
Notes on Type Theory
[DRAFT: May 10, 2025]

Steve Awodey

with contributions from Andrej Bauer

Contents

1 Introduction 5
1.1 A little history . 5
1.2 Proof relevance . 7
1.3 The Curry-Howard correspondence . 9
1.4 Categorification . 9
1.5 Completeness via representation theorems 10

1.5.1 Positive propositional calculus . 10
1.5.2 Heyting algebras . 15

1.6 Outline . 27

2 Simple Type Theory 29
2.1 The λ-calculus . 29
2.2 Cartesian closed categories . 37
2.3 Interpretation of the λ-calculus in a CCC 45
2.4 Functorial semantics . 48
2.5 The internal language of a CCC . 52
2.6 Embedding theorems and completeness 58
2.7 Kripke models . 61
2.8 Topological models . 64
2.9 Extensions of the λ-calculus . 70

2.9.1 λ-Calculus with sums . 71
2.9.2 Natural numbers objects . 76
2.9.3 Higher-order logic . 76
2.9.4 Modalities . 76

3 Dependent Type Theory 79
3.1 Hyperdoctrines . 80
3.2 Dependently-typed lambda-calculus. 84

3.2.1 Interaction of Eq with Σ and Π . 88
3.3 Locally cartesian closed categories . 89
3.4 Functorial semantics of DTT in LCCCs . 92
3.5 Inductive types . 97

3.5.1 Sum types . 97

[DRAFT: May 10, 2025]

4 CONTENTS

3.5.2 Natural numbers . 99
3.5.3 Algebras for endofunctors . 103
3.5.4 W-types . 106

3.6 Propositional truncation . 110
3.6.1 Bracket types . 112
3.6.2 Propositions as [types] . 114
3.6.3 Completeness of propositions as types 115

4 Homotopy Type Theory 117
4.1 Identity types . 118

4.1.1 The naive interpretation . 120
4.2 The groupoid model . 121
4.3 Weak factorization systems . 125
4.4 Natural models . 128

4.4.1 Modeling 1,Σ,Π . 132
4.4.2 Identity types . 135
4.4.3 Strictification . 137

4.5 Universes . 138
4.5.1 A realization ⊣ nerve adjunction . 138
4.5.2 Classifying families . 140
4.5.3 Type universes . 142

4.6 Univalence . 143

Bibliography 147

[DRAFT: May 10, 2025]

Chapter 1

Introduction

1.1 A little history

We begin with a few historical remarks, intended to correct a common misconception about
the origins of type theory. For an excellent survey of the history of modern type theory
see [Coq22].

The history of type theory is closely tied to the history of logic, to which it is closely
related, but distinct. Modern logic emerged together with modern algebra in the 19th
century, as something like the algebra of “propositions”, as opposed to that of numbers or
quantities. As emphasized by Frege, the distinctive feature of logic was the notion of truth,
which establishes its connection to language, thought, judgement, and other anthropocen-
tric notions—as opposed to, say, numbers and sets, which could be regarded as existing
independently of human activity. Although Frege himself strove to establish logic as an
objective science, he struggled to define its basic objects in a way that did not rely on their
symbolic (one would now say “syntactic”) representations. Objects were determined as
things that could be named, possibly by complex symbolic expressions. The basic notion
of a function was, for Frege, something that derived from a complex name for an object by
allowing a constituent name to be replaced by another (think of forming an expression for
a polynomial function from an algebraic expression for a number). In this way, the basis
of logic was tied to the relation between symbolic expressions and their meaning (German
Bedeutung).

In addition to names of objects, and functional expressions regarded as fragmentary or
incomplete names, there were sentences, which were treated simply as names for objects
of a special kind, for which Frege coined the term truth value (German: Wahrheitswert).
Functions whose values were truth values – whose expressions were therefore fragmentary
sentences (i.e. predicates, or formulas with variables) – were called concepts (German: Be-
griffe). In this way, Frege’s system of logic was based on (i) objects, including truth values,
and functions, including concepts, all of which were in the objective realm of “things”, and
(ii) their symbolic or linguistic expressions, which were regarded as being in a separate
realm. Mediating between the two realms was a third one called that of “senses” (German:

[DRAFT: May 10, 2025]

6 Introduction

Symbols Senses Things
Total names, sentences propositions objects, truth values
Partial formulas, predicates properties functions, concepts

Table 1.1: Frege’s logical inventory

Sinne), which might now be called the intensions and included things like propositions,
which Frege called “thoughts” (German: Gedanken).

In this way, certain kinds of things (like functions) were inferred, or assumed, to corre-
spond to certain kinds of expressions. Accordingly, there were also assumed to be higher-
order functions, which resulted from complex expressions by removing the expressions for
functions and allowing these arguments to vary (a quantifier is an example of such a higher
function). Frege introduced a systematic use of different kinds of variables, notation for
variable binding, and other devices to permit the correct formal manipulation of expressions
denoting not only objects, but also functions of several arguments, functions of functions,
etc. He insisted, moreover, on a strict regimentation of the entities denoted by such ex-
pressions. A function of functions could no more take an object as argument than could a
noun replace a verb to make a sentence. In this way, Frege’s universe of logical entities was
partitioned into a rigid hierarchy of disjoint kinds that Russell later called logical types.

To be a bit more precise, if we let o denote the type of all objects (including truth
values), and A → B the type of functions from type A to type B, then Frege’s system of
all logical types T is generated simply by the rules:

T ::= o | (T1, . . . , Tn) → o

where (T1, . . . , Tn) → o represents the type of o-valued functions in several arguments of
types T1, . . . , Tn, respectively. (This display can be read as a recursive specification as
follows: o is a type; if T1, . . . , Tn are types, then (T1, . . . , Tn) → o is a type; and nothing
else is a type.)

According to Russell [?], a type may be defined as “the range of significance of a
propositional function”, which corresponds roughly to Frege’s partition of all functions
according to what arguments they can take, with the ones taking no arguments being
the objects. Whereas for Frege, the values of such functions were arbitrary objects, for
Russell they were restricted to being propositions, thus corresponding (roughly1) to Frege’s
concepts. Representing the type of propositions by p, Russell’s hierarchy of logical types
is then generated by the similar rules:

T ::= o | p | (T1, . . . , Tn) → p

which is to say, all (higher-order) relations on objects and propositions. Of course, Russell
did not rest with this, but also introduced a further “ramification”, determined by the

1We are suppressing the subtlety that Russell’s functions were intensional, at least in the original
formulation, and so took values in propositions, rather than truth values.

[DRAFT: May 10, 2025]

1.2 Proof relevance 7

quantificational structure of the expression specifying a given (propositional) function.
This was despite the fact that the unramified theory already sufficed to block the particular
inconsistency in Frege’s system that Russell had discovered [?]; nonetheless, Russell was
worried that other inconsistencies might yet result without the more elaborate ramified
theory of types.

The main point if these remarks is that Frege’s type theory, which roughly agrees with
what is now called simple type theory, was in fact not motivated by Russell’s discovery of an
inconsistency, but rather by a principled consideration of the nature of functions and their
relationship to the symbolic expressions by which they can be determined. Unfortunately,
Frege later effectively violated those restrictions by introducing the notion of the extension
(German: Wertverlauf) of a function to play the role of a proxy object. For ϕ a concept,
the extension x̂ϕ was essentially the set of objects satisfying the concept (the extension
of a general function was its “course of values”, something like its “graph”). It was this
assumption of extensions that led to the inconsistency in his system, via the infamous Law
V, which in modern predicate logical notation reads innocently enough as an “axiom of
extensionality”,

x̂ϕ = x̂ψ ⇔ ∀x(ϕ = ψ). (V)

It is indeed ironic that Frege, who first formulated, and strenuously insisted on, the natural
rules of logical types, ultimately fell victim to violating those very rules.

1.2 Proof relevance

An important aspect of Frege’s logic that distinguished it from the algebraic tradition of
the time was his emphasis on a rigorous formal system of derivations, specified by rules
of inference that made reference only to the outward logical (“syntactic”) form of the
expressions, and not to what they were assumed to mean. Frege regarded such formal
“gap-free” proofs as essential in determining the logical character of a judgement, unlike
some later logicians who regarded the logical status of a judgement as a property of the
expression alone, possibly determined by consideration of external “semantic” interpreta-
tions. The constructive tradition in logic and foundations can be seen as descending from
Frege’s invention of a formal deductive system for determining the truth of a judgement,
and his insistence on the importance of this notion; the related idea of proof-relevance in
constructive logic and modern theoretical computer science is arguably further evidence
for the validity of his point of view. The interaction between logic (with its emphasis on
truth) and type theory (which emphasizes proofs) is encapsulated in constructive logic and
type theory by the Curry-Howard correspondence. In these notes, we shall attempt to high-
light this relationship from yet another point of view: the interaction between conventional
algebraic structures and what we shall call categorified algebraic structures.

In a bit more detail:

• The Curry-Howard correspondence is sometimes presented as a somewhat mysteri-
ous connection between (say, propositional) logic and (simple) type theory, according

[DRAFT: May 10, 2025]

8 Introduction

to which the “meaning” of a propositional formula is not just a truth-value (or a
truth table of values), but rather the collection of its proofs. The Propositions-as-
Types/Proofs-as-Terms (or Proofs-as-Programs) paradigm is then a proof-theoretic
(or computational) alternative to Tarskian, truth-value semantics. The same corre-
spondence also extends to first-order logic and dependent type theory, as we shall see
below.

• The algebraic/categorical version of this correspondence is then as follows: not only
does propositional logic interpret into Boolean and Heyting algebras (and first- and
higher-order logic in (pre)toposes), but we also have categorical semantics of the
associated type theories, like the λ-calculus which is modeled by (locally) cartesian
closed categories, such as categories of (pre)sheaves.

• The poset algebra of truth-values used for the semantics of propositional or predicate
logic (e.g. the Boolean algebra {0, 1}) is seen to be the poset reflection of a suitably
structured, proper category (e.g. Set), which models a type theory that, in turn, is
the “proof-relevant” version of the logic. The general scheme can be represented as
follows, with the first row being the proof-relevant version of the first:

Type Theory Category
Logic Algebra

Indeed, a third axis could be added for propositional versus predicate logic and simple
versus dependent type theories:

Logic Algebra Type Theory Category
Propositional Boolean algebra Simple CCC
Predicate Boolean category Dependent LCCC

• The relationship between validity and provability, which is classically described by
the relationship between logic and type theory, is described categorically by the
(adjoint) notions of categorical generalization and “poset reflection” between (struc-
tured) posets and categories. In this way, the Curry-Howard correspondence relates
to the idea of “categorification”: a structured category whose poset reflection is a
given structured poset. For example, a category with finite products is a categori-
fication of a ∧-semilattice, and the category Set is a categorification of the Boolean
algebra {0, 1}.

Finally, some new ideas have recently deepened this perspective: the original Curry-
Howard paradigm, relating truth-value semantics (model theory) with type-theoretic syn-
tax (proof theory), has turned out to capture only the first two levels of an infinite hierarchy
of levels of structure. These levels are not merely cumulative, but are related by inclusion,
truncation, (co-)reflection, and other operations. The importance of “proof-relevance” that
underlies the Propositions-as-Types idea is essentially just one special case of the coherence

[DRAFT: May 10, 2025]

1.3 The Curry-Howard correspondence 9

issue that arises everywhere in higher category theory. And the once-bold replacement of
truth-values and sets by types in constructive logic and the foundations of computation
parallels the replacement of discrete structures (sheaves) by “higher” ones (stacks) in al-
gebra and geometry—except that we have now learned that the gap between the levels is
not just a single step, but rather an infinite hierarchy of levels of structure, each just as
significant as the first step.

These insights are reflected in current categorical logic in the recent extension from
algebraic logic (level 0) and topos theory (level 1) to higher topos theory and homotopy
type theory (level∞). The latter are the focus of much current research, and the unification
of the various earlier topics that has been achieved already shows how much we have learned
about what happens in passing from 0 to 1, by passing from the finite to the infinite.

1.3 The Curry-Howard correspondence

Consider the following natural deduction proof in propositional calculus. This deduction

shows that

⊢ (A ∧B) ∧ (A⇒ B) ⇒ B.

But so does the following: As does:

There is a sense in which the first two proofs are “equivalent”, but not the first and the
third. The relation (or property) of provability in propositional calculus ⊢ A discards such
differences in the proofs that witness it. According to the “proof-relevant” point of view,
sometimes called propositions as types, one retains as relevant some information about the
way in which a proposition is proved. This can be done by annotating the proofs with
proof-terms as they are constructed, as follows:

The proof terms for the first two proofs are the same, namely λx.π2(x)(π1(π1(x))), but

the term for the third one is λx.π2(π1(x)), reflecting the difference in the proofs. The assign-
ment works by labelling assumptions as variables, and then associating term-constructors
to the different rules of inference: pairing and projection to conjunction introduction and
elimination, function application and λ-abstraction to implication elimination (modus po-
nens) and introduction. The use of variable binding to represent cancellation of premisses
is a particularly effective device.

1.4 Categorification

From the categorical point of view, the relation of deducibility A ⊢ B is a mere preorder.
The addition of proof terms x : A ⊢ t : B results in a categorification of this preorder, in

[DRAFT: May 10, 2025]

10 Introduction

the sense that it becomes a “proper” category, the preordered reflection of which is the
deducibility preorder. And now a remarkable fact emerges: it is hardly surprising that the
deducibility preorder has, say, finite products A ∧ B or even exponentials A ⇒ B; but it
is amazing that the category with proof terms x : A ⊢ t : B as arrows also turns out to be
a cartesian closed category, and indeed a proper one, with distinct parallel arrows, such as

π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) −→ B,

π2(π1(x)) : (A ∧B) ∧ (A⇒ B) −→ B.

This category of proofs contains information about the “proof theory” of the propositional
calculus, as opposed to its mere relation of deducibility.

When the calculus of proof terms is formulated as a system of simple type theory, it
admits an alternate interpretation as a formal system of function abstraction and applica-
tion. This dual interpretation of the system of simple type theory—as the proof theory
of propositional logic, and as a formal system for manipulating functions—is sometimes
also referred to as the “Curry-Howard correspondence” [Sco70, ML84, Tai68]. From the
categorical point of view, it expresses an equivalence between two cartesian closed cate-
gories: that of proofs in propositional logic and that of terms in simple type theory, both of
which are categorifications of their common preorder reflection, the deducibility preorder
of propositional logic (cf. [MH92]).

In the next chapter, we shall consider this remarkable correspondence in more detail,
as well as some extensions of the basic case to λ-calculus, respectively cartesian closed
categories, with sums, with natural numbers objects, and with modal operators. In the
subsequent chapter, it will be seen that this correspondence extends even further to proofs
in quantified predicate logic via dependent type theory and locally cartesian closed cate-
gories, and far beyond.

1.5 Completeness via representation theorems

As an example of the sort of reasoning that we shall extend from logic to type theory by
“categorification”, we sketch the proof of the Kripke completeness theorem for Intuitionistic
Propositional Logic (IPL) via Joyal’s representation theorem for Heyting algebras. For a
fuller exposition see [Awo, §2.1]. We begin with a basic system without the coproducts ⊥
or ϕ ∨ ψ, and thus also without negation ¬ϕ = ϕ ⇒ ⊥, which we shall therefore call the
positive propositional calculus (a non-standard designation).

1.5.1 Positive propositional calculus

Classically, implication ϕ⇒ ψ can be defined by ¬ϕ∨ψ, but in categorical logic we prefer
to consider ϕ⇒ ψ as an exponential of ψ by ϕ defined as right adjoint to the conjunction
(−) ∧ ϕ, applied to to the argument ψ. Since this makes sense without negation ¬ϕ or
joins ϕ∨ψ, we can study just the cartesian closed fragment separately, and then add those
other operations later. The same approach will be used for type theory.

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 11

Definition 1.5.1. The positive propositional calculus PPC is the subsystem of the full
propositional calculus (see [Awo, §2.1]) containing just (finite) conjunction and implication.
So PPC is the set of all propositional formulas ϕ constructed from propositional variables
p1, p2, ..., a constant ⊤ for true, and the binary connectives of conjunction ϕ ∧ ψ and
implication ϕ⇒ ψ.

The system of deduction for PPC has one form of judgement

ϕ1, . . . , ϕm ⊢ ϕ

where the formulas ϕ1, . . . , ϕm are called the assumptions (or hypotheses) and ϕ is the
conclusion. The assumptions are regarded as a (finite) set; so they are unordered, have
no repetitions, and may be empty. Deductive entailment, also denoted Φ ⊢ ϕ, is a relation
between finite sets of formulas Φ and single formulas ϕ, and is defined as the smallest such
relation satisfying the following rules:

1. Hypothesis:

Φ ⊢ ϕ
if ϕ ∈ Φ

2. Truth:

Φ ⊢ ⊤

3. Conjunction:
Φ ⊢ ϕ Φ ⊢ ψ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ψ

4. Implication:
Φ, ϕ ⊢ ψ

Φ ⊢ ϕ⇒ ψ

Φ ⊢ ϕ⇒ ψ Φ ⊢ ϕ
Φ ⊢ ψ

A proof of a judgement Φ ⊢ ϕ is a finite tree built from the above inference rules the
root of which is Φ ⊢ ϕ, and the leaves of which are either the Truth rule or an instance of
the Hypothesis rule. A judgment Φ ⊢ ϕ is provable if it has a proof.

Remark 1.5.2. An alternate form of presentation for proofs in natural deduction that is
more, well, natural uses trees of formulas, rather than of judgements, with leaves labelled by
assumptions ϑ that may also occur in cancelled form [ϑ]. Thus for example the introduction
and elimination rules for conjunction would be written in the form:

Φ
...
ϕ

Φ
...
ψ

ϕ ∧ ψ

Φ
...

ϕ ∧ ψ
ϕ

Φ
...

ϕ ∧ ψ
ψ

[DRAFT: May 10, 2025]

12 Introduction

An example of a proof tree with (some) cancelled assumptions is the above rule of impli-

cation introduction, which takes the form: A proof tree in which all the assumptions have

been cancelled represents a derivation of an unconditional judgement such as ⊢ ϕ.
We will have a better way to record such proofs using the λ-calculus in the next chapter.

