The isotropy group of a first-order theory Store Aubdrey YWW Spencer Breiner Pieter Hofstra Category Theory Octoberfest 2022

The Isotropy Group of a Topos (cf. Funk - Hofstra - Steinberg 2012) Let I be a topos & consider the functor $Z: \mathcal{I}^{op} \longrightarrow Grp$ $\Xi(X) = \operatorname{Aut}(X^*: \mathcal{I} \longrightarrow \mathcal{I}/_{\mathcal{X}}).$ So Z(X) consists of natural automorphisms of the pullback functor: FxX e 2/x $\mathcal{T} \rightarrow \mathcal{F} \longmapsto$ LT2 X A map X f acts by whistering with pullback: $T \xrightarrow{f} T/\chi \xrightarrow{f} T/\chi$

+ f. L e Z(Y) Z(X) > d Briefly: $\alpha \in \mathcal{Z}(X) = Aut(X^*)$ $X^*: \mathcal{I} \longrightarrow \mathcal{I}/X$

2 Prop. The functor Z: Jop Gonp is representables, $Z \cong \mathcal{I}(-, Z),$ for a group object Z in Z, called the isotropy group of I. Remark The group Zz also acts on the E-valued points p: E -> Z, for any topos &, in the following sense: For any global &: 1 -> Z we have a natural automorphism: 1:2 $\rightarrow \frac{2}{1} \xrightarrow{} \frac{2}{1} \xrightarrow{} \frac{2}{1}$

So for	each FEZ we h	are an 150
	· · · · · · · · · · · · · · · · · · ·	
	N E	
	Γ Γ Γ	
	\sim	
		· · · · · · · · · · · · · · · · · · ·
		and Maturel and a second
	an an an an 🗸 🗸 an an an an an an an 🗸 🗸 an an a	a a a a a a gira a a a a a a <mark>a</mark> a a a a
		na ana ang 🔂 ang 🔁 ang 🖌 ang ang
	and a set of the set of	a an
	and a second to the second	
	an an an an an an an an an Al 🧀 an an an an an an	
	· · · · · · · · · · · · · · · · · · ·	

(3 And more over, for all XEI, $T \xrightarrow{d_1} 1_T \xrightarrow{f_2} T$ and x^{*} y^{*} y^{*} y^{*} $z_{/y}$ $\alpha_{\chi} = \chi^{*} \cdot \chi_{1}$ since a is natural in X Conversely, give any natural automorphism $h: \mathcal{I} \longrightarrow \mathcal{I}$ Whiskering by any P: E ->2 results in d · P \rightarrow ح Prop. There's a group isomorphism $T^{r} Z_{q} \xrightarrow{\sim} Aut(1_{q})$ between global sections of Zg and the Centrer of I: the group of natural automorphisms of the identity 17=2-2

(4Now Suppose that I = Set [#] classifies TI-models. Then for any tops & we get an actin of (sections of) the group ZT of Set[T] on Frudels in E, Since Mody (E) ~ Top (E, Set[T]) and we just saw that TIZT acts notwally on the RHS. This leads to the following idea: Prop. (A-B 2012) Let SETT be a classifying topos for a theory TT, with universal TF-model Up. then the isotropy group ZSETJ agrees with the internal automorphism group of the TF-model 16th, $Z_{SIT} \cong Aut(U_T)$

5 Internal vs. External . The external group of sections TZF in Set acts naturally on all TF. models (in all toposes): $M \xrightarrow{\prec M}{\sim} M$ n f d eTZF $H \xrightarrow{\sim}_{N} H$. The internal group object ZF in SIFJ does something more: For any model M (in any E), there's a stelk (ZF) M s.th. • for $d \in T_{\mathcal{E}}^{\mathsf{T}}(Z_{\mathsf{T}})_{\mathsf{M}}$ there's M h h and for any $h: M \rightarrow N$ there's $a_h: N \rightarrow N$ s.t. ->N

Logical Schemes 6 Let TT be a cohevert theory, and EF the classifying pretopos, so the Classifying topos is: $S[\#] = Sk(E_{\#})$ In SITT There is a pretopos E_T , given by strictifying the stack: $\mathcal{E}_{\mathrm{TT}}(X) = \mathcal{E}_{\mathrm{TT}/X}$ corresponding to the codomain fibration

Groupoid of Models (7 We then make $\tilde{E}_{\#}$ into an equivariant sheaf on the groupoid of TT-models: $G_{\mathbf{f}} = G_{\mathbf{f}} \stackrel{>}{\rightarrow} \stackrel{\times}{\times}_{\mathbf{f}}$ Whenes ! XIT = Space of Trudels GT = Space of TF-wood isos The groupoid Gip supports the groupoil representation of S[#] $S[T] \simeq Su(E_T)$ N Shog (GAT) where Shag (FIFF) is the topos of AT equivariant sheaves on XT. See: Joyal Tienney, Butz. Moeudijk, A.-Forssell, Breiner.

Now move the sheaf ET across (8 the equivalence Sh(ET) ~ Shay (FT) to get an oquivariant sheaf on the , called the structure sheaf of the logical schemes $(\mathcal{A}_{\mathrm{F}}, \mathcal{E}_{\mathrm{F}})$ of the theory T. (Breiner 2012) Remark. There's also the constant oquivariant shoof ΔE_{\mp} on \bar{H}_{\mp} , and a canonical map $\varepsilon: \Delta \varepsilon_{\pi} \longrightarrow \varepsilon_{\pi}$ namely the transpose of the equivalence $\mathcal{E}_{\mathbb{T}} \xrightarrow{\sim} \mathbb{T} \overset{\sim}{\mathcal{E}}_{\mathbb{T}}$

17 Prop. The isotropy group ZF of TT is isomorphic to the group of automorphisms of E $Z_{\mp} \cong Aut(Ab_{\mp} \longrightarrow b_{\mp})$ Corollery. The stalk of Z= ect a model M is the group of inner automorphisms : "definable" automorphisms w/pavameters from M $(Z_{\#})_{M} \cong Aut_{i}(M)$ Pf:

(10 Shag (G#) stalk@M 12 M^* \downarrow StSh(ET) M $E_{\mp} \longrightarrow E_{\mp} [N]$ where EF[M] in the factorization $e_{\mp} \longrightarrow Set$ T [M] J E ~ Mar(E)

(11 The stalk of the isotropy group at M is there: $(Z_{\#})_{\mathcal{H}} \cong \operatorname{Aut}(\mathcal{E}_{\#} \longrightarrow \mathcal{E}_{\#}[\mathcal{M}])$ $\cong \operatorname{Aut}(\mathcal{U}_{\#}[\mathcal{M}])_{\mathfrak{I}}$ which is indeed Aut; (M), as claimed, since the model UFINI is in the syntactic pretopos EFINI, so its automorphisms are in the Syntax of TELMI Remark. The stalk pretopos ETTIM] 's local, in the sense that its T: EFIMJ -> Set is a is projective pretopos functor 2 in de composible.

References - Funk, Hofstra, Steinberg: Isotropy & Crossed Toposes, TAC 2012. Breiner, Speucer: Scherke representation for first-order baic, PhD thesis, CMU 2012.