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Overview

▶ Homotopy Type Theory is a new branch of mathematical logic
based on a recently discovered connection between topology
(Homotopy theory) and logic (Type Theory).

▶ Martin-Löf type theory (a formal system of constructive
foundations) can be interpreted into abstract homotopy theory
(the mathematics of continuous space).

▶ Computerized proof systems based on MLTT can then be
used to formalize higher mathematical reasoning.

▶ There are also conceptual reasons why this is a good
foundation for modern mathematics.



Type Theory



Naive Type Theory (Frege)

Frege begins his Basic Laws of Arithmetic with a strict hierarchy:

- Objects stand opposed to functions ... I count as an object
everything that is not a function

- Functions of two arguments are just as fundamentally distinct
from functions of one argument as the latter are from objects.

- Functions whose arguments are objects we now call first-level
functions, ... those whose arguments are first-level functions
will be called second-level functions.

But he soon breaks these rules with his value-ranges:

- value-ranges seem to me one of the most consequential
additions to my Begriffsschrift ... the domain of what can
occur as an argument of a function is thereby extended.



Ramified Type Theory (Russell)

Out of an abundance of caution, Russell eliminated value-ranges
and ramified the hierarchy of propositional functions by their order.

- The terms of elementary propositions we will call individuals;
these form the first or lowest type.

- Elementary propositions together with such as contain only
individuals as apparent variables we will call first-order
propositions. These form the second logical type.

- A function whose argument is an individual and whose value is
... a first-order proposition will be called a first-order function.

- A function involving a first-order function ... as apparent
variable will be called a second-order function, and so on.

This resulted in a more complicated hierarchy of functions,
determined also by the expressions used to define them.



Simple Type Theory



Simple Type Theory (Carnap, Gödel)

Carnap (1929) and Gödel (1931) returned to Frege’s simple
hierarchy of functions. As formulated by Church (1940):

- types: ι, o, α→ β

- terms: x : α, b : β, λx .b : α→ β

- formulas (terms of type o): ¬φ, φ⇒ ψ, ..., ∃x :αφ, ∀xαφ
- rules of deduction for formulas: ϑ1, . . . , ϑn ⊢ φ.

There is also the subsystem of λ-calculus, with only the types,
terms, and equations between terms, such as

(λx .f (x))(a) = f (a) .



Dependent Type Theory (Howard, Martin-Löf, Tait)

Dependent type theory replaces the formulas and deductions by
further type and term constructors.

- types: X, 0, 1, A+ B, A× B, A → B

- terms: x , ∗, [a, b], ⟨a, b⟩, λx .b(x)
- dependent types: x : A ⊢ B(x)

- sum types:
∑

x :A B(x)

- product types:
∏

x :A B(x)

As a theory of constructions it is more expressive than λ-calculus.

It can even be seen as a system of logic.



Propositions as Types

There are, at first blush, two kinds of construction involved:
constructions of proofs of some proposition and constructions
of objects of some type. But I will argue that, from the point
of view of foundations of mathematics, there is no difference
between the two notions. A proposition may be regarded as
a type of object, namely, the type of its proofs. Conversely, a
type A may be regarded as a proposition, namely, the proposition
whose proofs are the objects of type A. So a proposition A is
true just in case there is an object of type A.

W.W. Tait



The Curry-Howard Correspondence

Under PAT the type constructors act as logical operations.

0 1 A+ B A× B A → B
∑

x :A B(x)
∏

x :A B(x)

⊥ T α ∨ β α ∧ β α⇒ β ∃x :αβ(x) ∀x :αβ(x)

This logic has a constructive character, which can be described
proof theoretically:

- a proof s : Σx :AB(x) provides a : A and a proof b : B(a),

- a proof p : Πx :AΣy :BR(x , y) provides a function f : A → B
and a proof q : Πx :AR(x , fx).



Martin-Löf Type Theory



Identity Types (Martin-Löf)

Martin-Löf (1973) added an identity type, for terms a, b : X ,

IdX (a, b)

Its rules preserved the constructive character of the system.
But they also introduced some intensionality:

▶ terms a, b : X identified by p : IdX (a, b) remain distinct,

▶ there may be different p, q : IdX (a, b),

▶ is there always a term α : IdIdX (a,b)(p, q)?