As a category, PPC is a preorder under the relation ϕ ⊢ ψ of logical entailment. As
usual, it will be convenient to pass to the poset reflection of the preorder by identifying ϕ
and ψ when ϕ ⊣⊢ ψ. This poset category is called the Lindenbaum-Tarski algebra of the
system PPC, and we denote it by

CPPC .
The conjunction ϕ∧ψ is a greatest lower bound of ϕ and ψ in CPPC, because ϕ∧ψ ⊢ ϕ

and ϕ ∧ ψ ⊢ ψ, and for all ϑ, if ϑ ⊢ ϕ and ϑ ⊢ ψ then ϑ ⊢ ϕ ∧ ψ. Since binary products
in a poset are the same thing as greatest lower bounds, we see that CPPC has all binary
products; and of course ⊤ is a terminal object, so CPPC is a ∧-semilattice. We have already
remarked that implication is right adjoint to conjunction in the sense that for any ϕ, there
is an adjunction between the monotone maps,

(−) ∧ ϕ ⊣ ϕ⇒ (−) : CPPC −→ CPPC . (1.1)

Therefore ϕ⇒ ψ is an exponential in CPPC. The counit of the adjunction (the “evaluation”
arrow) is the entailment

(ϕ⇒ ψ) ∧ ϕ ⊢ ψ ,
i.e. the familiar logical rule of modus ponens.

We therefore have the following:

Proposition 1.5.3. The poset CPPC of positive propositional calculus is cartesian closed.

We will use this fact to show that the positive propositional calculus is deductively
complete with respect to the following notion of Kripke semantics [?].

Definition 1.5.4 (Kripke semantics). We summarize this briefly as follows:

1. A Kripke model is a poset K (the “worlds”) equipped with a relation

k ⊩ p

between elements k ∈ K and propositional variables p, such that for all j ∈ K,

j ≤ k, k ⊩ p implies j ⊩ p . (1.2)

2. Given a Kripke model (K,⊩), extend the relation ⊩ to all formulas ϕ in PPC by
defining the relation of holding in a world k ∈ K inductively by the following condi-
tions:

k ⊩ ⊤ always,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (1.3)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 13

3. Finally, say that ϕ holds in the Kripke model (K,⊩), written

K ⊩ ϕ

if k ⊩ ϕ for all k ∈ K. (One sometimes also says that ϕ holds on the poset K if
K ⊩ ϕ for all such Kripke relations ⊩ on K.)

Theorem 1.5.5 (Kripke completeness for PPC). A propositional formula ϕ is provable
from the rules of deduction for PPC if, and only if, K ⊩ ϕ for all Kripke models (K,⊩),

PPC ⊢ ϕ iff K ⊩ ϕ for all (K,⊩).

For the proof, we first require the following.

Lemma 1.5.6. For any poset P , the poset Down(P) of all downsets in P , ordered by
inclusion, is cartesian closed. Moreover, the downset embedding,

↓(−) : P −→ Down(P)

preserves any CCC structure that exists in P .

Proof. The total downset P is obviously terminal, and for any downsets S, T ∈ Down(P),
the intersection S ∩ T is also closed down, so we have the products S ∧ T = S ∩ T . For
the exponential, let

S ⇒ T = {p ∈ P | ↓(p) ∩ S ⊆ T}. (1.4)

Then for any downset Q we have

Q ⊆ S ⇒ T iff for all q ∈ Q, q ∈ S ⇒ T ,

iff for all q ∈ Q, ↓(q) ∩ S ⊆ T ,

iff
⋃

q∈Q(↓(q) ∩ S) ⊆ T ,

iff (
⋃

q∈Q ↓(q)) ∩ S ⊆ T ,

iff Q ∩ S ⊆ T .

The preservation of CCC structure by ↓ (−) : P −→ Down(P) follows from its preser-
vation by the Yoneda embedding, of which ↓(−) is a factor,

SetP
op

P Down(P)

y

↓(−)

Indeed, we can identify Down(P) with the subcategory Sub(1) ↪→ SetP
op

of subobjects of
the terminal presheaf 1, and the result then follows easily by using the left adjoint left
inverse sup of the inclusion

sup ⊣ i : Sub(1) ↪→ SetP
op

,

[DRAFT: May 10, 2025]

14 Introduction

to be considered later (cf. Lemma 2.6.1).
But it is also easy enough to check the preservation of CC structure directly: preser-

vation of the limits 1, p ∧ q are immediate from the definitions. Suppose p ⇒ q is an
exponential in P ; then for any downset D we have:

D ⊆↓(p⇒ q) iff d ∈↓(p⇒ q) , for all d ∈ D

iff d ≤ p⇒ q , for all d ∈ D

iff d ∧ p ≤ q , for all d ∈ D

iff ↓(d ∧ p) ⊆↓(q) , for all d ∈ D

iff ↓(d) ∩ ↓(p) ⊆↓(q) , for all d ∈ D

iff D ⊆↓(p) ⇒↓(q)

where the last line is by (1.4). Now take D to be ↓ (p ⇒ q) and ↓ (p) ⇒↓ (q) respectively
(or just apply Yoneda!). (Note that in line (3) we assumed that d ∧ p exists for all d ∈ D;
this can be avoided by a slightly more complicated argument.)

We can now give the proof of the completeness theorem. It follows a standard pattern,
which we will see again.

Proof. (of Theorem 1.5.5)

1. The syntactic category CPPC is a CCC, with ⊤ = 1, ϕ×ψ = ϕ∧ψ, and ψϕ = ϕ⇒ ψ.
In fact, it is evidently the free cartesian closed poset on the generating set Var =
{p1, p2, . . . } of propositional variables.

2. By Step 1 and the fact that Down(K) is cartesian closed, Lemma 1.5.6, a CCC
functor CPPC → Down(K) is just an arbitrary map Var → Down(K). But this is just
a (Kripke) model (K,⊩), as in (1.2).

3. Thus we have a bijective correspondence between Kripke relations ⊩ : Kop×Var −→
2, arbitrary maps Var → Down(K), CCC functors [[−]] : CPPC → Down(K), and
monotone maps (also called) ⊩ : Kop × CPPC −→ 2:

⊩ : Kop × Var −→ 2

[[−]] : Var −→ 2
Kop ∼= Down(K)

[[−]] : CPPC −→ Down(K) ∼= 2
Kop

⊩ : Kop × CPPC −→ 2

where we use the poset 2 to classify downsets in the poset K, or equivalently, upsets
in Kop (the contravariance will be convenient in Step 6). Here we are using the CCC
structure of the category of posets. Note that the monotonicity of ⊩ in the last line
yields both of the conditions

j ≤ k , k ⊩ ϕ =⇒ j ⊩ ϕ

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 15

and
k ⊩ ϕ , ϕ ⊢ ψ =⇒ k ⊩ ψ .

4. Moreover, the CCC preservation of the map [[−]] in the third line yields the Kripke
forcing conditions (1.3) (exercise!).

5. For any model (K,⊩), by the adjunction in (3) we then have

K ⊩ ϕ ⇐⇒ [[ϕ]] = K ,

where K ⊆ K is the maximal downset.

6. Because the downset embedding ↓ preserves the CCC structure (by Lemma 1.5.6),
CPPC has a canonical model, namely the special case of (3) with K = CPPC and ⊩
resulting from the transposition:

↓(−) : CPPC −→ Down(CPPC) ∼= 2
Cop
PPC

⊩ : Cop
PPC × CPPC −→ 2

7. Now observe that for the Kripke relation ⊩ in (6) we therefore have ⊩ = ⊢, since it
is the transpose of the downset embedding, and the poset CPPC is ordered by ϕ ⊢ ψ.
So the canonical model (CPPC,⊩) is logically generic, in the sense that

ϕ ⊩ ψ ⇐⇒ ϕ ⊢ ψ .

Thus in particular,
CPPC ⊩ ϕ ⇐⇒ PPC ⊢ ϕ .

The case of a general (K,⊩) now follows easily.

Exercise 1.5.7. Verify the claim in (4) that CCC preservation of the transpose [[−]] of ⊩
yields the Kripke forcing conditions (1.3).

Exercise 1.5.8. Give a Kripke countermodel to show that PPC ⊬ (ϕ⇒ ψ) ⇒ ϕ.

1.5.2 Heyting algebras

Let us now extend the positive propositional calculus to the full intuitionistic propositional
calculus. This involves adding the finite coproducts 0 and p∨ q to the notion of a cartesian
closed poset, to arrive at the general notion of a Heyting algebra. Heyting algebras are to
intuitionistic logic as Boolean algebras are to classical logic: each is an algebraic description
of the corresponding logical calculus. We shall review both the algebraic and the logical
points of view; as we shall see, many aspects of the theory of Boolean algebras carry over
to Heyting algebras. For instance, in order to prove the Kripke completeness of the full
system of intuitionistic propositional calculus, we will need an alternative to Lemma 1.5.6,
because the Yoneda embedding does not in general preserve coproducts. For that we will
again use a version of the Stone representation theorem (see [Awo, §2.7]), this time in a
generalized form due to Joyal.

[DRAFT: May 10, 2025]

16 Introduction

Distributive lattices

Recall first that a (bounded) lattice is a poset that has finite limits and colimits. In other
words, a lattice (L,≤,∧,∨, 1, 0) is a poset (L,≤) with distinguished elements 1, 0 ∈ L, and
binary operations of meet ∧ and join ∨, satisfying for all x, y, z ∈ L,

0 ≤ x ≤ 1
z ≤ x z ≤ y

z ≤ x ∧ y
x ≤ z y ≤ z

x ∨ y ≤ z

A lattice homomorphism is a function f : L → K between lattices which preserves finite
limits and colimits, i.e., f0 = 0, f1 = 1, f(x∧ y) = fx∧ fy, and f(x∨ y) = fx∨ fy. The
category of lattices and lattice homomorphisms is denoted by Lat.

Lattices are an algebraic theory, and can be axiomatized equationally in a signature
with two distinguished elements 0 and 1 and two binary operations ∧ and ∨, satisfying the
following equations:

(x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,
x ∧ y = y ∧ x , x ∨ y = y ∨ x ,
x ∧ x = x , x ∨ x = x ,

1 ∧ x = x , 0 ∨ x = x ,

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x .

(1.5)

The partial order on L is then determined by

x ≤ y ⇐⇒ x = x ∧ y .

Exercise 1.5.9. Show that in a lattice we also have x ≤ y if and only if x ∨ y = y.

A lattice is distributive if the following distributive laws hold:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) ,
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) .

(1.6)

It turns out that if one distributive law holds then so does the other [Joh82, I.1.5].

Definition 1.5.10. A Heyting algebra is a cartesian closed lattice. This means that a
Heyting algebra H has a binary operation of implication x ⇒ y, satisfying the following
condition, for all x, y, z ∈ H:

z ≤ x⇒ y

z ∧ x ≤ y

A Heyting algebra homomorphism is a lattice homomorphism f : K → H between
Heyting algebras that preserves implication, i.e., f(x⇒ y) = (fx⇒ fy). The category of
Heyting algebras and their homomorphisms is denoted by Heyt. (Caution: unlike Boolean

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 17

algebras, the subcategory of lattices consisting of Heyting algebras and their homomor-
phisms is not full.)

Heyting algebras can be axiomatized equationally as a set H with two distinguished
elements 0 and 1 and three binary operations ∧, ∨ and ⇒. The equations for a Heyting
algebra are the ones listed in (1.5), as well as the following ones for ⇒.

(x⇒ x) = 1 ,

x ∧ (x⇒ y) = x ∧ y ,
y ∧ (x⇒ y) = y ,

(x⇒ (y ∧ z)) = (x⇒ y) ∧ (x⇒ z) .

(1.7)

For a proof, see [Joh82, I.1], where one can also find a proof that every Heyting algebra is
distributive (exercise!).

Exercise 1.5.11. Show that every Heyting algebra is indeed a distributive lattice.

Example 1.5.12. We know from Lemma 1.5.6 that for any poset P , the poset Down(P)
of all downsets in P , ordered by inclusion, is cartesian closed. Moreover, we know that

Down(P) ∼= Pos(P op,2) ,

the latter regarded as a poset with the pointwise ordering on the monotone maps P op → 2

(i.e. the natural transformations). The assignment takes a map f : P op → 2 to the
filter-kernel f−1(1) ⊆ P op, which is therefore an upset in P op, and so a downset in P .

Since 2 is a lattice, we can take joins f ∨ g in Pos(P op,2) pointwise, in order to get
joins in Down(P) ∼= Pos(P op,2), which then correspond to (set theoretic) unions of the
corresponding downsets f−1(1) ∪ g−1(1). Thus for any poset P , the lattice Down(P) is a
Heyting algebra, with the downsets ordered by inclusion, and the (contravariant) classifying
maps P op → 2 ordered pointwise:

Proposition 1.5.13. For any poset P , the poset Down(P) of all downsets in P ordered
by inclusion is a Heyting algebra. The lattice operations of meet and join agree with the
set-theoretic ones of intersection and union. The Heyting implication S ⇒ T is given as
in (1.4) by:

S ⇒ T = {p ∈ P | ↓(p) ∩ S ⊆ T}.

Of course, one can also compose the classifying maps with the negation iso ¬ : 2
∼→ 2 to

get Down(P) ∼= Pos(P,2), with covariant classifying maps P → 2 for the downsets, using
the ideal-kernels f−1(0) ⊆ P instead of the filters; but then the ordering on Pos(P,2) will
be the reverse pointwise ordering of maps f : P → 2.

Example 1.5.14. For any topological space X, the poset of open sets O(X) is a Heyting
algebra, with the lattice operations inherited from the powerset, and the Heyting implica-
tion given by

U ⇒ V =
⋃{

W ∈ OX
∣∣ W ∩ U ⊆ V

}
.

[DRAFT: May 10, 2025]

18 Introduction

Intuitionistic propositional calculus

There is an obvious forgetful functor U : Heyt → Set mapping a Heyting algebra to
its underlying set, and a homomorphism of Heyting algebras to the underlying function.
Because Heyting algebras are also models of an equational theory, there is a left adjoint
H ⊣ U , which is the usual “free” construction for algebras, mapping a set X to the free
Heyting algebra H(X) generated by it. As for all algebraic structures, the construction
of H(X) can be performed in two steps: first, define a set H[X] of formal expressions in
the signature, and then quotient it by an equivalence relation generated by the equations
(1.5) and (1.7).

In more detail, let H[X] be the set of formal expressions generated inductively by the
following rules:

1. Generators: if x ∈ X then x ∈ H[X].

2. Constants: ⊥,⊤ ∈ H[X].

3. Connectives: if ϕ, ψ ∈ H[X] then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ) ∈ H[X].

We then impose an equivalence relation ∼ on H[X], defined as the smallest equivalence
relation containing all instances of the axioms (1.5) and (1.7) and closed under substitution
of equals for equals (sometimes called the smallest congruence). This then forces the
quotient

H(X) = H[X]/∼

to be a Heyting algebra, as is easily checked.

We define the action of the functor H on morphisms as usual: a function f : X → Y is
mapped to the Heyting algebra homomorphism H(f) : H(X) → H(Y) (well-)defined (on
equivalence classes) by

H(f)⊥ = ⊥ , H(f)⊥ = ⊥ , H(f)x = fx ,

H(f)(ϕ ∗ ψ) = (H(f)ϕ) ∗ (H(f)ψ) ,

where ∗ stands for ∧, ∨ or ⇒.

The inclusion of generators ηX : X → UH(X) into the underlying set of the free
Heyting algebra H(X) is then the component at X of a natural transformation η : 1Set =⇒
U ◦ H, which is of course the unit of the adjunction H ⊣ U . To see this, consider a
Heyting algebra K and an arbitrary function f : X → UK. Then the Heyting algebra
homomorphism f : H(X) → K is defined in the evident way, by

f⊥ = ⊥ , f⊥ = ⊥ , fx = fx ,

f(ϕ ∗ ψ) = (fϕ) ∗ (fψ) ,

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 19

where, again, ∗ stands for ∧, ∨ or ⇒. The map f then makes the following triangle in Set
commute:

X UH(X)

UK

ηX

f Uf

The homomorphism f : H(X) → K is the unique one with this property, because any two
homomorphisms from H(X) that agree on generators must clearly be equal (formally, this
can be proved by induction on the structure of the expressions in H[X]).

We can now define the intuitionistic propositional calculus IPC to be the free Heyting
algebraH(p0, p1, . . .) on countably many generators {p0, p1, . . . }, called atomic propositions
or propositional variables. This is a somewhat unorthodox definition from a logical point of
view—normally we would start from a deductive calculus consisting of a formal language,
entailment judgements, and rules of inference. But of course, by now, we realize that the
two approaches are essentially equivalent.

Having said that, let us also briefly describe IPC in the conventional way: The formulas
of IPC are built inductively as usual from propositional variables p0, p1, . . . , constants
false ⊥ and true ⊤, and binary operations ∧, disjunction ∨ and implication ⇒.

The rules are those of the positive calculus 1.5.1, together with the following:

5. Falsehood:
Φ ⊢ ⊥
Φ ⊢ ϕ

6. Disjunction:

Φ ⊢ ϕ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ψ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ϕ ∨ ψ Φ, ϕ ⊢ θ Φ, ψ ⊢ θ
Φ ⊢ θ

For the purpose of deduction, we define ¬ϕ := ϕ⇒ ⊥ and ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).
Then let CIPC be the poset reflection of the formulas of IPC, preordered by entailment

ϕ ⊢ ψ. The elements of CIPC are thus equivalence classes [ϕ] of formulas, where two
formulas ϕ and ψ are equivalent if both ϕ ⊢ ψ and ψ ⊢ ϕ are provable in natural deduction,

[ϕ] = [ψ] ⇐⇒ ϕ ⊣⊢ ψ .

This syntactic category CIPC is then easily seen to be the free Heyting algebra on the
countably many generators {p0, p1, . . . },

CIPC ∼= H(p0, p1, . . .) ,

just as the corresponding Lindenbaum-Tarski algebra CPPC was seen to be the free CCC
poset on the propositional variables.

[DRAFT: May 10, 2025]

20 Introduction

Classical propositional calculus

Let us have a brief look at the theory of classical propositional logic from the current point
of view, i.e. as a special kind of Heyting algebra. An element x ∈ L of a lattice L is said
to be complemented when there exists y ∈ L such that

x ∧ y = 0 , x ∨ y = 1 .

We say that y is the complement of x. In a distributive lattice, the complement of x is
unique if it exists. Indeed, if both y and z are complements of x then

y ∧ z = (y ∧ z) ∨ 0 = (y ∧ z) ∨ (y ∧ x) = y ∧ (z ∨ x) = y ∧ 1 = y ,

hence y ≤ z. A symmetric argument shows that z ≤ y, therefore y = z. The complement
of x, if it exists, is denoted by ¬x.

A Boolean algebra may be defined as a distributive lattice in which every element is
complemented. In other words, a Boolean algebra B has a complementation operation
¬ : B → B which satisfies, for all x ∈ B,

x ∧ ¬x = 0 , x ∨ ¬x = 1 . (1.8)

The full subcategory of Lat consisting of Boolean algebras is denoted by BA.

Exercise 1.5.15. Prove that every Boolean algebra is a Heyting algebra. (Hint : how is
implication encoded in terms of negation and disjunction in classical logic?)

