mathcal{E} f f_1$ as coherent presheaves

Theorem

The presheaves E in $\mathcal{E} ff_1 \subset \widehat{\mathbb{P}}$ are exactly the coherent ones,

$$\mathcal{E} ff_1 = \widehat{\mathbb{P}}_{coh} \subset \widehat{\mathbb{P}}.$$

For the proof, recall that in with $\mathbb{P} \hookrightarrow \operatorname{Asm} \subset \mathcal{E}f_1 \subset \widehat{\mathbb{P}}$ we had: *E* is in $\mathcal{E}ff_1$ iff for assemblies *A*, *A'* there is

$$A' \rightrightarrows A
ightarrow E$$
 exact.

The result then follows by unwinding the definitions.

NB: We recover the description of $\mathcal{E}f_1 = \mathbb{P}^{(ex/lex)}$ in terms of pseudo-equivalence relations $Q \rightrightarrows P$ in \mathbb{P} by covering both E and the kernel of the cover.

$$\mathsf{y} Q \twoheadrightarrow K \rightrightarrows \mathsf{y} P \twoheadrightarrow E$$

$\mathcal{E} f f_2$ as coherent stacks

This suggests presenting $\mathcal{E}f_2$, the 2ex/lex completion¹ of \mathbb{P} , by the *coherent groupoids* in $\widehat{\mathbb{P}}$. These are the presheaves of groupoids that are quasicompact with quasicompact diagonals:

Definition

A presheaf of groupoids $G : \mathbb{P}^{op} \to \text{Gpd}$ is *coherent* iff it is pointwise equivalent to a strict one $K = (K_1 \rightrightarrows K_0)$ such that:

- 1. K_0 is a quasicompact object $yP \twoheadrightarrow K_0$,
- 2. the first diagonal $K_1 \rightarrow K_0 \times K_0$ is quasicompact,
- 3. the second diagonal $K_1 \to K_1 \times_{K_0 \times K_0} K_1$ is quasicompact,

¹as a (2, 1)-category

$\mathcal{E} f f_2$ as coherent stacks

Theorem (A.–Emmenegger 2025)

The 2-category \mathcal{E} ff₂ is presented by the 1-category of coherent presheaves of groupoids,

 $[\mathbb{P}^{\mathsf{op}},\mathsf{Gpd}]_{\mathit{coh}}$

with the (restricted) "strong stacks" model structure of Joyal–Tierney (1991). Its 0-types recover the effective 1-topos.

 $\mathcal{E} f f_1 = (\mathcal{E} f f_2)_{<1}$

$\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$ as coherent $\infty\text{-stacks}$

Similarly, we can describe the $\infty ex/lex$ completion² of \mathbb{P} as the full subcategory $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty \subset [\mathbb{P}^{op}, \mathcal{S}]$ consisting of coherent presheaves of ∞ -groupoids on \mathbb{P} :

Theorem (AAB 2025)

 $\mathcal{E}\!\mathit{ff}_\infty$ is equivalent to the following equal subcategories of $[\mathbb{P}^{op},\mathcal{S}]$:

- 1. The coherent objects: the E that are truncated, quasicompact, and with all higher diagonals $E \to E^{S^n}$ quasicompact.
- 2. The truncated objects E with all $\pi_n E$ in $\mathcal{E} ff_1 \subset \mathcal{E} ff_\infty$.
- 3. The truncated objects that are colimits of Kan complexes in \mathbb{P} .
- 4. The closure of \mathbb{P} under quotients of Segal groupoids.

The proof is similar to some recent works of Anel, Lurie, Stefanich.

²as an $(\infty, 1)$ -category

A type-theoretic formulation

We also have the following type-theoretic formulation.

- Let U in [ℙ^{op}, S] be a (large enough) univalent universe (Shulman 2019).
- 2. Let $\mathcal{P} \subset \mathcal{U}$ be the subuniverse of representable maps.
- 3. Define a type Q : U to be *quasicompact* if there merely exist $P : \mathcal{P}$ and a cover $P \twoheadrightarrow Q$.
- 4. Define the subuniverses $\mathcal{E}_n \subset \mathcal{U}_{\leq n}$ of *coherent n*-types by induction:
 - E is in \mathcal{E}_{-2} if it is contractible;
 - *E* is in \mathcal{E}_{n+1} if it is quasicompact and all $x =_E y$ are in \mathcal{E}_n .
- 5. We have $\mathcal{E}_0 \subset \mathcal{E}_1 \subset ... \subset \bigcup_n \mathcal{E}_n =: \mathcal{E}_\infty \subset \mathcal{U}$.