This system was used in computer proof systems like Coq because
of its good computational properties, but its meaning remained
somewhat mysterious ...



The Topological Interpretation: Simple Types (Scott)

Church had shown that a numerical function is computable
iff it is definable in the simply-typed λ-calculus.

Scott showed how to interpret computability as continuity:

types ⇝ spaces

terms ⇝ continuous functions



The Homotopy Interpretation: Identity Types

Let us extend the topological interpretation to identity types!

types X ⇝ spaces

terms t : X → Y ⇝ continuous functions

identities p : IdX (a, b) ⇝ paths p : a ∼ b

In topology, a path p : a ∼ b from point a to point b in a space X
is a continuous function

p : [0, 1] → X

with p(0) = a and p(1) = b.



Homotopy

The relation a ∼ b satisfies the laws of identity,

a ∼ a

a ∼ b ⇒ b ∼ a

a ∼ b, b ∼ c ⇒ a ∼ c



Homotopy

The relation a ∼ b satisfies the laws of identity,

r : a ∼ a

p : a ∼ b ⇒ p−1 : b ∼ a

p : a ∼ b, q : b ∼ c ⇒ p.q : a ∼ c

But the paths p : a ∼ b also satisfy higher laws like,

α : p.(q.r) ≈ (p.q).r

Such higher paths are called homotopies,

a b

p

⇓α

q

and they satisfy even higher laws ....



The Homotopy Interpretation: Identity Types

Identity types also endowed each type X with higher structure.

a, b : X

p, q : IdX (a, b)

α, β : IdIdX (a,b)(p, q)

. . .

Under the homotopy interpretation these higher structures agree:

X ⇝ space

a, b : X ⇝ points of X

p : IdX (a, b) ⇝ paths p : a ∼ b

α : IdIdX (a,b)(p, q) ⇝ homotopies α : p ≈ q

. . .



The Homotopy Interpretation: ∞-Groupoids

Theorem (Lumsdaine, van den Berg-Garner)

The identity types of a type X form an ∞-groupoid.

��

α

�	

β*4
ϑ

a b

p

��

q

DD

An ∞-groupoid is an ∞-category in which all arrows are isos.



The Homotopy Interpretation: ∞-groupoids

The points, paths, homotopies, ... in a space X were the original
examples of ∞-groupoids, which first arose in Grothendieck’s
famous homotopy hypothesis:

Homotopy types of spaces are equivalent to ∞-groupoids



Univalent Foundations

Fields medalist Vladimir Voevodsky (IAS) had also arrived at
related ideas while working on computer-checked proofs.

He proposed the Univalence Axiom in a lecture at CMU in 2010.

Id(X ,Y ) ≃ (X ≃ Y )



Oberwolfach

A meeting was held at the Oberwolfach Mathematical Research
Institute with Martin-Löf, Voevodsky, and others.



Oberwolfach

There the HoTT-Coq library was begun by Andrej Bauer.

Higher Inductive Types (HITs) were invented by Lumsdaine,
Shulman, and Warren.

HITs can be used to represent spaces like:

- the sphere S1 which parametrizes loops ℓ : x ∼ x in a type X ,

(S1 → X ) ≃ Σx :X Id(x , x)

- the truncation ||X ||0, the set X/∼ of connected components.



Fundamental Groups

The fundamental group π1(X ) of a space X was introduced by
Henri Poincaré in 1895 in the influential paper Analysis situs.
For ∗ ∈ X it consists of all loops ℓ : ∗ ∼ ∗, up to homotopy.



Homotopy Groups of Spheres

Shulman calculated the fundamental group of the sphere S1,

π1(S
1) ≃ ||S1→̇S1||0 ≃ IdS1(∗, ∗) ≃ Z ,

and formalized the proof in HoTT-Coq.

This was the first of many benchmark calculations of homotopy
groups of spheres.

The higher spheres Sn are also HITs. The higher homotopy
groups πk(S

n) are then defined as the set of all pointed maps
Sk→̇Sn, identified up to homotopy:

πk(S
n) = ||Sk→̇Sn||0



IAS Special Year on Univalent Foundations
A special year on Univalent Foundations of Mathematics was held
in 2012-13 at the Institute for Advanced Study, organized by
Awodey, Coquand, and Voevodsky.