In a Heyting algebra, not every element is complemented. However, we can still define
a pseudo complement or negation operation ¬ by

¬x = (x⇒ 0) ,

Then ¬x is the largest element for which x∧¬x = 0. While in a Boolean algebra ¬¬x = x,
in a Heyting algebra we only have x ≤ ¬¬x in general. An element x of a Heyting algebra
for which x = ¬¬x is called regular.

Exercise 1.5.16. Derive the following properties of negation in a Heyting algebra:

x ≤ ¬¬x ,
¬x = ¬¬¬x ,

x ≤ y ⇒ ¬y ≤ ¬x ,
¬¬(x ∧ y) = ¬¬x ∧ ¬¬y .

Exercise 1.5.17. We know from Example 1.5.14 that the topologyO(X) of any topological
space X is a Heyting algebra. Describe in topological language the implication U ⇒ V ,
the negation ¬U , and the regular elements U = ¬¬U in OX.

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 21

Exercise 1.5.18. Show that for a Heyting algebra H, the regular elements of H form a
Boolean algebra H¬¬ =

{
x ∈ H

∣∣ x = ¬¬x
}
. Here H¬¬ is viewed as a subposet of H. Hint:

negation ¬′, conjunction ∧′, and disjunction ∨′ in H¬¬ are expressed as follows in terms of
negation, conjunction and disjunction in H, for x, y ∈ H¬¬:

¬′x = ¬x , x ∧′ y = ¬¬(x ∧ y) , x ∨′ y = ¬¬(x ∨ y) .

From logical point of view, the classical propositional calculus CPC is obtained from the
intuitionistic propositional calculus by the addition of either one of the following additional
rules.

7. Classical logic:

Φ ⊢ ϕ ∨ ¬ϕ
Φ ⊢ ¬¬ϕ
Φ ⊢ ϕ

Identifying logically equivalent formulas of CPC, we obtain a poset CCPC ordered by
logical entailment. This poset is, of course, the free Boolean algebra on the countably
many generators {p0, p1, . . . }. The free Boolean algebra can be constructed just as the
free Heyting algebra above, either equationally, or in terms of deduction. The equational
axioms for a Boolean algebra are the axioms for a lattice (1.5), the distributive laws (1.6),
and the complement laws (1.8).

Exercise∗ 1.5.19. Is CCPC isomorphic to the Boolean algebra CIPC¬¬ of the regular elements
of CIPC?

Exercise 1.5.20. Show that in a Heyting algebra H, one has ¬¬x = x for all x ∈ H
if, and only if, y ∨ ¬y = 1 for all y ∈ H. Hint : half of the equivalence is easy. For the
other half, observe that the assumption ¬¬x = x means that negation is an order-reversing
bijection H → H. It therefore transforms joins into meets and vice versa, and so the De
Morgan laws hold:

¬(x ∧ y) = ¬x ∨ ¬y , ¬(x ∨ y) = ¬x ∧ ¬y .

Together with y∧¬y = 0, the De Morgan laws easily imply y∨¬y = 1. See [Joh82, I.1.11].

Kripke semantics for IPC

Let us now prove the Kripke completeness of IPC, extending Theorem 1.5.5, namely:

Theorem 1.5.21 (Kripke completeness for IPC). Let (K,⊩) be a Kripke model, i.e. a
poset K equipped with a forcing relation k ⊩ p between elements k ∈ K and propositional
variables p, satisfying

j ≤ k, k ⊩ p implies j ⊩ p. (1.9)

[DRAFT: May 10, 2025]

22 Introduction

Extend ⊩ to all formulas ϕ in IPC by defining

k ⊩ ⊤ always,

k ⊩ ⊥ never,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (1.10)

k ⊩ ϕ ∨ ψ iff k ⊩ ϕ or k ⊩ ψ , (1.11)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

Finally, write K ⊩ ϕ if k ⊩ ϕ for all k ∈ K.
A propositional formula ϕ is then provable from the rules of deduction for IPC if, and

only if, K ⊩ ϕ for all Kripke models (K,⊩). Briefly:

IPC ⊢ ϕ iff K ⊩ ϕ for all (K,⊩).

Let us first see that we cannot simply reuse the proof from Theorem 1.5.5 for the
positive fragment PPC, because the downset (Yoneda) embedding that we used there

↓ : CPPC ↪→ Down(CPPC) (1.12)

would not preserve the coproducts ⊥ and ϕ ∨ ψ. Indeed, ↓ (⊥) ̸= ∅, because it contains
⊥ itself! And in general ↓ (ϕ ∨ ψ) ̸= ↓ (ϕ) ∪ ↓ (ψ), because the righthand side need not
contain, e.g., ϕ ∨ ψ.

Instead, we will generalize the Stone Representation theorem [Awo, §2.6] from Boolean
algebras to Heyting algebras using a theorem due to A. Joyal (cf. [MR95, MH92]). First,
recall that the Stone representation provides, for any Boolean algebra B, an injective
Boolean homomorphism into a powerset,

B ↣ PX .

For X we take the set of prime filters, which we can identify with the homset of Boolean
homomorphisms BA(B,2) by taking the filter-kernel f−1(1) ⊆ B of a homomorphism f :
B → 2. The injective homomorphism η : B ↣ P(BA(B,2)) is then given by:

η(b) = {F | b ∈ F} = {f : B → 2 | f(b) = 1} .

Now, the set BA(B,2) can be regarded as a (discrete) poset, and since the inclusion
Set ↪→ Pos as discrete posets is left adjoint to the forgetful functor |−| : Pos → Set, for the
powerset P(BA(B,2)) we have

P(BA(B,2)) ∼= Set(BA(B,2), 2) ∼= Pos(BA(B,2),2) ∼= 2
BA(B,2)

where the latter is the exponential in the cartesian closed category Pos. Composing with
the Stone representation η : B ↣ P(BA(B,2)) and transposing in Pos,

B ↣ P(BA(B,2)) ∼= 2
BA(B,2)

BA(B,2)× B → 2

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 23

we arrive at the (monotone) evaluation map

eval : BA(B,2)× B → 2. (1.13)

Finally, recall that the category of Boolean algebras is full in the category DLat of distribu-
tive lattices, so that

BA(B,2) = DLat(B,2) .

Now for anyHeyting algebra H (or indeed any distributive lattice), the homset DLat(H,2),
ordered pointwise, is isomorphic to the poset of all prime filters in H ordered by inclusion,
again by taking h : H → 2 to its (filter) kernel h−1{1} ⊆ H. In particular, when H is
not Boolean, the poset DLat(H,2) is no longer discrete, since prime filters in a Heyting
algebra need not be maximal. Indeed, recall that Proposition ?? described the prime filters
in a Boolean algebra B as those with a classifying map f : B → 2 that is a lattice homo-
morphism and therefore those with a complement f−1(0) ⊆ B that is a (prime) ideal. In
the Boolean case, these were also the maximal filters, because the preservation of Boolean
negation ¬b allowed us to deduce that for every b ∈ B, exactly one of b or ¬b must be in
such a filter F . In a Heyting algebra, however, the last condition need not obtain; and
indeed prime filters in a Heyting algebra need not be maximal.

The transpose in Pos of the evaluation map,

eval : DLat(H,2)×H → 2. (1.14)

is again a monotone map
η : H −→ 2

DLat(H,2), (1.15)

which takes p ∈ H to the “evaluation at p” map f 7→ f(p) ∈ 2, i.e.,

ηp(f) = f(p) for p ∈ H and f : H → 2 .

As before (cf. Example 1.5.12), the poset 2DLat(H,2) (ordered pointwise) may be identified
with the downsets in the poset DLat(H,2)op, ordered by inclusion, which recall from Ex-
ample 1.5.12 is always a Heyting algebra. Thus, in sum, for any Heyting algebra H, we
have a monotone map,

η : H −→ Down(DLat(H,2)op) , (1.16)

generalizing the Stone representation from Boolean to Heyting algebras.

Theorem 1.5.22 (Joyal). Let H be a Heyting algebra. There is an injective homomorphism
of Heyting algebras

H ↣ Down(J)

into the Heyting algebra of downsets in a poset J .

Note that in this form, the theorem literally generalizes the Stone representation the-
orem: when H is Boolean we can take J to be discrete, and then Down(J) ∼= Pos(J,2) ∼=
Set(J, 2) ∼= P(J) is Boolean, whence the Heyting embedding is also Boolean.

[DRAFT: May 10, 2025]

24 Introduction

The proof will again use the transposed evaluation map,

η : H −→ 2
DLat(H,2) ∼= Down(DLat(H,2)op)

which, as before, is injective, by the Prime Ideal Theorem (see [Awo] Lemma ??). We will
use the latter in the following form due to Birkhoff.

Lemma 1.5.23 (Prime Ideal Theorem). Let D be a distributive lattice, I ⊆ D an ideal,
and x ∈ D with x ̸∈ I. There is a prime ideal I ⊆ P ⊂ D with x ̸∈ P .

Proof. As in the proof of Lemma ??, it suffices to prove it for the case I = (0). This time,
we use Zorn’s Lemma: a poset in which every chain has an upper bound has maximal
elements. Consider the poset I\x of “ideals I without x”, x ̸∈ I, ordered by inclusion.
The union of any chain I0 ⊆ I1 ⊆ ... in I\x is clearly also in I\x, so we have (at least
one) maximal element M ∈ I\x. We claim that M ⊆ D is prime. To that end, take
a, b ∈ D with a ∧ b ∈ M . If a, b ̸∈ M , let M [a] = {n ≤ m ∨ a | m ∈ M}, the ideal join
of M and ↓(a), and similarly for M [b]. Since M is maximal without x, we therefore have
x ∈ M [a] and x ∈ M [b]. Thus let x ≤ m ∨ a and x ≤ m′ ∨ b for some m,m′ ∈ M . Then
x ∨m′ ≤ m ∨m′ ∨ a and x ∨m ≤ m ∨m′ ∨ b, so taking meets on both sides gives

(x ∨m′) ∧ (x ∨m) ≤ (m ∨m′ ∨ a) ∧ (m ∨m′ ∨ b) = (m ∨m′) ∨ (a ∧ b).

Since the righthand side is in the ideal M , so is the left. But then x ≤ x∨ (m∧m′) is also
in M , contrary to our assumption that M ∈ I\x.

Proof of Theorem 1.5.22. As in (1.16), let Jop = DLat(H,2) be the poset of prime filters
in H, and consider the transposed evaluation map (1.16),

η : H −→ Down(DLat(H,2)op) ∼= 2
DLat(H,2) (1.17)

given by η(p) = {F | p ∈ F prime} ∼= {f : H → 2 | f(p) = 1}.
Clearly η(0) = ∅ and η(1) = DLat(H,2), and similarly for the other meets and joins,

so η is a lattice homomorphism. Moreover, if p ̸= q ∈ H then, as in the proof of ??, we
have that η(p) ̸= η(q), by the Prime Ideal Theorem (Lemma 1.5.23). Thus it only remains
to show that

η(p⇒ q) = η(p)⇒η(q) .

Unwinding the definitions, this means that, for all f ∈ DLat(H,2),

f(p⇒ q) = 1 iff for all g ≥ f , g(p) = 1 implies g(q) = 1. (1.18)

Equivalently, for all prime filters F ⊆ H,

p⇒ q ∈ F iff for all prime G ⊇ F , p ∈ G implies q ∈ G. (1.19)

Now if p ⇒ q ∈ F , then for all (prime) filters G ⊇ F , also p ⇒ q ∈ G, and so p ∈ G
implies q ∈ G, since (p⇒ q) ∧ p ≤ q.

[DRAFT: May 10, 2025]

1.5 Completeness via representation theorems 25

Conversely, suppose p ⇒ q ̸∈ F , and we seek a prime filter G ⊇ F with p ∈ G but
q ̸∈ G. Consider the filter

F [p] = {x ∧ p ≤ h ∈ H | x ∈ F} ,

which is the join of F and ↑(p) in the poset of filters. If q ∈ F [p], then x∧ p ≤ q for some
x ∈ F , whence x ≤ p ⇒ q, and so p ⇒ q ∈ F , contrary to assumption; thus q ̸∈ F [p]. By
the Prime Ideal Theorem again (applied to the distributive lattice Hop) there is a prime
filter G ⊇ F [p] with q ̸∈ G.

The proof of the Kripke completeness theorem 1.5.21 now proceeds as in the case of
PPC: given a formula ϕ such that K ⊩ ϕ in every Kipke model (K,⊩), then in particular,
for the universal model J = DLat(IPC,2)op, ordered by inclusion of downsets, we must
have J ⊩ ϕ. This means that for the embedding (1.17), we have ηϕ = IPC = η⊤, the
maximal downset, and so by injectivity of η, we must have ⊤ ⊢ ϕ. The converse follows
from the universality of IPC as the free Heyting algebra.

The classical case of “truth tables” results by considering arbitrary assignments v from
Var = {p0, p1, . . . } to truth values 2, which correspond to Boolean homomorphisms from
the free Boolean algebra B(p0, p1, . . .), and therefore to maximal filters in B(p0, p1, . . .).
Joyal’s representation theorem then agrees with that of Stone, and the resulting complete-
ness theorem is then exactly the classical one for CPC: a propositional formula is provable
in CPC if, and only if, its truth value computes to 1 by the usual “truth-table rules” (i.e.
the definition of a Boolean homomorphism) under every assignment v : {p0, p1, . . . } → 2

of truth values to the propositional letters it contains.

Corollary 1.5.24 (Completeness for classical PC). The classical propositional calculus is
deductively complete with respect to truth-value semantics (“truth tables”).

Exercise 1.5.25. Give a Kripke countermodel to show that the Law of Excluded Middle
ϕ ∨ ¬ϕ is not provable in IPC.

Topological semantics for IPC

Finally, we recall the topological interpretation of IPC, because it will also be generalized
to type theory. It is clear how to interpret IPC into a topological space X: each formula ϕ
is assigned to an open set [[ϕ]] ∈ OX in such a way that [[−]] is a homomorphism of Heyting
algebras.

Definition 1.5.26. A topological model of IPC consists of a space X and a function

[[−]] : Var → O(X)

from the propositional variables Var = {p0, p1, . . . } to open sets of X. The interpretation
is then extended to all formulas,

[[−]] : IPC → O(X) ,

[DRAFT: May 10, 2025]

26 Introduction

by setting:

[[⊤]] = X

[[⊥]] = ∅
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[ϕ⇒ ψ]] = [[ϕ]] ⇒ [[ψ]] .

where the Heyting implication [[ϕ]] ⇒ [[ψ]] in OX, is defined as in Example 1.5.14 as

[[ϕ]] ⇒ [[ψ]] =
⋃{

U ∈ OX
∣∣ U ∩ [[ϕ]] ⊆ [[ψ]]

}
.

Joyal’s representation theorem 1.5.22 then easily implies that IPC is sound and complete
with respect to topological semantics.

Corollary 1.5.27. A formula ϕ is provable in IPC if, and only if, it holds in every topo-
logical interpretation [[−]] into a space X, briefly:

IPC ⊢ ϕ iff [[ϕ]] = X for all spaces X .

Proof. Put the Alexandroff topology on the downsets of prime filters in the Heyting alge-
bra IPC.

Exercise 1.5.28. Give a topological countermodel to show that the Law of Double Nega-
tion ¬¬ϕ⇒ ϕ is not provable in IPC.

[DRAFT: May 10, 2025]

1.6 Outline 27

1.6 Outline

Here is a preliminary outline of the course:

1. Introduction (week 1)

(a) Logic and type theory

(b) Proof relevance, Curry-Howard, categorification

(c) Soundness and completeness via embedding and representation theorems

2. Simply Typed Lambda-Calculus (weeks 2-5)

(a) Lambda theories and their models in CCCs

(b) Classifying category and functorial semantics

(c) Completeness in CCCs

(d) Poset and Kripke semantics

(e) Further topics:

i. Topological models, spaces and local homeomorphisms.

ii. H-Sets, sheaves, realizability

iii. Domains

iv. NNOs

v. The untyped lambda-calculus

vi. Modalities and monads

vii. Monoidal closed categories and linear type theory

viii. Normalization

3. Dependent Type Theory (weeks 6-9)

(a) Dependent types

i. Sigma, Pi, and Equality types

ii. Beck-Chavalley

iii. Hyperdoctrines

(b) Locally cartesian closed categories

i. The slice lemma

ii. H-sets

iii. Presheaves

iv. Local homeomorphisms

(c) Completeness in LCCCs

i. Kripke semantics

[DRAFT: May 10, 2025]

28 Introduction

ii. Topological semantics

iii. Kripke-Joyal forcing

(d) W-types

i. Polynomial endofunctors

ii. Initial algebras

(e) Coherence:

i. CwFs, natural models

ii. Universes and the Beck-Chevalley

(f) Further topics:

i. Equilogical spaces

ii. Final coalgebras and coinduction

iii. Impredicativity, realizability models

iv. CwA’s, comprehension categories

v. Setoids and quotient types

vi. Normalization and decidability of equality

4. Homotopy Type Theory (weeks 10-13)

(a) Identity types

i. UIP

ii. function extensionality

(b) Fibrations

(c) Hofmann-Streicher universes

(d) Univalence

(e) The H-levels: Prop, Set, Gpd, ...

(f) Further topics:

i. The groupoid model

ii. Algebraic weak factorization systems

iii. Homotopy-initial algebras

iv. Synthetic homotopy theory: π1(S
1)

5. Student Presentations (week 14)

(a) 2 talks / class meeting = 4 presentations

[DRAFT: May 10, 2025]

Chapter 2

Simple Type Theory

2.1 The λ-calculus

The λ-calculus is an abstract theory of functions, much like group theory is an abstract
theory of symmetries. There are two basic operations that can be performed with functions.
The first one is the application of a function to an argument: if f is a function and a is an
argument, then fa is the application of f to a, also called the value of f at a. The second
operation is abstraction: if x is a variable and t is an expression in which x may appear,
then there is a function f defined by the equation

fx = t .

Here we gave the name f to the newly formed function, which takes an argument x to the
value t. But we could have expressed the same function without giving it a name; this is
sometimes written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation, which is more
convenient when such abstractions are nested within more complex expressions, namely

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the function that
maps an argument a to the function λy. (a+ y), which in turn maps an argument b to the
value a+ b. The variable x is said to be bound in the expression λx. t.

It may seem strange that in discussing the abstraction of a function, we switched
from talking about objects (functions, arguments, values) to talking about expressions :
variables, names, equations. This “syntactic” point of view seems to have been part of
the notion of a function from the start, in the theory of algebraic equations. It is the
reason that the λ-calculus is part of logic, unlike the theory of cartesian closed categories,
which remains thoroughly semantical (and “variable-free”). The relation between the two
different points of view occupies this chapter (and, indeed, the entire subject of logic!).