We then take global sections to obtain the *n*-categories $\mathcal{E} ff_n$ and

$$\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty = \mathsf{Hom}(1,\mathcal{E}_\infty).$$

Properties of $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$

The category $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$ has the following:

- finite coproducts X + Y
- quotients of Segal groupoids $\ldots \stackrel{\rightarrow}{\rightrightarrows} G_1 \rightrightarrows G_0 \rightarrow Q$
- all *n*-truncations ||X||_n
- exponentials Y^X and dependent products $\prod_{x:X} Y_x$
- subcategories $\mathit{Eff}_1\simeq(\mathit{\mathcal{E}ff}_\infty)_{<1}$ and $\mathit{\mathcal{E}ff}_2\simeq(\mathit{\mathcal{E}ff}_\infty)_{<2}$
- an NNO $1
 ightarrow {\it N}
 ightarrow {\it N}$ from ${\it {\cal E}\!\it ff}_1$
- a subobject classifier $1\rightarrowtail \Omega$ from $\mathcal{E} {\it f} {\it f} {\it f}_1$
- impredicative univalent universes $\mathbb{D}_0 \subset \mathbb{D}_1 \subset \cdots$
- each \mathbb{D}_n has inductive types $W_{x:X}D_x$

The category $\mathcal{E}\!\mathit{f}\!\mathit{f}_\infty$ does *not* have:

- infinite coproducts
- all pushouts (e.g. no S^2)
- any untruncated objects

Properties of $\Gamma \dashv \nabla$

- $\nabla : \mathcal{S}_{<\infty} \to \mathcal{E}\!\mathit{f}\!\mathit{f}_{\infty}$ is fully faithful and exact.
- $\Gamma : \mathcal{E}\!\mathit{ff}_\infty \to \mathcal{S}_{<\infty}$ is the $\neg\neg$ -localization.
- Γ has a partial left adjoint Δ : S_π → Eff_∞ on π-finite spaces. It is LCC, exact, and preserves sums.

• The *discrete objects* $D \in \mathbb{D}_n$ are the *n*-truncated ones with

$abla 2 \perp D$.

• Equivalently, *D* is discrete if all $\pi_k D$ are in \mathbb{D}_0 , which consists of the subquotients of *N*.

References

- 1. Agwu, A., A model of type theory in groupoid assemblies, Ph.D. thesis, Johns Hopkins Univ., 2025.
- 2. Anel, M., The category of π -finite spaces, JPAA, 2025.
- 3. Awodey, S, and Emmenegger, J., Toward the effective 2-topos, 2025, arXiv:2503.24279.
- 4. Burke, J. and Garner, R., Two-dimensional regularity and exactness, JPAA, 2014.
- 5. Carboni, A., Some free constructions in realizability and proof theory, JPAA, 1995.
- Gambino, N. and Henry, S. and Sattler, C. and Szumiło, K., The effective model structure and ∞-groupoid objects, Forum of Math., Sigma, 2022.
- 7. Hughes, C., The algebraic internal groupoid model of Martin-Löf type theory, 2025, arXiv:2503.17319.
- 8. Hyland, J. M. E. and Robinson, E. P. and Rosolini, G., The Discrete Objects in the Effective Topos, Proc. London Math. Soc., 1990.
- 9. Joyal, A. and Tierney, M., Strong stacks and classifying spaces, SLNM 1488, 1991.

References (cont.)

- 10. Lack, S., A note on the exact completion of a regular category, and its infinitary generalizations, TAC 3, 1999.
- 11. Menni, M., Exact completions and toposes, Ph.D. thesis, Univ. of Edinburgh, 2000.
- 12. Shulman, M., All (∞ , 1)-toposes have strict univalent universes, 2019, arXiv:1904.07004.
- 13. Stefanich, G., Derived ∞ -categories as exact completions, 2023, arXiv:2310.12925.
- Swan A.W., Uemura, T., On Church's thesis in cubical assemblies. Math. Stru. Comp. Sci., 2021.