IAS Special Year on Univalent Foundations



IAS Special Year on Univalent Foundations



The HoTT Book

A book was jointly authored by the participants of the Special Year.

Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY

Thousands of copies have been sold (at cost), and many thousands
more have been downloaded for free online.



An Open Problem: Computation of π4(S
3)

At the end of the Special Year, Brunerie calculated the 4th
homotopy group of the 3-sphere in HoTT to be

π4(S
3) ∼= Z/nZ ,

a classical result from homotopy theory.

Although the proof was constructive, the value of n could not be
computed from the proof without a constructive implementation
of univalence and HITs.





Brunerie’s “Perfect World”

So what we get is that π4(S
3) . . . is equal to Z mod n

for this n. And this is one very concrete and non-trivial
example of why we may want to have canonicity, because
this n is a closed term of type Z, defined with a lot of
univalence and higher inductive types. So in a perfect
world, if you formalize that in a proof assistant with a
computational interpretation of univalence . . . you can
just ask “what is the value of n?” and you will get 2.

Guillaume Brunerie, 23 May 2013, IAS



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs

Coquand and collaborators developed a constructive
version of HoTT with univalence and HITs (2014-15).

2. Implementation in a computational proof assistant

3. Computation of π4(S
3)



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs (2014-15) ✓

2. Implementation in a computational proof assistant

A new proof assistant that computes with Univalence
and HITs was developed on that basis (2019).

3. Computation of π4(S
3)



Computation of Brunerie’s Number

Since 2013:

1. Constructivity of Univalence and HITs (2014–15) ✓

2. Implementation in a computational proof assistant (2019) ✓

3. Computation of π4(S
3)

Brunerie’s IAS proof that, for some n : Z,

π4(S
3) = Z/nZ

was formalized in the new proof assistant, and the value of
n = 2 was computed from the proof (2022). ✓



Summary

1. Scott’s insight that computability is modeled by continuity
extends from the λ-calculus to constructive type theory.

2. Type theoretic constructions and judgements then become
homotopy invariant structures and theorems.

3. Constructive proofs yield programs for calculating e.g.
homotopy invariants in a computational proof system.

4. Classical foundations based on sets is a subsystem of this
new constructive foundation based on homotopy types.



Yuri Manin

I am pretty strongly convinced that there is an ongoing reversal in
the collective consciousness of mathematicians: the ... homotopical
picture of the world becomes the basic intuition, and if you want to
get a discrete set, then you pass to the set of connected components
of a space defined only up to homotopy. That is, the Cantor points
become continuous components ... almost from the start. Cantor’s
problems of the infinite recede to the background: from the very start,
our images are so infinite that if you want to make something finite
out of them, you must divide them by another infinity.

Interview with Mikhail Gelfand, 2008



Gottlob Frege

I am convinced that my Begriffsschrift will find successful appli-
cation wherever particular value is placed on the rigor of proofs,
as in the foundations of the differential and integral calculus.
It seems to me that it would be even easier to extend the domain
of this formal language to geometry. Only a few more symbols
would need to be added for the intuitive relations occurring
there. In this way, one would obtain a kind of analysis situs.

Preface to Begriffsschrift, 1879



Thanks!

For more information consult:

HomotopyTypeTheory.org
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Appendix: The HoTT Interpretation of Type Dependency

A consequence of the interpretation of identity terms as paths
is the interpretation of dependent types as fibrations.

A type family x : X ⊢ F (x) should be interpreted as a
“continuously varying family of spaces”, which we can take
to be a fiber bundle, i.e. a continuous map:

x : X ⊢ F (x) ⇝
F

X



Appendix: The HoTT Interpretation of Type Dependency

The rules for identity types permit the inference:

p : IdX (a, b) c : F (a)

p ∗ c : F (b)

Logically, this just says the predicate F (x) respects identity:

IdX (a, b) & F (a) ⇒ F (b)

Topologically, it is the path lifting property of fibrations:

F

����

c // p ∗ c

X a p
// b

(To lift p : a ∼ b apply the lifting to the pathspace F I // // X .)