[DRAFT: May 10, 2025]

30 Simple Type Theory

There are two kinds of λ-calculus: the typed and the untyped. In the untyped version
there are no restrictions on how application is formed, so that an expression such as

λx. (xx)

is allowed, whatever it may mean. We will concentrate here on the typed λ-calculus (but
see Example 2.1.7 below). In typed λ-calculus every expression has a type, and there are
rules for forming valid expressions and assigning types. For example, we can only form an
application fa when f has, say, type A→ B and a has type A, and then fa will necessarily
have type B. The basic judgement that an expression t has a type T is written as

t : T

and it is one of the primitive notions of type theory (meaning that it is not defined). To
computer scientists, the idea of expressions having types is familiar from programming
languages; whereas mathematicians can think of types as sets and read t : A as t ∈ A (at
least to get started).

Simply-typed λ-calculus. We now give a more formal definition of what constitutes a
simply-typed λ-calculus. First, we are given a collection of simple types, which are generated
from some basic types by formation of product and function types:

Basic types B ::= B0 | B1 | B2 · · ·
Simple types A ::= B ::= 1 | A1 × A2 | A1 → A2.

When convenient, we may adopt the convention that function types associate to the right,

A→ B → C = A→ (B → C) .

We assume there is a countable set of variables x, y, z, . . . at our disposal. We are also
given a set of basic constants. The set of terms is generated from variables and basic
constants by the following grammar:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. any variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if s and t are terms then ⟨s, t⟩ is a term, called a pair,

[DRAFT: May 10, 2025]

2.1 The λ-calculus 31

5. if t is a term then fst t and snd t are terms,

6. if s and t are terms then s t is a term, called an application,

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term, called a
λ-abstraction.

The variable x is bound in λx : A . t. Application associates to the left, thus s t u = (s t)u.
The set of free variables FV(t) of a term t is determined as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(⟨u, t⟩) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

A term t is closed if all of its variables are bound, so that FV(t) = ∅. If x1, . . . , xn are
distinct variables and A1, . . . , An are types then the sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted by a dot · ,
and it is a valid context. We may identify contexts under reordering, regarding them as
sets rather than sequences. Contexts may be denoted by capital Greek letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition, the free variables of t
must occur in Γ, but Γ may contain other variables as well. We read the above judgment
as “in context Γ the term t has type A”. Next we describe the rules for deriving typing
judgments.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

Γ, xn : An | xn : An

[DRAFT: May 10, 2025]

32 Simple Type Theory

• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections are:

Γ | a : A Γ | b : B
Γ | ⟨a, b⟩ : A×B

Γ | t : A×B

Γ | fst t : A
Γ | c : A×B

Γ | snd t : B

• The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | a : A

Γ | t a : B

Γ, x : A | t : B
Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms: for terms of type A in context Γ,

Γ | s : A , Γ | t : A ,

the judgment that they are equal is written as

Γ | s = t : A .

Note that s and t necessarily have the same type; it does not make sense to compare terms
of different types. We have the following rules for equations, the effect of which is to make
equality between terms into an equivalence relation at each type, and a congruence with
respect to all of the operations, just as for algebraic theories:

• Equality is an equivalence relation:

Γ | t = t : A

Γ | s = t : A

Γ | t = s : A

Γ | s = t : A Γ | t = u : A

Γ | s = u : A

• The substitution rule:

Γ | s = t : A Γ, x : A | u = v : B

Γ | u[s/x] = v[t/x] : B

• The weakening rule:
Γ | s = t : A

Γ, x : B | s = t : A

• Unit type:

Γ | t = ∗ : 1

[DRAFT: May 10, 2025]

2.1 The λ-calculus 33

• Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | ⟨u, s⟩ = ⟨v, t⟩ : A×B

Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B

Γ | snd s = snd t : A

Γ | t = ⟨fst t, snd t⟩ : A×B

Γ | fst ⟨s, t⟩ = s : A Γ | snd ⟨s, t⟩ = t : A

• Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | t : A→ B

Γ | λx : A . (t x) = t : A→ B
(η-rule)

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

where the substitution t[u/x] is defined as usual (see the Appendix).

This completes the description of a simply-typed λ-calculus.

Simply-typed λ-theories. Apart from the above rules for equality, which are part of
the λ-calculus, we might want to impose additional equations between terms. In this case
we speak of a λ-theory. Thus, a λ-theory T is given by a set of basic types and a set of
basic constants, called the signature, and a set of equations of the form

Γ | s = t : A .

Note that we can always state the equations equivalently in closed form simply by λ-
abstracting all the variables in the context Γ.

We summarize the preceding definitions.

Definition 2.1.1. A (simply-typed) signature S is given by a set of basic types (Bi)i∈I
together with a set of basic (typed) constants (cj : Cj)j∈J ,

S =
(
(Bi)i∈I , (cj : Cj)j∈J

)
.

A simply-typed λ-theory T = (S,E) is a simply-typed signature S together with a set of
equations between closed terms,

E =
(
uk = vk : Ak

)
k∈K .

[DRAFT: May 10, 2025]

34 Simple Type Theory

Example 2.1.2. The theory of a group is a simply-typed λ-theory. It has one basic type
G and three basic constants, the unit e, the inverse i, and the group operation m,

e : G , i : G → G , m : G× G → G ,

with the following familiar equations (which we need not give in closed form):

x : G | m⟨x, e⟩ = x : G

x : G | m⟨e, x⟩ = x : G

x : G | m⟨x, ix⟩ = e : G

x : G | m⟨ix, x⟩ = e : G

x : G, y : G, z : G | m⟨x, m⟨y, z⟩⟩ = m⟨m⟨x, y⟩, z⟩ : G

Example 2.1.3. More generally, any (Lawvere) algebraic theory A (as in Chapter ??)
determines a λ-theory Aλ. There is one basic type A and for each operation f of arity k
there is a basic constant f : Ak → A, where Ak is the k-fold product A × · · · × A. It is
understood that A0 = 1. The terms of A are translated to corresponding terms of Aλ in a
straightforward manner. For every axiom u = v of A there is a corresponding one in Aλ,

x1 : A, . . . , xn : A | u = v : A

where x1, . . . , xn are the variables occurring in u and v.

Example 2.1.4. The theory of a directed graph is a simply-typed theory with two basic
types, V for vertices and E for edges, and two basic constants, source src and target trg,

src : E → V , trg : E → V .

There are no equations.

Example 2.1.5. The theory of a simplicial set is a simply-typed theory with one basic
type Xn for each natural number n, and the following basic constants, also for each n, and
each 0 ≤ i ≤ n:

di : Xn+1 → Xn , si : Xn → Xn+1 .

The equations are the usual simplicial identities, which are as follows, for all natural
numbers i, j:

didj = dj−1di, if i < j,

sisj = sj+1si, if i ≤ j,

disj =

sj−1di, if i < j,

id, if i = j or i = j + 1,

sjdi−1, if i > j + 1.

[DRAFT: May 10, 2025]

2.1 The λ-calculus 35

Example 2.1.6. An example of a λ-theory found in the theory of programming languages
is the mini-programming language PCF. It is a theory in simply-typed λ-calculus with a
basic type nat for natural numbers, and a basic type bool of Boolean values,

Basic types B ::= nat type | bool type.

There are basic constants zero 0, successor succ, the Boolean constants true and false,
comparison with zero iszero, and for each type A the conditional condA and the fixpoint
operator fixA. They have the following types:

0 : nat

succ : nat → nat

true : bool

false : bool

iszero : nat → bool

condA : bool → A→ A

fixA : (A→ A) → A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 2.1.7 (D.S. Scott). Another example of a λ-theory is the theory of a reflexive
type. This theory has one basic type D and two constants

r : D → D → D s : (D → D) → D

satisfying the equation
f : D → D | r (s f) = f : D → D (2.1)

which says that s is a section and r is a retraction, so that the function type D → D is a
subspace (even a retract) of D. A type with this property is said to be reflexive. We may
additionally stipulate the axiom

x : D | s (rx) = x : D (2.2)

which implies that D is isomorphic to D → D.
A reflexive type can be used to interpret the untyped λ-calculus into the typed λ-

calculus.

[DRAFT: May 10, 2025]

36 Simple Type Theory

Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are generated by
the following grammar:

t ::= v | t! t2 | λx. t .
In words, a variable is a term, an application t t′ is a term, for any terms t and t′, and a
λ-abstraction λx. t is a term, for any term t. Variable x is bound in λx. t. A context is a
list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed in Γ. The
judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really necessary
but we include it because it is always good practice to list the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | t = t

Γ | λx. (t x) = t
(η-rule)

Γ | (λx. t)u = t[u/x]
(β-rule)

where again the substitution t[u/x] is defined as usual (see the Appendix).

The untyped λ-calculus can be translated into the theory of a reflexive type from Exam-
ple 2.1.7. An untyped context Γ is translated to a typed context Γ∗ by typing each variable
in Γ with the reflexive type D, i.e., a context x1, . . . , xk is translated to x1 : D, . . . , xk : D.
An untyped term t is translated to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .

[DRAFT: May 10, 2025]

2.2 Cartesian closed categories 37

For example, the term λx. (x x) translates to s (λx : D . ((rx)x)). A judgment

Γ | u = t (2.3)

is translated to the judgment

Γ∗ | u∗ = t∗ : D . (2.4)

Exercise∗ 2.1.8. (counts as two!) Prove that if equation (2.3) is provable then equa-
tion (2.4) is provable as well. Identify precisely at which point in your proof you need to
use equations (2.1) and (2.2). Does provability of (2.4) imply provability of (2.3)?

2.2 Cartesian closed categories

We next review of the theory of cartesian closed categories, which will form the basis for
the semantics of simple type theory.

Exponentials

We begin with the notion of an exponential BA of two objects A,B in a category, motivated
by a couple of important examples. Consider first the category Pos of posets and monotone
functions. For posets P and Q the set Hom(P,Q) of all monotone functions between them
is again a poset, with the pointwise order:

f ≤ g ⇐⇒ fx ≤ gx for all x ∈ P . (f, g : P → Q)

Thus, when equipped with a suitable order, the set Hom(P,Q) becomes an object of Pos.
Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure on the set

Hom(K,M), defined pointwise by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

Thus the category Mon also admits such “internal Homs”. The same thing works in the
category Group of groups and group homomophisms, where the set Hom(G,H) of all ho-
momorphisms between groups G and H can be given a pointwise group structure.

These examples suggest a general notion of an “internal Hom” in a category: an “object
of morphisms A→ B” which corresponds to the hom-set Hom(A,B). The other ingredient
needed for cartesian closure is an “evaluation” operation eval : BA×A→ B which evaluates
a morphism f ∈ BA at an argument a ∈ A to give a value eval ◦ ⟨f, a⟩ = f(a) ∈ B. This
is always going to be present as an operation on underlying sets, if we’re starting from
a set of functions Hom(A,B) between structured sets A and B, but even in that case it
also needs to be an actual morphism in the category. Finally, we need an operation of
“transposition”, taking a morphism f : C ×A→ B to one f̃ : C → AB. We shall see that
this in fact separates the previous two examples.

[DRAFT: May 10, 2025]

38 Simple Type Theory

Definition 2.2.1. In a category C with binary products, an exponential (BA, ϵ) of objectsA
and B is an object BA together with a morphism ϵ : BA × A → B, called the evaluation
morphism, such that for every f : C×A→ B there exists a unique morphism f̃ : C → BA,
called the transpose1 of f , for which the following diagram commutes.

BA BA × A ϵ // B

C

f̃

OO

C × A

f̃ × 1A

OO

f

<<

Commutativity of the diagram of course means that ϵ ◦ (f̃ × 1A) = f .

Definition 2.2.1 is called the universal property of the exponential. It is just the category-
theoretic way of saying that a function f : C ×A→ B of two variables can be viewed as a
function f̃ : C → BA of one variable that maps z ∈ C to a function f̃ z = f⟨z,−⟩ : A→ B

that maps x ∈ A to f⟨z, x⟩. The relationship between f and f̃ is then the expected one:

(f̃ z)x = f⟨z, x⟩ .

That is all there is to it, except that by making the evaluation explicit, variables and
elements never need to be mentioned! The benefit of this is that the definition makes sense
also in categories whose objects are not sets, and whose morphisms are not functions—even
though some of the basic examples are of that sort.

In Pos the exponential QP of posets P and Q is the set of all monotone maps P → Q,
ordered pointwise, as above. The evaluation map ϵ : QP × P → Q is just the usual
evaluation of a function at an argument, which is easily seen to be monotone. The transpose
of a monotone map f : R × P → Q is the map f̃ : R → QP , defined by, (f̃ z)x = f⟨z, x⟩,
i.e. the transposed function, which is also easily seen to be monotone. We say that the
category Pos has all exponentials.

Definition 2.2.2. Suppose C has all finite products. An object A ∈ C is exponentiable
when the exponential BA exists for every B ∈ C (including an associated evaluation map
ϵ : BA × A → B). We say that C has exponentials if every object is exponentiable. A
cartesian closed category (ccc) is a category that has all finite products and exponentials.

Example 2.2.3. Consider again the example of the set Hom(M,N) of homomorphisms
between two monoids M,N , equipped with the pointwise monoid structure. Let 1 = {u}
be the terminal monoid, having only a unit element u. To be a monoid homomorphism,
the transpose h̃ : 1 → Hom(M,N) of a homomorphism h : 1 ×M → N would have to
take the unit element u ∈ 1 to the unit homomorphism u :M → N , which is the constant
function at the unit u ∈ N . Since 1×M ∼= M , that would mean that all homomorphisms
h : M → N would have the same transpose, namely h̃ = u : 1 → Hom(M,N). So Mon
cannot be cartesian closed. The same argument works in the category Group, and in many
related ones.

1Also, f is called the transpose of f̃ , so that f and f̃ are each other’s transpose.

[DRAFT: May 10, 2025]

2.2 Cartesian closed categories 39

Exercise 2.2.4. Recall that monoids and groups can be regarded as (1-object) categories,
and then their homomorphisms are just functors. Thus we have full subcategories,

Group ↪→ Mon ↪→ Cat .

Is the category Cat of all (small) categories and functors cartesian closed? What about the
subcategory of all groupoids,

Grpd ↪→ Cat ,

defined as those categories in which every arrow is an iso?

Two characterizations of CCCs

Proposition 2.2.5. In a category C with binary products an object A is exponentiable if,
and only if, the functor

−× A : C → C
has a right adjoint

−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is (BA, ϵB), where
ϵB : BA × A → A is the counit of the adjunction at B. Indeed, the universal property of
the exponential is just the universal property of the counit ϵ : (−)A ⇒ 1C .

Conversely, suppose for every B there is an exponential (BA, ϵB). As the object part
of the right adjoint we then take BA. For the morphism part, given g : B → C, we can
define gA : BA → CA to be the transpose of g ◦ ϵB,

gA = (g ◦ ϵB)∼

as indicated below.

BA × A
ϵB //

gA × 1A
��

B

g

��
CA × A ϵC

// C

(2.5)

The counit ϵ : −A × A → 1C at B is then ϵB itself, and the naturality square for ϵ is then
exactly (2.5), i.e. the defining property of (f ◦ ϵB)∼:

ϵC ◦ (gA × 1A) = ϵC ◦ ((g ◦ ϵB)∼ × 1A) = g ◦ ϵB .

The universal property of the counit ϵ is precisely the universal property of the exponential
(BA, ϵB)

Note that because exponentials can be expressed as adjoints, they are determined
uniquely up to isomorphism. Moreover, the definition of a cartesian closed category can
then be phrased entirely in terms of adjoint functors: we just need to require the existence
of the terminal object, binary products, and exponentials.

[DRAFT: May 10, 2025]

40 Simple Type Theory

Proposition 2.2.6. A category C is cartesian closed if, and only if, the following functors
all have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,
(−× A) : C → C . (A ∈ C)

Here !C is the unique functor from C to the terminal category 1 and ∆ is the diagonal
functor ∆A = ⟨A,A⟩, and the right adjoint of −× A is exponentiation by A.

Exercise 2.2.7. Show that being cartesian closed is a categorical property, in the sense
that it respects equivalence of categories: if C is cartesian closed and C ≃ D then D is also
cartesian closed.

Another consequence of the adjoint formulation is that it implies the possibility of a
purely equational specification (adjoint structure on a category is “algebraic”, in a sense
that can be made precise; see [?]). It follows that there is a equational formulation of the
definition of a cartesian closed category.

Proposition 2.2.8 (Equational version of CCC). A category C is cartesian closed if, and
only if, it has the following structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A × B for all A,B ∈ C together with morphisms π1 : A × B → A and
π2 : A × B → B, and for every pair of morphisms f : C → A, g : C → B a
morphism ⟨f, g⟩ : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism ϵ : BA × A → B, and a
morphism f̃ : C → BA for every morphism f : C × A→ B.

These new objects and morphisms are required to satisfy the following equations:

1. For every f : A→ 1,
f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π1 ◦ ⟨f, g⟩ = f , π2 ◦ ⟨f, g⟩ = g , ⟨π1 ◦ h, π2 ◦ h⟩ = h .

3. For all f : C × A→ B, g : C → BA,

ϵ ◦ (f̃ × 1A) = f , (ϵ ◦ (g × 1A))
∼ = g .

where for e : E → E ′ and f : F → F ′ we define

e× f := ⟨eπ1, fπ2⟩ : E × F → E ′ × F ′.

[DRAFT: May 10, 2025]

2.2 Cartesian closed categories 41

These equations ensure that certain diagrams commute and that the morphisms that are
required to exist are unique. For example, let us prove that (A × B, π1, π2) is the product
of A and B. For f : C → A and g : C → B we have the morphism ⟨f, g⟩ : C → A × B.
The equations

π1 ◦ ⟨f, g⟩ = f and π2 ◦ ⟨f, g⟩ = g

enforce the commutativity of the two triangles in the following diagram:

C

A A×B B

fg ⟨f,g⟩

π1 π2

Suppose h : C → A × B is another morphism such that f = π1 ◦ h and g = π2 ◦ h. Then
by the third equation for products we get

h = ⟨π1 ◦ h, π2 ◦ h⟩ = ⟨f, g⟩ ,

and so ⟨f, g⟩ is unique.

Exercise 2.2.9. Use the equational characterization of CCCs, Proposition 2.2.8, to show
that the category Pos of posets and monotone functions is cartesian closed, as claimed.
Also verify that that Mon is not. Which parts of the definition fail in Mon?

Exercise 2.2.10. Use the equational characterization of CCCs, Proposition 2.2.8, to show
that the product category Πi∈I Ci of any (set-indexed) family (Ci)i∈I of cartesian closed
categories Ci is cartesian closed. Is the same true for an arbitrary limit in Cat?

Some proper CCCs

As we have seen ??, a cartesian closed poset is a ∧-semilattice with exponentials p⇒ q, such
as a Heyting algebra, or a syntactic category arising from a positive propositional calculus.
We next review some important examples of non-poset cartesian closed categories, most
of which should be familiar.

Example 2.2.11. The first example is the category Set. We already know that the ter-
minal object is a singleton set and that binary products are cartesian products. The
exponential of X and Y in Set is just the set of all functions from X to Y ,

Y X =
{
f ⊆ X × Y

∣∣ ∀x : X . ∃! y : Y . ⟨x, y⟩ ∈ f
}
.

The evaluation morphism eval : Y X ×X → Y is the usual evaluation of a function at an
argument, i.e., eval⟨f, x⟩ is the unique y ∈ Y for which ⟨x, y⟩ ∈ f .

[DRAFT: May 10, 2025]

42 Simple Type Theory

Example 2.2.12. The category Cat of all small categories is cartesian closed. The expo-
nential of small categories C and D is the category DC of functors, with natural transfor-
mations as arrows (see ??). Note that if D is a groupoid (all arrows are isos), then so is DC.
It follows that the category of groupoids is full (even as a 2-category) in Cat. Since limits
of groupoids in Cat are also groupoids, the inclusion of the full subcategory Grpd ↪→ Cat
preserves limits. It also preserves the CCC structure.

Example 2.2.13. The same reasoning as in the previous example shows that the full
subcategory Pos ↪→ Cat of all small posets and monotone maps is also cartesian closed,
and the (limit preserving) inclusion Pos ↪→ Cat also preserves exponentials. Note that the
(non-full) forgetful functor U : Pos → Set does not, and that U(QP) ⊆ (UQ)UP is in
general a proper subset.

Exercise 2.2.14. Show that there is a full and faithful functor D : Set → Poset that
preserves finite limits as well as exponentials. Note the similarity to the example Grpd ↪→
Cat.

The foregoing examples are instances of the following general situation.

Proposition 2.2.15. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a left adjoint reflection L : E → S preserving finite products. Suppose moreover that for
any two objects A,B in S, the exponential iBiA is again in S. Then S has all exponentials,
and these are preserved by i.

Proof. By assumption, we have L ⊣ i with isomorphic counit LiS ∼= S for all S ∈ S.
Let us identify S with the subcategory of E that is its image under i : S ↪→ E . The
assumption that BA is again in S for all A,B ∈ S, along with the fullness of S in E , gives
the exponentials, and the closure of S under finite products in E ensures that the required
transposes will also be in S.

Alternately, for any A,B ∈ S set BA = L(iBiA). Then for any C ∈ S, we have natural
isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= E

(
iC, iL(iBiA)

)
∼= S

(
C,L(iBiA)

)
∼= S

(
C,BA

)
where in the fifth line we used the assumption that iBiA is again in S, in the form iBiA ∼= iE
for some E ∈ S, which is then necessarily L(iBiA) = LiE ∼= E.

A related general situation that covers some (but not all) of the above examples is this:

[DRAFT: May 10, 2025]

2.2 Cartesian closed categories 43

Proposition 2.2.16. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a right adjoint reflection R : E → S. If i preserves finite products, then S also has all
exponentials, and these are computed first in E, and then reflected by R into S.

Proof. For any A,B ∈ S set BA = R(iBiA) as described. Now for any C ∈ S, we have
natural isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= S

(
C,R(iBiA)

)
∼= S

(
C,BA

)
.

An example of the foregoing is the inclusion of the opens into the powerset of points of
a space X,

OX ↪→ PX
This frame homomorphism is the inverse image of the one associated to the map |X| → X
of locales (or in this case, spaces), from the discrete space on the set of points of X.

Exercise 2.2.17. Which of the foregoing examples follows from which of the previous two
propositions?

Example 2.2.18. For any set X, the slice category Set/X is cartesian closed. The product
of f : A → X and g : B → X is the pullback A×X B → X, which can be constructed as
the set of pairs

A×X B → X = {⟨a, b⟩ | fa = gb} .
The exponential, however, is not simply the set

{h : A→ B | f = g ◦ h} ,

(what would the projection to X be?), but rather the set of all pairs

{⟨x, h : Ax → Bx⟩ | x ∈ X, f = g ◦ h} ,

where Ax = f−1{x} and Bx = g−1{x}, with the evident projection to X.

Exercise 2.2.19. Prove that Set/X is always cartesian closed. (Hint: Use the fact that
Set/X ≃ SetX , and the category of CCCs is closed under products of the underlying
categories.)

Lest it be thought that the foregoing example is typical, and every slice of a CCC is
again a CCC, one can consider the counterexample of Pos. By an argument like that in
[Pal03] for the catesian closed category Grpd of groupoids, the slice categories of Pos need
not be cartesian closed.

[DRAFT: May 10, 2025]

44 Simple Type Theory

Exercise 2.2.20. Check that the example given in [Pal03] also works (mutatis mutandis)
for Pos to show that Pos/X is not always cartesian closed.

Example 2.2.21. A presheaf category Ĉ is cartesian closed, provided the index category
C is small. To see what the exponential of presheaves P and Q ought to be, we can use
the Yoneda lemma. If QP exists, then by Yoneda and the adjunction (−× P) ⊣ (−P), we
would have, for all c ∈ C,

QP (c) ∼= Nat(yc,QP) ∼= Nat(yc× P,Q) .

Because C is small Nat(yc× P,Q) is a set, so we can define QP to be the presheaf

QP (c) = Nat(yc× P,Q) .

(This is indeed contravariant in c !) The evaluation morphism E : QP × P → Q is the
natural transformation whose component at c is

Ec : Nat(yc× P,Q)× Pc→ Qc ,

Ec : ⟨η, x⟩ 7→ ηc⟨1c, x⟩ .
The transpose of a natural transformation ϕ : R × P → Q is the natural transformation
ϕ̃ : R → QP whose component at c is the function that maps z ∈ Rc to the natural
transformation ϕ̃cz : yc× P → Q, whose component at b ∈ C is

(ϕ̃cz)b : C(b, c)× Pb→ Qb ,

(ϕ̃cz)b : ⟨f, y⟩ 7→ ϕb⟨(Rf)z, y⟩ .
Exercise 2.2.22. Verify that the above definition of QP really gives an exponential of
presheaves P and Q.

It follows immediately that the category of graphs Graph is cartesian closed, because it
is the presheaf category Set·⇒·. The same is of course true for the “category of functions”,
i.e. the arrow category Set→, as well as the category of simplicial sets Set∆

op

from topology.

Exercise 2.2.23. This exercise is for those with some background in linear algebra. Let
Vec be the category of real vector spaces and linear maps between them. Given vector
spaces X and Y , the linear maps L(X, Y) between them form a vector space. So define
L(X,−) : Vec → Vec to be the functor which maps a vector space Y to the vector space
L(X, Y), and it maps a linear map f : Y → Z to the linear map L(X, f) : L(X, Y) →
L(X,Z) defined by h 7→ f ◦ h. Show that L(X,−) has a left adjoint −⊗X, but also show
that this adjoint is not the binary product in Vec.

Later in this chapter, we will meet some further examples of CCCs with a more topo-
logical flavor:

• Etale spaces over a base space X. This category can be described as consisting of
local homeomorphisms f : Y → X and commutative triangles over X between such
maps. It is equivalent to the category Sh(X) of sheaves on X (Section 2.8).

• Sheaves for the “+-topology” on a small category C with (stable) sums A+B.

• Dana Scott’s category Equ of equilogical spaces (Section 2.8).

[DRAFT: May 10, 2025]

2.3 Interpretation of the λ-calculus in a CCC 45

2.3 Interpretation of the λ-calculus in a CCC

We now consider semantic aspects of the λ-calculus and λ-theories. Suppose T is a λ-
theory and C is a cartesian closed category. An interpretation [[−]] of T in C is given by
the following data:

• For every basic type B in T an object [[B]] ∈ C. The interpretation is extended to all
types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

(For this purpose, we assume that a CCC structure on C has been chosen.)

• For every basic constant c of type C, a morphism [[c]] : 1 → [[C]].

The interpretation is then extended to all terms in context as follows.

• A context Γ = x1 : A1, · · · , xn : An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object,

[[·]] = 1 .

• A typing judgment
Γ | t : A

will be interpreted as a morphism

[[Γ | t : A]] : [[Γ]] → [[A]] .

The interpretation is defined inductively by the following rules:

• The i-th variable is interpreted as the i-th projection,

[[x0 : A0, . . . , xn : An | xi : Ai]] = πi : [[Γ]] → [[Ai]] .

• A basic constant c : C in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

• The interpretation of projections and pairs is as follows:

[[Γ | ⟨t, u⟩ : A×B]] = ⟨[[Γ | t : A]], [[Γ | u : B]]⟩ : [[Γ]] → [[A]]× [[B]]

[[Γ | fst t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]] → [[A]]

[[Γ | snd t : A]] = π2 ◦ [[Γ | t : A×B]] : [[Γ]] → [[B]] .

[DRAFT: May 10, 2025]

46 Simple Type Theory

• The interpretation of application and λ-abstraction is as follows:

[[Γ | t u : B]] = ϵ ◦ ⟨[[Γ | t : A→ B]], [[Γ | u : A]]⟩ : [[Γ]] → [[B]]

[[Γ | λx : A . t : A→ B]] = ([[Γ, x : A | t : B]])∼ : [[Γ]] → [[B]][[A]]

where ϵ : [[A→ B]]× [[A]] → [[B]] is the evaluation morphism for [[B]][[A]] and

([[Γ, x : A | t : B]])∼

is the transpose of the morphism

[[Γ, x : A | t : B]] : [[Γ]]× [[A]] → [[B]] .

Definition 2.3.1. An interpretation of a λ-theory T is a model of T if it satisfies all the
axioms of T, in the sense that for every axiom Γ | u = v : A of T, the interpretations of u
and v coincide as arrows in C,

[[Γ | u : A]] = [[Γ | v : A]] : [[Γ]] −→ [[A]].

It follows that all equations that are provable in T are also satisfied in any model, by
the following basic fact.

Proposition 2.3.2 (Soundness). If T is a λ-theory and [[−]] is a model of T in a cartesian
closed category C, then for every equation in context Γ | s = t : C that is provable from the
axioms of T, we have

[[Γ | s : C]] = [[Γ | t : C]] : [[Γ]] −→ [[C]] .

Briefly, for all T-models [[−]],

T ⊢ (Γ | s = t : C) implies [[−]] |= (Γ | s = t : C) .

The proof is a straightforward induction, first on the typing judgements for the inter-
pretation, and then on the equational rules for the equations. If we stop after the first
step, we can consider just the following notion of inhabitation.

Remark 2.3.3 (Inhabitation). There is another notion of “provability” for the λ-calculus,
related to the Curry-Howard correspondence of section 1.3, relating λ-calculus to the proof
theory of propositional logic. If we regard types as “propositions” rather than generalized
algebraic structures, and terms as “proofs” rather than operations in such structures, then
it is more natural to ask whether there even is a term a : A of some type, than whether
two terms of the same type are equal s = t : A. Of course, this only makes sense when
A is considered in the empty context · ⊢ A, rather than Γ ⊢ A for non-empty Γ (consider
the case where Γ = x : A, . . .). We say that a type A is inhabited (by a closed term) when
there is some ⊢ a : A, and regard an inhabited type A as one that is provable. There is
then a different notion of soundness related to this notion of provability.

[DRAFT: May 10, 2025]

2.3 Interpretation of the λ-calculus in a CCC 47

Proposition 2.3.4 (Inhabitation soundness). If T is a λ-theory and [[−]] a model of T in
a cartesian closed category C, then for every type A that is inhabited in T, there is a point
1 → [[A]] in C. Thus for all T-models [[−]],

⊢ a : A implies there is a point 1 → [[A]] .

This follows immediately from the fact that [[·]] = 1 for the empty context; for then the
interpretation of any ⊢ a : A is the point

[[a]] : 1 → [[A]] .

Example 2.3.5. 1. A model of an algebraic theory A (extended to a λ-theory Aλ as in
Example 2.1.3) when taken in a CCC C, is just a model of the algebraic theory A in
the underlying finite product category |C|× of C. An important difference, however,
is that in defining the category of models

ModFP(A, |C|×)

we can take all homomorphisms of models of A as arrows, while the arrows in the
category

Modλ(Aλ, C)
of λ-models are best taken to be isomorphisms, for which one has an obvious way to
deal with the contravariance of the function type [[A→ B]] = [[B]][[A]] (this is discussed
in more detail in the next section).

A point to note is that such a model is entirely determined by the interpretation of
the basic types and terms – i.e. the algebra – and the rest of the interpretation is
“standard” in the sense that [[A→ B]] = [[B]][[A]]. So in particular, our models are not
the “Henkin models” that one sometimes sees in the literature.

2. A model of the theory of a reflexive type, Example 2.1.7, in Set must be the one-
element set 1 = {⋆} (prove this!). Fortunately, the exponentials in categories of
presheaves are not computed pointwise; otherwise it would follow that this theory
has no non-trivial presheaf models at all! (And then, by Theorem 2.6.6, that the
theory itself is degenerate, in the sense that all equations are provable.) That there
are non-trivial models is an important fact in the semantics of programming languages
and the subject called domain theory (see [Sco80b]).

3. A (positive) propositional theory T may be regarded as a λ-theory, and a model in
a cartesian closed poset P is then the same thing as before: an interpretation of the
atomic propositions p1, p2, ... of T as elements [[p1]], [[p2]], ... ∈ P , such that the axioms
ϕ1, ϕ2, ... of T are all sent to 1 ∈ P by the extension of [[−]] to all formulas,

1 = [[ϕ1]] = [[ϕ2]] = · · · ∈ P .

Exercise 2.3.6. How are models of a (not necessarily propositional) λ-theory T in Carte-
sian closed posets related to models in arbitrary Cartesian closed categories? (Hint: Con-
sider the inclusion CCPos ↪→ CCC. Does it have any adjoints?)

[DRAFT: May 10, 2025]

48 Simple Type Theory

2.4 Functorial semantics

In Chapter ?? we saw how an algebraic theory gives rise to a category with finite products,
and its algebras, or models, then correspond to functors preserving finite products on
the theory-category. We then arranged the traditional relationship between syntax and
semantics into a framework that we called functorial semantics. In Chapter ??, we did the
same for propositional logic. As a common generalization of both, the same framework of
functorial semantics can be applied to λ-theories and their models in CCCs. The first step
is to build the classifying category CT from a λ-theory T. This is again constructed from
the theory itself as a “syntactic” category, as follows:

Definition 2.4.1. For any λ-theory T, the syntactic category CT is determined as follows.

• The objects of CT are the types of T.

• Arrows A→ B are terms in context (of length one):

[x : A | t : B] ,

where two such terms x : A | s : B and x : A | s′ : B are to represent the same
morphism when T proves x : A | s = s′ : B. Note that longer contexts are not
required, because we have product types A1 × · · · × An.

• Composition of the terms

[x : A | s : B] : A −→ B and [y : B | t : C] : B −→ C

is the term obtained by substituting s for y in t:

[x : A | t[s/y] : C] : A −→ C .

• The identity morphism on A is the term [x : A | x : A] (up to “α-renaming” of
variables).

Proposition 2.4.2. The syntactic category CT built from a λ-theory is cartesian closed.

Proof. We omit the equivalence classes brackets [x : A | t : B] and simply treat equivalent
terms as equal.

• The terminal object is the unit type 1. For any type A the unique morphism !A :
A→ 1 is the term

x : A | ∗ : 1 .

This morphism is indeed unique, because we always have the equation

Γ | t = ∗ : 1

is an axiom for the terms of unit type 1.

[DRAFT: May 10, 2025]

2.4 Functorial semantics 49

• The product of objects A and B is the type A × B. The first and the second
projections are the terms

z : A×B | fst z : A , z : A×B | snd z : B .

Given morphisms

z : C | a : A , z : C | b : B ,

the term
z : C | ⟨a, b⟩ : A×B

represents the unique morphism satisfying

z : C | fst ⟨a, b⟩ = a : A , z : C | snd ⟨a, b⟩ = b : B .

Indeed, if fst t = a and snd t = b for some t, then we have

t = ⟨fst t, snd t⟩ = ⟨a, b⟩ .

as required.

• The exponential of objects A and B is the type A→ B with the evaluation morphism

u : (A→ B)× A
∣∣ (fstu)(sndu) : B .

The transpose of a morphism w : C × A | t : B is the term

z : C | λx : A . (t[⟨z, x⟩/w]) : A→ B .

Showing that this is the transpose of t requires showing, in context w : C × A,

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t : B

Indeed, we have:

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t[⟨fstw, sndw⟩/w] = t[w/w] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique, because
any morphism z : C | s : A→ B that satisfies

(s[fstw/z])(sndw) = t

is equal to λx : A . (t[⟨z, x⟩/w]), because then

t[⟨z, x⟩/w] = (s[fstw/z])(sndw)[⟨z, x⟩/w] =
(s[fst ⟨z, x⟩/z])(snd ⟨z, x⟩) = (s[z/z])x = s x .

Therefore,
λx : A . (t[⟨z, x⟩/w]) = λx : A . (s x) = s ,

as claimed.

[DRAFT: May 10, 2025]

50 Simple Type Theory

The syntactic category CT allows us to replace a T-model [[−]] in a CCC C with a functor
M : CT → C. More precisely, we have the following.

Lemma 2.4.3. A model [[−]] of a λ-theory T in a cartesian closed category C determines
a cartesian closed functor M : CT → C with

M(B) = [[B]], M(c) = [[c]] : 1 → [[C]] =M(C) , (2.6)

for all basic types B and basic constants c : C. Moreover, M is unique up to a unique
isomorphism of CCC functors, in the sense that given another model N satisfying (2.6),
there is a unique natural iso M ∼= N , determined inductively by the comparison maps
M(1) ∼= N(1),

M(A×B) ∼= MA×MB ∼= NA×NB ∼= N(A×B) ,

and similarly for M(BA).

Proof. Straightforward structural induction on types and terms with (2.6) as the base case,
and using soundness, Proposition 2.3.2, for well-definedness on equivalence classes. Note
that the uniqueness up to natural isomorphism uses the fact that all of the morphisms of
CT are given by terms.

We then also have the expected functorial semantics theorem:

Theorem 2.4.4. For any λ-theory T, the syntactic category CT classifies T-models, in the
sense that for any cartesian closed category C there is an equivalence of categories

Modλ
(
T, C

)
≃ CCC

(
CT , C

)
, (2.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of CCC functors.

Proof. The only thing remaining to show is that, given a model [[−]] in a CCC C and a
CCC functor f : C → D, there is an induced model [[−]]f in D, given by the interpretation
[[A]]f = f [[A]]. This is again straightforward, just as for algebraic theories.

Remark 2.4.5. As mentioned in Example 2.3.5(1) the categories involved in the equiva-
lence (2.7) are groupoids, in which every arrow is iso. The reason we have defined them as
such is that the contravariant argument A in the function type A → B prevents us from
specifying a non-iso homomorphism of models h :M → N by the obvious recursion on the
type structure.

In more detail, given hA : [[A]]M → [[A]]N and hB : [[B]]M → [[B]]N , there is no obvious
candidate for a map

hA→B : [[A→ B]]M −→ [[A→ B]]N ,

[DRAFT: May 10, 2025]

2.4 Functorial semantics 51

when all we have are the following induced maps:

[[A→ B]]M = // ([[B]]M)[[A]]M
(hB)

[[A]]M

// ([[B]]N)[[A]]M

([[B]]M)[[A]]N

([[B]]M)hA

OO

(hB)
[[A]]N

// ([[B]]N)[[A]]N

([[B]]N)hA

OO

=
// [[A→ B]]N

One solution is therefore to take isos hA : [[A]]M ∼= [[A]]N and hB : [[B]]M ∼= [[B]]N and then
use the inverses h−1

A : [[A]]N → [[A]]M in the contravariant positions, in order to get things
to line up:

[[A→ B]]M = // ([[B]]M)[[A]]M

([[B]]M)h
−1
A ∼=
��

(hB)
[[A]]M

// ([[B]]N)[[A]]M

([[B]]N)h
−1
A∼=

��

([[B]]M)[[A]]N

(hB)
[[A]]N

// ([[B]]N)[[A]]N

=
// [[A→ B]]N

This suffices to at least get a category of models Modλ
(
T, C

)
, rather than just as set, which

is enough structure to determine the equivalence (2.7). Note that for an algebraic theory A,
this category of λ-models in Set, say, Modλ(Aλ) is still the (wide but non-full) subcategory
of isomorphisms of conventional (algebraic) A-models

Modλ(Aλ) ↣ Mod(A) .

We shall consider other solutions to the problem of contravariance below.

We can now proceed just as we did in the case of algebraic theories and prove that the
semantics of λ-theories in cartesian closed categories is complete, in virtue of the syntactic
construction of the classifying category CT. Specifically, a λ-theory T has a canonical
interpretation [−] in the syntactic category CT, which interprets a basic type A as itself, and
a basic constant c of type A as the morphism [x : 1 | c : A]. The canonical interpretation
is a model of T, also known as the syntactic model, in virtue of the definition of the
equivalence relation [−] on terms. In fact, it is a logically generic model of T, because by
the construction of CT, for any terms Γ | u : A and Γ | t : A, we have

T ⊢ (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= Γ | u = t : A .

For the record, we therefore have now shown:

[DRAFT: May 10, 2025]

52 Simple Type Theory

Proposition 2.4.6. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (2.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by CCC functors (Proposition 2.3.2).

Corollary 2.4.7 (Completeness). For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every CCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

2.5 The internal language of a CCC

In the case of algebraic theories, we were able to recover the syntactic category from the
semantics by taking certain Set-valued functors on the category of models in Set. This
then extended to a duality between the category of all algebraic theories and that of all
“algebraic categories”, which we defined as the categories of Set-valued models of some
algebraic theory (and also characterized abstractly). In the (classical) propositional case,
this syntax-semantics duality was seen to be exactly the classical Stone duality between the
categories of Boolean algebras and of Stone topological spaces. That sort of duality theory
seems to be more difficult to formulate for λ-theories, however, now that we have taken the
category of models to be just a groupoid (but see Remark ??). Nonetheless, there is still a
correspondence between λ-theories and CCCs, which we get by organizing the former into
a category, which is then equivalent to that of the latter. But note that this is analogous to
the equivalence between algebraic theories, regarded syntactically, and regarded as finite
product categories—rather than to the duality between syntax and semantics.

In order to define the equivalence in question, we first need a suitable notion of mor-
phism of theories. A translation τ : S → T of a λ-theory S into a λ-theory T is given by
the following data:

1. For each basic type A in S a type τA in T. The translation is then extended to all
types by the rules

τ1 = 1 , τ(A×B) = τA× τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type C in S a term τc of type τC in T. The translation
of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ⟨t, u⟩ = ⟨τt, τu⟩ , τ(λx : A . t) = λx : τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .

[DRAFT: May 10, 2025]

2.5 The internal language of a CCC 53

A context Γ = x1 : A1, . . . , xn : An is translated by τ to the context

τΓ = x1 : τA1, . . . , xn : τAn .

Furthermore, a translation is required to preserve the axioms of S: if Γ | t = u : A is an
axiom of S then T proves τΓ | τt = τu : τA. It then follows that all equations proved by S
are translated to valid equations in T.

A moment’s consideration shows that a translation τ : S → T is the same thing as a
model of S in CT, despite being specified entirely syntactically. More precisely, λ-theories
and translations between them clearly form a category: translations compose as functions,
therefore composition is associative. The identity translation ιT : T → T translates every
type to itself and every constant to itself.

Definition 2.5.1. Let λThr be the category whose objects are λ-theories and morphisms
are translations between them.

In this way, we obtain an isomorphism of sets,

HomλThr(S,T) ∼= Modλ(S, CT) , (2.8)

which is not only natural in T, but also in the theory S, as can be seen by considering the
canonical interpretation of S in CS induced by the identity translation ιS : S → S. We can
enrich this to an isomorphism of groupoids by defining syntactic isomorphisms between
translations in HomλThr(S,T) in a fairly obvious way so that they correspond bijectively to
S-model homomorphisms inModλ(S, CT), which in turn correspond to natural isomorphisms
between CCC functors in HomCCC(CS, CT), by Theorem 2.4.4,

HomλThr(S,T) ∼= Modλ(S, CT) ≃ HomCCC(CS, CT) .

The equivalence HomλThr(S,T) ≃ HomCCC(CS, CT) suggests that the functor C(−) : λThr →
CCC participates in an equivalence of categories,

λThr ≃ CCC ,

between λ-theories and cartesian closed categories.
Indeed, let C be a small cartesian closed category. There is a λ-theory L(C) correspond-

ing to C, called the internal language of C, and defined as follows:

1. For every object A ∈ C there is a basic type ⌜A⌝.

2. For every morphism f : A → B there is a basic constant ⌜f⌝ whose type is ⌜A⌝ →
⌜B⌝.

3. For every A ∈ C there is an axiom

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝ .

[DRAFT: May 10, 2025]

54 Simple Type Theory

4. For all morphisms f : A→ B, g : B → C, and h : A→ C such that h = g ◦ f , there
is an axiom

x : ⌜A⌝ | ⌜h⌝x = ⌜g⌝ (⌜f⌝x) : ⌜C⌝ .

5. There is a constant
T : 1 → ⌜1⌝ ,

and for all A,B ∈ C there are constants

PA,B : ⌜A⌝× ⌜B⌝ → ⌜A×B⌝ , EA,B : (⌜A⌝ → ⌜B⌝) → ⌜BA⌝ .

They satisfy the following axioms:

u : ⌜1⌝ | T ∗ = u : ⌜1⌝

z : ⌜A×B⌝ | PA,B⟨⌜π1⌝z, ⌜π2⌝z⟩ = z : ⌜A×B⌝

w : ⌜A⌝× ⌜B⌝ | ⟨⌜π1⌝(PA,Bw), ⌜π2⌝(PA,Bw)⟩ = w : ⌜A⌝× ⌜B⌝

f : ⌜BA⌝ | EA,B(λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨f, x⟩))) = f : ⌜BA⌝

f : ⌜A⌝ → ⌜B⌝ | λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨(EA,Bf), x⟩)) = f : ⌜A⌝ → ⌜B⌝

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure the
isomorphisms ⌜1⌝ ∼= 1, ⌜A×B⌝ ∼= ⌜A⌝× ⌜B⌝, and ⌜BA⌝ ∼= ⌜A⌝ → ⌜B⌝. Types A and B
are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that S proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories S and T is a pair of translations

S
τ

** T
σ

jj

such that, for any type A in S and any type B in T,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : CCC → λThr ,

where CCC is the category of small cartesian closed categories and functors between them
that preserve finite products and exponentials. Such functors are also called cartesian
closed functors or ccc functors. If F : C → D is a cartesian closed functor then L(F) :
L(C) → L(D) is the translation given by:

[DRAFT: May 10, 2025]

2.5 The internal language of a CCC 55

1. A basic type ⌜A⌝ is translated to ⌜FA⌝.

2. A basic constant ⌜f⌝ is translated to ⌜Ff⌝.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and EFA,FB, respec-
tively.

We now have a functor L : CCC → λThr. How about the other direction? We al-
ready have the construction of the syntactic category, which maps a λ-theory S to a small
cartesian closed category CS. This extends to a functor

C : λThr → CCC ,

because a translation τ : S → T induces a functor Cτ : CS → CT in an obvious way: a basic
type A ∈ CS is mapped to the object τA ∈ CT, and a basic constant x : 1 | c : A is mapped
to the morphism x : 1 | τc : A. The rest of Cτ is defined inductively on the structure of
types and terms.

Theorem 2.5.2. The functors L : CCC → λThr and C : λThr → CCC constitute an
equivalence of categories “up to equivalence” (a biequivalence of 2-categories). This means
that for any C ∈ CCC there is an equivalence of categories

C ≃ CL(C) ,

and for any S ∈ λThr there is an equivalence of theories

S ≃ L(CS) .

Proof. For a small cartesian closed category C, consider the functor ηC : C → CL(C), defined
for an object A ∈ C and f : A→ B in C by

ηCA = ⌜A⌝ , ηCf = (x : ⌜A⌝ | ⌜f⌝x : ⌜B⌝) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝

and for all f : A→ B and g : B → C,

x : ⌜A⌝ | ⌜g ◦ f⌝x = ⌜g⌝(⌜f⌝x) : ⌜C⌝ .

To see that ηC is an equivalence of categories, it suffices to show that for every object
X ∈ CL(C) there exists an object θCX ∈ C such that ηC(θCX) ∼= X. The choice map θC is
defined inductively by

θC1 = 1 , θC⌜A⌝ = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)
θCY .

[DRAFT: May 10, 2025]

56 Simple Type Theory

We skip the verification that ηC(θCX) ∼= X. In fact, θC can be extended to a functor
θC : CL(C) → C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1CL(C) .

Given a λ-theory S, we define a translation τS : S → L(CS). For a basic type A let

τSA = ⌜A⌝ .

The translation τSc of a basic constant c of type A is

τSc = ⌜x : 1 | c : τSA⌝ .

In the other direction we define a translaton σS : L(CS) → S as follows. If ⌜A⌝ is a basic
type in L(CS) then

σS ⌜A⌝ = A ,

and if ⌜x : A | t : B⌝ is a basic constant of type ⌜A⌝ → ⌜B⌝ then

σS ⌜x : A | t : B⌝ = λx : A . t .

The basic constants T, PA,B and EA,B are translated by σS into

σS T = λx : 1 . x ,

σS PA,B = λp : A×B . p ,

σS EA,B = λf : A→ B . f .

If A is a type in S then σS(τSA) = A. For the other direction, we would like to show, for
any type X in L(CS), that τS(σSX) ∼= X. We prove this by induction on the structure of
type X:

1. If X = 1 then τS(σS1) = 1.

2. If X = ⌜A⌝ is a basic type then A is a type in S. We proceed by induction on the
structure of A:

(a) If A = 1 then τS(σS⌜1⌝) = 1. The types 1 and ⌜1⌝ are isomorphic via the
constant T : 1 → ⌜1⌝.

(b) If A is a basic type then τS(σS⌜A⌝) = ⌜A⌝.

(c) If A = B × C then τS(σS⌜B × C⌝) = ⌜B⌝ × ⌜C⌝. But we know ⌜B⌝ × ⌜C⌝ ∼=
⌜B × C⌝ via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τS(σS(Y × Z)) = τS(σSY) × τS(σSZ). By induction hypothesis,
τS(σSY) ∼= Y and τS(σSZ) ∼= Z, from which we easily obtain

τS(σSY)× τS(σSZ) ∼= Y × Z .

4. The case X = Y → Z is similar.

[DRAFT: May 10, 2025]

2.5 The internal language of a CCC 57

Composing the isomorphism 2.8 with the equivalence 2.7 we can formulate the foregoing
Theorem 2.5.2 as an adjoint equivalence.

Corollary 2.5.3. There is a biequivalence between the categories λThr of λ-theories and
translations between them (and isos thereof), and the category CCC of cartesian closed
categories and CCC functors (and natural isos),

HomλThr

(
T,LC

) ∼= Modλ
(
T, C

)
,

≃ HomCCC

(
CT , C

)
.

This is mediated by an adjunction,

CCC
L ,,

λThr
C

ll

with C ⊣ L, between the syntactic category functor C and the internal language functor L.

Exercise 2.5.4. In the proof of Theorem 2.5.2 we defined, for each C ∈ CCC, a functor
ηC : C → CL(C). Verify that this determines a natural transformation η : 1CCC =⇒ C ◦ L
which is an equivalence of categories. What about the translation ϵT : T → L(CT)—is that
an isomorphism?

See the book [LS88] for another approach to the biequivalence of Corollary 2.5.3, which
turns it into an equivalence of categories by fixing the CCC structure and requiring it to
be preserved strictly.

Lawvere’s fixed point theorem

As an application of the internal language of a CCC, we can use the λ-calculus to give a
neat proof of a fixed point theorem for CCCs due to Lawvere [Law69]. Andrej Bauer has
called Lawvere’s theorem the “quintessential diagonal argument” [Baub].

Theorem 2.5.5 (Lawvere). In any cartesian closed category, if a map e : A → BA is a
pointwise surjection, then every map f : B → B has a fixed point.

By “pointwise surjection” we mean a map that induces a surjection from points 1 → A to
points 1 → BA by composition.

Proof. Given f : B → B, consider the map λx : A.f(ex)x : 1 → BA. Since e is pointwise
surjective, there is a point a : 1 → A such that ea = λx : A.f(ex)x. Thus

(ea)a = (λx : A.f(ex)x)a = f(ea)a ,

so (ea)a : 1 → B is a fixed point of f : B → B.

[DRAFT: May 10, 2025]

58 Simple Type Theory

Among the consequences of this theorem, as stated in [Law69], are: Cantor’s theorem
(Corollary 1.2); Gödel’s incompleteness theorem (Theorem 3.3); and Tarski’s indefinability
of truth (Theorem 3.2). These are all derived from the contrapositive form of Lawvere’s
fixed point theorem 2.5.5: if a certain object B has an endomap with no fixed points,
then for no A can there be a pointwise surjection A→ BA. To infer Cantor’s theorem, for
instance: in Set the contrapositive form of Theorem 2.5.5 implies that there is no pointwise
surjection from a set A to its powerset PA ∼= 2A, because the “negation” map ¬ : 2 → 2
has no fixed points. (The same argument works in any topos, see [Baua].)

Lawvere’s original version is a bit more general, but even in the present form it is clear
that Lawvere’s fixed point theorem is the essence of many familiar diagonal arguments.

2.6 Embedding theorems and completeness

We have considered the λ-calculus as a common generalization of both propositional logic,
modeled by poset CCCs such as Boolean and Heyting algebras, and equational logic,
modeled by finite product categories. Accordingly, there are then two different notions
of “provability”, as discussed in Remark 2.3.3; namely, the derivability of a closed term
⊢ a : A, and the derivability of an equation between two (not necessarily closed) terms of
the same type Γ ⊢ s = t : A. With respect to the semantics, there are then two different
corresponding notions of soundness and completeness: for “inhabitation” of types, and for
equality of terms. We consider special cases of these notions in more detail below.

Conservativity

With regard to the former notion, inhabitation, one can consider the question of how
it compares with simple provability in propositional logic: e.g. a positive propositional
formula ϕ in the variables p1, p2, ..., pn obviously determines a type Φ in the corresponding
λ-theory T(X1, X2, ..., Xn) over n basic type symbols. What is the relationship between
provability in positive propositional logic, PPL ⊢ ϕ, and inhabitation in the associated
λ-theory, T(X1, X2, ..., Xn) ⊢ t : Φ? Let us call this the question of conservativity of λ-
calculus over PPL. According to the basic idea of the Curry-Howard correspondence from
Section 1.3, the λ-calculus is essentially the “proof theory of PPL”. So one should expect
that starting from an inhabited type Φ, a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ
should result in a corresponding proof of ϕ in PPL just by “rubbing out the proof terms”.
Conversely, given a provable formula ⊢ ϕ, one should be able to annotate a proof of it in
PPL to obtain a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ in the λ-calculus (although
perhaps not the same term that one started with, if the proof was obtained from rubbing
out a term).

We can make this idea precise semantically as follows. Write |C| for the poset reflection
of a category C, that is, the left adjoint to the inclusion i : Pos ↪→ Cat, and let η : C → |C|
be the unit of the adjunction.

[DRAFT: May 10, 2025]

2.6 Embedding theorems and completeness 59

Lemma 2.6.1. If C is cartesian closed, then so is |C|, and η : C → |C| preserves the CCC
structure.

Proof. Exercise!

Exercise 2.6.2. Prove Lemma 2.6.1.

Corollary 2.6.3. The syntactic category PPC(p1, p2, ..., pn) of the positive propositional
calculus on n propositional variables is the poset reflection of the syntactic category CT(X1,X2,...,Xn)

of the λ-theory T(X1, X2, ..., Xn),

|CT(X1,X2,...,Xn)| ∼= PPC(p1, p2, ..., pn) .

Proof. We already know that CT(X1,X2,...,Xn) is the free cartesian closed category on n gener-
ating objects, and that PPC(p1, p2, ..., pn) is the free cartesian closed poset on n generating
elements. From the universal property of CT(X1,X2,...,Xn), we get a CCC map

CT(X1,X2,...,Xn) −→ PPC(p1, p2, ..., pn)

taking generators to generators, and it extends along the quotient map to |CT(X1,X2,...,Xn)|
by the universal property of the poset reflection. Thus it suffices to show that the quotient
map preserves, and indeed creates, the CCC structure on |CT(X1,X2,...,Xn)|. But that follows
from Lemma 2.6.1.

Remark 2.6.4. Corollary 2.6.3 can be extended to other systems of type theory and logic,
with further operations such as CCCs with sums 0, A+B (“bicartesian closed categories”),
and the full intuitionistic propositional calculus IPC with the logical operations ⊥ and p∨q.
We leave this as a topic for the interested student.

Completeness

As was the case for equational theories and propositional logic, the fact that there is
a generic model (Proposition 2.4.6) allows the general completeness theorem stated in
Corollary 2.4.7 to be specialized to various classes of special models, via embedding (or
“representation”) theorems, this time for CCCs, rather than for finite product categories or
Boolean/Heyting algebras. We shall consider three such cases: “variable” models, Kripke
models, and topological models. In each case, an “embedding theorem” of the form:

Every CCC embeds into one of the special form X .

gives rise to a completeness theorem of the form:

For all λ-theories T, if 1 → [[A]]M in all T-models M in all X , then T ⊢ a : A,

and if [[a]]M = [[b]]M : 1 → [[A]] in all T-models M in all X , then T ⊢ a = b : A.

This of course follows the same pattern that we saw for the simpler “proof relevant” case
of equational (i.e. finite product) theories, and the even simpler “proof irrelevant” case
of propositional logic, but now the proofs of some of the embedding theorems for CCCs
require more sophisticated methods.

[DRAFT: May 10, 2025]

60 Simple Type Theory

Variable models

By a variable model of the λ-calculus we mean one in a CCC of the form Ĉ = SetC
op

, i.e.
presheaves on a (small) “index category” C. We regard such a model as “varying over C”,
just as we saw earlier that a presheaf of groups on e.g. the simplex category ∆ may be seen
both as a simplicial group—a simplicial object in the category of groups—and as a group
object in the category Set∆

op

of simplicial sets.

The basic embedding theorem that we shall use in specializing Proposition 2.4.6 to
such variable models is the following, which is one of the fundamental facts of categorical
semantics.

Lemma 2.6.5. For any small cartesian closed category C, the Yoneda embedding

y : C ↪→ SetC
op

preserves the cartesian closed structure.

This is of course the “categorified” analogue of Lemma 1.5.6, which we used for the
Kripke completeness of the positive propositional calculus PPC.

Proof. We can just evaluate yA(X) = C(X,A). It is clear that y1(X) = C(X, 1) ∼= 1
naturally in X, and that y(A×B)(X) = C(X,A × B) ∼= C(X,A) × C(X,B) ∼= (yA ×
yB)(X) for all A,B,X, naturally in all three arguments. For BA ∈ C, we then have

y(BA)(X) = C(X,BA) ∼= C(X × A,B) ∼= Ĉ(y(X × A), yB) ∼= Ĉ(yX × yA, yB),

since y is full and faithful and, as we just showed, preserves ×. But now recall that the
exponential QP of presheaves P,Q is defined at X by the specification

QP (X) = Ĉ(yX × P,Q) .

So, continuing where we left off, Ĉ(yX × yA, yB) = yByA(X), and we’re done.

For an early version of the following theorem (and much more), see the nice paper
[Sco80b] by Dana Scott.

Theorem 2.6.6. For any λ-theory T, we have the following:

(i) A type A is inhabited,

T ⊢ a : A

if, and only if, for every a small category C, in every T-model [[−]] in presheaves Ĉ,
there is a point

1 → [[A]] .

[DRAFT: May 10, 2025]

2.7 Kripke models 61

(ii) For any terms Γ | s, t : A,
T ⊢ (Γ | s = t : A)

if, and only if,

[[Γ ⊢ s : A]] = [[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

for every presheaf model.

Proof. We simply specialize the general completeness statement of Corollary 2.4.7 to CCCs
of the form Ĉ using Lemma 2.6.5, together with the fact that the Yoneda embedding is
full (and therefore reflects inhabitation) and faithful (and therefore reflects satisfaction of
equations).

Exercise 2.6.7. Show that not every presheaf topos SetC
op

admits a CCC embedding into
a category of the form Set/X for a set X (you may assume the fact that the theory of a
reflexive type (Example 2.1.7), is not trivial).

2.7 Kripke models

By a Kripke model of (a theory T in) the λ-calculus, we mean a model [[−]] in the sense
of Definition 2.3.1 in a presheaf CCC of the form SetK for a poset K, i.e. a variable
model in the sense of the previous section, where the domain of variation is just a poset,
rather than a proper category. As with Kirpke models of propositional logic, we can
regard such a model as varying through (branching) time, over a causally ordered state
space, or some other (partially-)ordered parameter space. Note that we use “covariant
presheaves”, i.e. functors K → Set, to model such variable sets, as is more customary in
Kripke semantics. By Theorem 2.4.4, such a model (K, [[−]]) is essentially the same thing as
a CCC functor M : CT → SetK , taking values in “variable sets”. Regarding the λ-calculus
as the proof theory of the propositional calculus via the Curry-Howard correspondence
(Section 1.3), it is perhaps not surprising that it should be (inhabitation) complete with
respect to such Kripke models, in light of Theorem 1.5.5. Completeness with respect to
equations between terms is entirely another matter, though; while true, the proof is far
from a simple generalization of other known results. It can be seen as a verification that
the usual notion of βη-equivalence is the “right” notion of equality for proofs.

Example 2.7.1 (Algebraic theories). Before considering such questions, however, let us
first spell out explicitly what such a Kripke model looks like for the simple example of a
theory T of an object with a distinguished element, and a commutative binary operation,

T =
(
B, u : B, ∗ : B× B → B, x ∗ y = y ∗ x

)
.

There is one basic type symbol B, a constant u : B, a binary operation symbol ∗ : B×B → B,
and a single equation x, y : B |x ∗ y = y ∗ x : B.

[DRAFT: May 10, 2025]

62 Simple Type Theory

Let K be a poset with ordering relation j ≤ k for j, k ∈ K. Unwinding the general
definition for this special case, a Kripke model M of T over K then consists, first, of a
family of sets (Mk)k∈K , equipped with functions

mj,k :Mj →Mk (for all j ≤ k ∈ K) ,

satisfying the “compatibility conditions”:

mk,k = 1Mk
, mj,k ◦mi,j = mi,k (for all j ≤ k ∈ K) .

This is of course exactly a functorM : K → Set, as the interpretationM = [[B]] of the basic
type symbol B. Such a variable setM may be thought of as a “set that is changing through
time”, in that its elements mj ∈ Mj develop and change at different stages j ≤ k ∈ K.
Note that, while new elements may appear at later stages, and distinct elements may
become equal, once present, an element never vanishes, nor do elements ever split apart,
because the functions mj,k :Mj →Mk are of course single-valued.

Next, for each k ∈ K we have an element

uk :Mk ,

and these should satisfy

mj,k(uj) = uk (for all i ≤ j ≤ k ∈ K) .

That is to say, we have an element or “point” u : 1 →M of M as a “variable set” in SetK .
Finally, for all k ∈ K we need functions

sk :Mk ×Mk →Mk

satisfying

mj,k

(
sj(x, y)

)
= sk

(
mj,k(x),mj,k(y)

)
(for all j ≤ k ∈ K and x, y ∈Mj) .

This is of course just a natural transformation s : M ×M → M , as the interpretation
s = [[∗]] of the operation symbol ∗ : B × B → B. The idea is that the ∗-product of two
elements changes along with those elements, which one sees more clearly by writing ∗ for
s:

mj,k(x∗jy) = mj,k(x)∗kmj,k(y) (for all j ≤ k ∈ K and x, y ∈Mj) .

In other word, it doesn’t matter “when” one takes the ∗-product.
Finally, the interpretation (M,u, s) = [[B, u, ∗]] should satisfy the equation x, y : B |x ∗

y = y ∗ x : B, meaning that

sk(x, y) = sk(y, x) (for all k ∈ K) .

This is because two natural transformations are equal just if all of their components are
equal. Thus, in sum, a Kripke model of this theory T is just a model of the underlying
algebraic theory in the functor category SetK , which is of course the same thing as a functor
from K to the usual category of T-models in Set,

ModT(Set
K) = ModT(Set)

K .

[DRAFT: May 10, 2025]

2.7 Kripke models 63

Example 2.7.2 (Higher-order theories). A theory involving a “higher-order” operation,
such as the section s : (D → D) → D in (the theory of) a reflexive type (Example 2.1.7)
is no more “non-standard” than an algebraic one, once we recall how function types are
interpreted, namely not pointwise. Let D = [[D]] be the interpretation of the basic type D,
so that [[D → D]] = DD : K → Set is a presheaf exponential. At each k ∈ K, we then have,

(DD)k = SetK
(
D ×K(k,−), D

)
.

Now observe that this set is trivial except on the upset ↑k, because K(k, j) is empty unless
k ≤ j, so that SetK

(
D×K(k, j), D

)
= 1 except when j ∈↑k. On ↑k, it consists of natural

transformations
Set ↑k

(
D ↑k,D ↑k

)
,

where D ↑k : ↑k → Set is D restricted to the upset ↑k ⊆ K, i.e. the composite

↑k ↪→ K
D−→ Set .

Given any such natural transformation ϑ : D ↑k −→ D ↑k, and any k ≤ j, the action of
the functor,

(DD)k → (DD)j

on ϑ is simply to restrict it further to ↑j ⊆↑k, thus taking ϑ to

ϑ ↑j : D ↑j −→ D ↑j .

This is just the same function as ϑ, but with the restricted domain of definition ↑j ⊆↑k.
Note that the effect of this restriction may be to identify elements ϑ, and that not every
element defined at j need be the restriction of one defined at k for j ≤ k, so the transition
maps need be neither injective nor surjective.

The section s : (D → D) → D therefore takes, at each k ∈ K, such a ϑ : D ↑k −→ D ↑k
to an element sk(ϑ) ∈ Dk, respecting the restrictions ↑j ⊆↑k in the sense that

dk,jsk(ϑ) = sj(ϑ ↑j) ∈ Dj ,

where dk,j : Dk → Dj is the action of the functor D : K → Set.
In this way, the presheaf exponential DD : K → Set is entirely determined by the “base-

case” D : K → Set, and is still a “full function space” at each k ∈ K, but the functorial
action in k requires it to not be just DDk

k (which for a reflexive type would then be trivial
at all k ∈ K). Rather, it must take the entire segment ↑ k into account—much in the
way that k ⊩ φ ⇒ ψ was determined for Kripke models of the intuitionistic propositional
calculus IPC by considering all j ≥ k. (Indeed, one can explicitly formulate the Kripke
semantics for simple type theory in the usual Kripke-forcing style k ⊩ a : A, cf. [AGH24]
and Section ?? below.)

The proof of the following completeness theorem relies on a deep result from topos
theory (for the proof of which, see [Joh03, §xy]). We state it in the following form:

[DRAFT: May 10, 2025]

64 Simple Type Theory

Theorem 2.7.3 (Joyal-Tierney, [JT84]). For every Grothendieck topos E there is a localic
topos Sh(L) and a connected, locally connected geometric morphism c : Sh(L) → E.

This theorem implies in particular that, for every small CCC C there is a poset K and
a fully faithful CCC functor C ↪→ SetK . From this, the completeness of Kripke semantics
then follows easily:

Theorem 2.7.4 (Kripke completeness for λ-calculus). For any λ-theory T:

(i) A type A is inhabited just if it has a point 1 → [[A]] in every Kripke model (K, [[−]]).

(ii) Two terms are provably equal, T ⊢ (Γ | s = t : A), just if they are equal in every
Kripke model (K, [[−]]),

[[s]] = [[t]] : [[Γ]] −→ [[A]] .

In the following chapter, we shall see that this result holds as well for dependent type
theory with the Σ, Π, and Eq type-formers. For the proof, see [AR11], as well as [AGH24].

Remark 2.7.5 (For readers familiar with topos theory). Let us see how to get from
Theorem 2.7.3 to the fact used here, that for every small CCC C there is a poset K and a
fully faithful, CCC functor φ : C ↪→ SetK . First, compose the Yoneda embedding y : C ↪→ Ĉ
with the inverse image c∗ : Ĉ ↪→ Sh(L) of the Joyal-Tierney cover, which is also fully faithful
and CCC. Then compose further with the inclusion i∗ : Sh(L) ↪→ SetL

op

of sheaves into
presheaves, which is also fully faithful and CCC. So we can take K = Lop to get the desired
CCC embedding φ = i∗ ◦ c∗ ◦ y : C ↪→ SetK . See [Awo00, AR11] for more details.

2.8 Topological models

From presheaves to posets to spaces to sheaves.

Posets

Since the category Pos is cartesian closed, we can take models of λ-theories there. Are
such poset models sufficient to test for provability? The answer depends in general on the
kinds of theories: Plotkin [Plo73] shows that for theories with one basic type, no basic
terms, and no equations, the models in the category Set with the base type interpreted as
a finite set are already sufficient. And Friedman [Fri75] showed that the single model with
one countably infinite base type is also sufficient. For theories with basic terms (but still
no equations), other results are known for the category Pos; see [Sim95] for a summary.

We shall show here that for arbitrary theories, with basic types, basic terms, and equa-
tions, there are enough models in the category dopFib of posets and discrete opfibrations,
provided these are taken relative to an arbitrary base poset K.

Definition 2.8.1. A discrete opfibration of posets is a monotone map π : P → K with the
property that, for every p ∈ P and πp ≤ k ∈ K, there is a unique p ≤ q ∈ P with πq = k.

[DRAFT: May 10, 2025]

2.8 Topological models 65

This “lifting property” can be equivalently reformulated as saying that every commu-
tative square as follows has a unique diagonal filler, where 2 = (0 ≤ 1).

1 //

0

��

P

π

��
2 //

??

K

(2.9)

Lemma 2.8.2. The (full!) subcategory of all such maps

dopFib/K ↪→ Pos/K

is equivalent to SetK. In particular, this category is therefore cartesian closed.

For the proof, one can consider the universal discrete opfibration (with small fibers)
u : Set• → Set in CAT, the category of large categories. A covariant presheaf P : K → Set
then fits into a pullback diagram ∫

P //

π

��

Set•

u

��
K

P
// Set

with the category of elements π :
∫
K
P → K on the left, and indeed, every discrete opfi-

bration p : D → K arises in this way from an essentially unique P : K → Set, namely the
one with P (k) = p−1(k). Moreover, every pullback of a discrete fibration (such as u is a
discrete fibration, as is easily seen by considering lifting (2.9).

Exercise 2.8.3. Fill in the details of the proof just sketched that SetK ≃ dopFib/K .

Exercise 2.8.4. Show that the inclusion dopFib/K ↪→ Pos/K is always full, as claimed in
Lemma 2.8.2.

This provides another useful perspective on the functor category SetK . Indeed, one
can reformulate the Kripke semantics for simple type theory entirely in terms of discrete
opfibrations π : P → K in place of (covariant) presheaves P : K → Set. This will be
particularly useful when we consider the semantics of dependent type theory in the next
chapter.

Corollary 2.8.5. The categories dopFib/K are sufficient for λ-theories: if an equation
Γ | s = t : A is not provable in T, then there is a T-model in discrete opfibrations over a
poset K in which the equation fails.

[DRAFT: May 10, 2025]

66 Simple Type Theory

The analogous statement regarding inhabitation of course also holds. The “fibrational”
point of view is pursued in [AR11], which also includes details of the dependently typed
case.

Exercise 2.8.6. Show that the category Set is not sufficient for arbitrary λ-theories, with
basic types, terms and equations. Is Pos? (Hint: Give a Kripke counter-model of triviality
for reflexive domains.)

Sheaves

The category Pos of posets may be cartesian closed, but its slices Pos/P are in general
not so (by an argument similar to the one given in [Pal03]). By contrast, the (wide but
not full) subcategory dopFib of posets and discrete opfibrations is not cartesian closed
(proof!), whereas its slices dopFib/K ≃ SetK always are so. Something similar happens
with topological spaces: the category Top of all spaces and continuous maps is itself not
even cartesian closed (unlike Pos), nor are its slices, but there is a (wide but not full)
subcategory LocHom ↪→ Top the slices of which are always cartesian closed, even though
the total category LocHom itself is not. As in the case of dopFib, this is most easily seen
by showing that each slice LocHom/X is actually equivalent to a functor category known
to be cartesian closed, namely the category Sh(X) of sheaves on the space X.

A little topos theory: sheaves and local homeomorphisms.

Definition 2.8.7. A sheaf on a space X is a presheaf F : O(X)op → Set that satisfies the
following “patching” condition: for every open cover U =

⋃
i∈I Ui the canonical map

FU →
∏

i FUi ⇒
∏

i,j F (Ui ∩ Uj)

is an equalizer.

In words, given a family of elements fi : yUi → F that “match” on the overlaps,

fi|Uj
= fj|Ui

: y(Ui ∩ Uj) → F,

there is a unique “amalgamation” f : yU → F that restricts to the given family on the
cover, f |Ui

= fi : yUi → F . For example, in the case of two open sets U, V , this condition
says exactly that the following pushout diagram in O(X)

U ∩ V //

��

V

��
U // U ∪ V

(2.10)

[DRAFT: May 10, 2025]

2.8 Topological models 67

is taken by F to a pullback in Set:

F (U ∩ V) FVoo

FU

OO

F (U ∪ V)oo

OO (2.11)

A basic example of a sheaf is the presheaf Top(−, Z) : O(X)op → Set of continuous
functions into a fixed space Z, where the open sets U ⊆ X are regarded as subspaces and
therefore objects in Top. Indeed, given a family of continuous functions fi : Ui → Z that
match on the intersections Ui ∩ Uj, we can define an amalgamation f : U → Z by setting
f(x) = fi(x) for some i with x ∈ Ui (which exists since U =

⋃
i∈I Ui) and the specification

will be unique by the matching condition.
It is not difficult to prove the following fact directly from the elementary definition

2.8.7.

Proposition 2.8.8. The full subcategory Sh(X) ↪→ SetO(X)op is cartesian closed, with the
structure inherited from presheaves.

Exercise 2.8.9. Prove this by showing that ZY is a sheaf as soon as Z is a sheaf, by
analyzing the exponential as ZY (U) ∼= Hom(yU × Y, Z).

There is an equivalent perspective on sheaves over X that is often useful, namely as
certain spaces over X via certain “generalized covering spaces” p : Y → X called local
homeomorphisms.

Definition 2.8.10. A continuous function p : Y → X is a local homeomorphism if for
every y ∈ Y there is an open set y ∈ U ⊆ Y such that (i) the image p(U) ⊆ X is open,
and (ii) the restriction p|U : U → p(U) is a homeomorphism.

Let LocHom ↪→ Top be the subcategory of spaces and local homeomorphisms, and
LocHom/X the slice category. Thus a map f : (Y, p) → (Z, q) of local homeomorphisms over
X is a commutative triangle in Top with p : Y → X and q : Z → X local homeomorphisms.

Y
f //

p

Z

q
��

X

One can show that in fact every merely continuous map f : Y → Z making a commutative
triangle q◦f = p is also a local homeomorphism (exercise!), so that this definition is indeed
the slice category LocHom/X , the inclusion of which is full in Top/X .

[DRAFT: May 10, 2025]

68 Simple Type Theory

Given any space “over X” via a continuous map pY : Y → X, we can define the presheaf
of local sections Γ(Y) by

Γ(Y)(U) = Top/X(U, Y) for U ↪→ X .

That is, we regard the open set U ⊆ X as a space over X via its inclusion U ↪→ X, and
consider all “local sections of Y over U”, i.e. continuous maps over X from U ↪→ X to
pY : Y → X. The presheaf Γ(Y) is now easily seen to be a sheaf (much like the example
Top(−, Z) above). In this way we have a functor

Γ : Top/X −→ SetO(X)op

which in fact factors through the full subcategory of sheaves Sh(X) ↪→ SetO(X)op . There is
also a functor coming back

Λ : SetO(X)op −→ Top/X ,

(called the bundle of germs), which factors through the full subcategory of local home-
omorphisms LocHom/X ↪→ Top/X . The local homeomorphism Λ(P) → X has the total
space

Λ(P) =
∐
x∈X

germx(P),

where the “stalk of germs at x” germx(P) is defined by

germx(P) = colim
U∋x

PU ,

the colimit being taken over the filter of all open sets U with x ∈ U . The space Λ(P) is
topologized by declaring as basic opens the images of all partial sections s : U → Λ(P)
over X (for U ⊆ X open).

The situation is summarized in the following proposition, for a detailed proof of which,
see [MM92, Ch. II].

Proposition 2.8.11. The bundle of germs functor Λ, which takes a presheaf P on the
space X to the local homeomorphism Λ(P) → X, is left adjoint to the presheaf of sections
functor Γ. The images of these functors are the full subcategories of sheaves Sh(X), for Γ,
and local homeomorphisms LocHom/X , for Λ. The inclusions have adjoints: a left adjoint
a ⊣ i for Sh(X) and a right adjoint j ⊣ b for LocHom/X .

SetO(X)op

a

��

Λ
// Top/X

b

��

Γoo

Sh(X)
Λ

//

?�

i

OO

LocHom/X∼
Γoo ?�

j

OO
(2.12)

[DRAFT: May 10, 2025]

2.8 Topological models 69

Thus there is an equivalence of categories Sh(X) ≃ LocHom/X .

One immediate consequence is that every slice LocHom/X is cartesian closed, by Propo-
sition 2.8.8. Another application is an explicit description of the left adjoint sheafification
functor a = Γ ◦ Λ, which is seen to preserve finite limits, since each of its factors does so.
Another application that will be of use in the semantics of the λ-calculus with sums in the
next section is the description of the coproduct of two local homeomorphisms A→ X and
B → X as A+B → X, constructed in Top/X in the obvious way.

Corollary 2.8.12. The sheafified Yoneda embedding ay : O(X) → Sh(X) is still full and
faithful and still preserves all limits and exponentials. It now also preserves joins,

ayU ∪ ayV ∼= ay(U ∪ V) in SubSh(X)(1) ,

and similarly for all joins U =
⋃

i∈I Ui in O(X). Indeed, the factorization

ay : O(X) → SubSh(X)(1)

is an isomorphism of complete Heyting algebras.

Proof. To give a sketch: chasing around the diagram (2.12), we can regard the sheafified
Yoneda embedding ay as being given by Λ ◦ y : O(X) → LocHom/X , which is just the
functor

(U ⊆ X) 7−→ (U ↪→ X) ,

taking an open subset U of X to the inclusion of the open subspace U ↪→ X, which
is obviously a local homeomorphism. The join of a family Ui ↪→ X of subobjects of 1
in LocHom/X is computed there by first taking the coproduct in Top/X to give a local
homoeomorphism

∐
i Ui → X with a disjoint sum of spaces as its domain, and then the

image factorization
∐

i Ui ↠
⋃

i Ui ↣ X to give the open set inclusion
⋃

i Ui ↪→ X, which
is the inclusion of the join of the Ui in O(X).

Exercise 2.8.13. Show that every representable functor y(U) is a sheaf. Conclude that
the “sheafified” Yoneda embedding a ◦ y : OX → Sh(X) is fully faithful and injective on
objects.

Let us consider a simple example of the preservation of joins by comparing the presheaf
join yU ∪yV with the sheaf y(U ∪ V), in the case where neither U ⊆ V nor V ⊆ U . We can
evaluate the presheaf yU ∪ yV at the pushout diagram (2.10) to get the following diagram
of sets,

(yU ∪ yV)(U ∩ V) (yU ∪ yV)(V)oo

(yU ∪ yV)(U)

OO

(yU ∪ yV)(U ∪ V)oo

OO

[DRAFT: May 10, 2025]

70 Simple Type Theory

which evaluates to the following,
1 1oo

1

OO

0oo

OO

since (U ∪V) is “in” neither yU nor yV , and so not in their join yU ∪ yV (where being “in
the presheaf” means that the presheaf is not empty at that argument). This diagram is
clearly not a pullback, as required for yU ∪yV to be a sheaf. On the other hand, evaluating
y(U ∪ V) instead results in the evident pullback:

y(U ∪ V)(U ∩ V) y(U ∪ V)(V)oo

y(U ∪ V)(U)

OO

y(U ∪ V)(U ∪ V)oo

OO

which has 1 = {∗} at all four corners.

Remark 2.8.14. An application of Corollary 2.8.12 is a completeness theorem for full
intuitionistic propositional logic with respect to categories of sheaves Sh(X), using the
sheafified Yoneda embedding in place of Joyal’s representation theorem, which we used for
completeness with respect to presheaves. We leave it to the reader to fill in the details.

Exercise 2.8.15. Fill in the details. (Hint : The downset embedding of a Heyting algebra
H into the complete Heyting algebra of its ideals Idl(H) is an injective Heyting homomor-
phism, and there is an isomorphism of complete Heyting algebras Idl(H) ∼= OSpec(H),
where the space Spec(H) is the prime spectrum of H, a generalization of the Stone space
of a Boolean algebra.)

As a further corollary of Proposition 2.8.11 we have a completeness theorem analogous
to Corollary 2.8.5 for models of the λ-calculus in categories of the form Sh(X) ≃ LocHom/X ,
by first deriving completeness for categories of sheaves Sh(X) from the same covering
theorem 2.7.3 that was used for Kripke completeness of the λ-calculus; see Remark 2.7.5.
(The completeness theorem with respect to spaces rather than posets is proved using
a refinement of the Joyal-Tierney covering theorem 2.7.3 due to Moerdijk [?], also see
[Awo00, ?].) We will state this specialization where it is needed below for the semantics
of λ-calculus with sums. While it is of interest to know that semantics in spaces and local
homeomorphisms is sufficient for theories in the λ-calculus, it is also of practical use simply
to know that the λ-calculus can be used as an internal language to reason about sheaves
over a space—a setting with many applications in everyday mathematics.

Equilogical spaces

See [?].

[DRAFT: May 10, 2025]

2.9 Extensions of the λ-calculus 71

2.9 Extensions of the λ-calculus

We conclude our study of simple type theory by considering a few extensions of the basic
λ-calculus:

1. λ-Calculus with sums.

2. Natural numbers objects.

3. Higher-order logic.

4. Modal operators.

The first three of these are discussed in much more detail in the book [LS88]. These
extensions are not λ-theories as previously defined, but instead involve further operations
on types, which may be regarded as (proof-relevant versions of) general rules of inference.
Their categorical semantics require additional structures on a CCC.

2.9.1 λ-Calculus with sums

We can extend the Curry-Howard correspondence between positive propositional calculi
and CCCs by adding “sums” to the CCCs to obtain a categorified version of Heyting
algebras, or intuitionistic propositional calculi, which we shall call BiCartesian Closed
Categories (BiCCCs),

BiCCC

CCC
=

IPC

PPC
.

The internal language of such categories will be a simple type theory given by adding
“stable sums” 0 and A + B to the λ-calculus. Following [LS88, ADHS01, FDCB02], the
additional rules required are the following.

1. The types are extended by adding the type constructors 0 and A + B, so we now
have:

Simple types A ::= B | 1 | A1 × A2 | A1 → A2 | 0 | A1 + A2

with the expected formation rules.

2. For the terms we now have

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t | ! t | inl t | inr t | [x.t1, x.t2]u

The copairs [x.t1, x.t2]u are sometimes called “cases”, and the variable x is bound.
Their typing rules, and those for the injections ! t, inl t, and inr t, are:

Γ | u : 0

Γ | !u : C

Γ | a : A

Γ | inl a : A+B

Γ | b : B
Γ | inr b : A+B

Γ, x : A | s : C Γ, y : B | t : C Γ | u : A+B

Γ | [x.s, y.t]u : C

[DRAFT: May 10, 2025]

72 Simple Type Theory

3. The equations for these terms are as follows.

z : C | z = !u : C [x.a, y.b](inl s) = a[s/x] : C [x.a, y.b](inr t) = b[t/y] : C

u = [x.inlx, y.inr y]u : A+B

v
(
[x.s, y.t]u

)
= [x.vs, y.vt]u : D

The last equation is a “distributivity” law, in which v : C → D and x, y /∈ FV(v).

4. For an example of a theory in the λ-calculus with sums, consider the notion of an
infinite object I. According to R. Dedekind [Ded88], an object is infinite if it admits
an injective mapping to a proper subobject. This condition can be captured in a
BiCCC by requiring an isomorphism 1 + I ∼= I. Specifically, we require maps and
equations as follows:

I i //

=

!!

1 + I

j

��

=

##
I

i
// 1 + I

For then j = [j ◦ inl, j ◦ inr] : 1 + I → I for unique maps j1 = j ◦ inl : 1 → I and
j2 = j ◦ inr : I → I, whence j2 : I → I is injective (as a composite of injections), and
there is at least one element j1 : 1 → I that is not in its image, by the disjointness
of coproducts,

0 //

��

I

inr

��

j2

!!
1 inl //

j1

661 + I
∼= // I .

Exercise 2.9.1. Write down the theory of infinite objects in the λ-calculus with sums
and prove that every model in a BiCCC is indeed Dedekind infinite. Also formulate the
theory of a “successor algebra” as an object X equipped with a point x : 1 → X and an
endomorphism s : X → X. Prove that the natural numbers are initial among all successor
algebras in Set (with the evident definition of algebraic homomorphisms). Show from this
that the natural numbers are Dedekind infinite.

We now have the expected extension of the foregoing results for λ-calculi and CCCs to
the case of λ-calculi with sums and BiCCCs, namely:

[DRAFT: May 10, 2025]

2.9 Extensions of the λ-calculus 73

Proposition 2.9.2. For any theory T in λ-calculi with sums, there is a (syntactic) BiCCC
BT that classifies T-models in arbitrary BiCCCs B,

BiCCC(BT,B) ≃ Mod(T,B) .

In particular, the λ-calculus with sums is complete (in the sense of Corollary 2.4.7) with
respect to models in bicartesian closed categories.

The proof is analogous to the previous case, although some care is required with the
initial object, the disjointness of sums, and their stability under products with a fixed
object (see [LS88, FDCB02]). There is also an internal language correspondence as in
Section 2.5 that we need not spell out. An interesting question considered in [FDCB02]
is that of type isomorphisms, as a generalization of elementary algebraic equations. For
example ...

Remark 2.9.3 (Variable set completeness). Completeness of λ-calculus with respect to
arbitrary presheaf categories SetC

op

is apparently more difficult to generalize to λ-calculus
with sums than was the general categorical completeness theorem, Proposition 2.9.2. This
is because, although such categories SetC

op

have very well-behaved (indeed, freely added)
coproducts, the Yoneda embedding does not preserve the coproducts that may exist in
the index category C. In the “proof-irrelevant” propositional case, we solved this problem
using a more sophisticated embedding theorem due to Joyal, Theorem 1.5.22. One may
conjecture that something similar could hold in the present case: we can embed a BiCCC
B into the category of presheaves on all “biCartesian” functors M : B → Set (playing the
role of the prime filters in a Heyting algebra); however, we would still need to show that
this analogous “evaluation embedding” also preserves all exponentials; whether this holds
is an open question.

We leave the question of completeness with respect to variable sets aside for now, and
briefly consider a different approach to the semantics of BiCCCs using sheaves, for which
one can show completeness using well-known results (e.g. [FS99]).

Definition 2.9.4. Let B be a BiCCC. A presheaf F : Bop → Set is called a sheaf (for the
+-topology) if it preserves finite products. Explicitly, a sheaf F is a contravariant functor
that takes the finite coproducts in B to products in Set (via the canonical maps),

F (0) ∼= 1 ,

F (A+B) ∼= FA× FB .

A morphism of sheaves f : G→ F is just a natural transformation.

Lemma 2.9.5. By definition, the category of sheaves is a full subcategory. The inclusion
i : Sh(B) ↪→ B̂ has a left adjoint,

a : B̂ −→ Sh(B),

called sheafification, which, moreover, preserves all finite limits.

[DRAFT: May 10, 2025]

74 Simple Type Theory

Proof. Since finite products commute with limits, it is easy to see that the FP -functors
are closed under all limits. So by the adjoint functor theorem, we see that the full sub-
category of FP-functors is reflective in the category of all Set-valued functors, as we have
already shown in Section ??. That the reflector a preserves finite limits can be shown by
analyzing the sheafification functor a in terms of the so-called Grothedieck +-construction;
see [MM92, III.5].

Proposition 2.9.6. We require the following facts about the subcategory category

Sh(B) ↪→ B̂

of +-sheaves on a BiCCC B.

1. The representable functors yB : Bop → Set are all sheaves; in particular, the terminal
object 1 = y1 is a sheaf.

2. The sheafified Yoneda embedding ay : B → Sh(B) is fully faithful, and preserves finite
coproducts.

3. If F,G are sheaves, so is their product F ×G, and if G is a sheaf and F a presheaf,
then the presheaf exponential GF is a sheaf.

Thus in particular, the fully faithful functor ay : B ↪→ Sh(B) preserves the BiCCC structure.

Proof. 1. For any object B ∈ B we have:

yB(0) = hom(0, B) = 1 ,

yB(A1 + A2) = hom(A1 + A2, B) ∼= hom(A1, B)× hom(A2, B)

= yB(A1)× yB(A2) .

2. To see that ay : B → Sh(B) is fully faithful, note that by (1) we have y ∼= i ◦ (ay) :
B → B̂, which is fully faithful, and i : Sh(B) → B̂ is so as well.

B
y //

ay
''

B̂

a

��
Sh(B)

i

OO

To see that ay preserves sums, for any sheaf F , we have:

Sh(B)(ay(0), F) ∼= B̂(y(0), iF) ∼= iF (0) ∼= 1 ,

Sh(B)(ay(A+B), F) ∼= B̂(y(A+B), iF) ∼= iF (A+B) ∼= iF (A)× iF (B) .

[DRAFT: May 10, 2025]

2.9 Extensions of the λ-calculus 75

3. If F,G are sheaves then F ×G is one as well, since, as presheaves,

(F ×G)(0) ∼= F0×G0 ∼= 1× 1 ∼= 1 ,

(F ×G)(A+B) ∼= F (A+B)×G(A+B) ∼= (FA× FB)× (GA×GB)
∼= (F ×G)(A)× (F ×G)(B) .

If G is a sheaf and F a presheaf, then as presheaves,

(iGF)(0) ∼= B̂
(
y(0)× F, iG

) ∼= Sh(B)
(
a(y(0)× F), G

)
∼= Sh(B)

(
ay(0)× aF,G

) ∼= Sh(B)
(
a0, G

) ∼= 1 .

(iGF)(A+B) ∼= B̂
(
y(A+B)× F, iG

) ∼= B̂
(
ay(A+B)× F,G

)
∼= B̂

(
(ay(A) + ay(B))× F,G

)
∼= B̂

(
(ay(A)× F) + (ay(B)× F), G

)
∼= B̂

(
ay(A)× F,G

)
× B̂

(
ay(B)× F,G

)
∼= B̂

(
y(A)× F, iG

)
× B̂

(
y(B)× F, iG

)
∼= iGF (A)× iGF (B) .

As a result of the forgoing embedding theorem, the completeness of the basic λ-calculus
with respect to presheaves can be extended to completeness of the λ-calculus with sums
with respect to categories of sheaves (although we have not yet defined these except in
the special cases of topological spaces and + sheaves on a category with stable, finite
coproducts). To that end, we define a model in a category Sh(C,+) of sheaves (for the
+ topology) on a small category C with stable finite coproducts to be a BiCCC functor
from BT, the classifying BiCCC of a theory T, into Sh(C,+). We then have the following
completeness theorem.

Proposition 2.9.7 (Completeness of λ-Calculus with Sums). For a theory T in the λ-
calculus with sums,

1. a type A is inhabited in every model in a category of sheaves Sh(C,+) iff there is a
closed term a : A,

2. an equation Γ | s = t : A holds in every model in a category of sheaves Sh(C,+) iff
there is a proof of it from the equations of T.

There is a more general notion of a sheaf for a “Grothendieck topology” on a small
category C, of which the +-topology on a category with sums is a special case, and the
foregoing proposition then generalizes to that case, but we shall not pursue this further
here.

Exercise 2.9.8. Fill in the details of the proof of Proposition 2.9.7.

[DRAFT: May 10, 2025]

76 Simple Type Theory

Finally, we can again apply the Joyal-Tierney covering theorem 2.7.3 to obtain com-
pleteness of the λ-calculus with sums with respect to categories Sh(X) of sheaves on a
space:

Corollary 2.9.9 (Topological Completeness of λ-Calculus with Sums). For a theory T in
the λ-calculus with sums,

1. a type A is inhabited in every model in a category of sheaves on a space Sh(X) iff
there is a closed term a : A,

2. an equation Γ | s = t : A holds in every model in a category of sheaves on a space
Sh(X) iff there is a proof of it from the equations of T.

Of course, the result can also be formulated equivalently in terms of BiCCCs of the form
LocHom/X rather than Sh(X), where the coproducts of local homeomorphisms A → X
and B → X are more easily constructed naively as A+B → X in the underlying category
Top/X (by Proposition 2.8.11).

Remark 2.9.10. It may also be asked whether there is a single space X such that Sh(X) is
sufficient for all theories in the λ-calculus with sums, as has been shown e.g. for intuitionistic
first-order logic IFOL with respect to just sheaves on the real line R [].

2.9.2 Natural numbers objects

Using sums we can describe infinite objects X + 1 ∼= X, but we cannot describe the free
such objects, such as the initial one, without having a general induction principle with
respect to other such objects. Such inductive type are more conveniently formulated in
dependent type theory, as we shall do in the next chapter, but we can also formulate them
in simple type theory by adding new recursion operations, see Lambek-Scott [LS88]. . This
leads to the important notion of a natural numbers object : an initial infinite object.

2.9.3 Higher-order logic

This example presumes familiarity with the results of Chapter ??, or at least with the
basic categorical approach to first-order logic as presented in [MM92, ?].

The approach to IHOL presented here is closely tied to topos theory, which is to be
treated in greater depth in Chapter ??. Also see Lambek-Scott [LS88].

Remark 2.9.11.

2.9.4 Modalities

Recall first the propositional modal logics IS4, IS5 with adjoints, natural deduction using
Bierman-dePaiva, Kavvos.

[DRAFT: May 10, 2025]

2.9 Extensions of the λ-calculus 77

Example of a CCC with a “modal operator”: pointed sets for partial functions and the
lifting monad.

Summarize Moggi’s modal λ-calculus. Also see Shulman.

See [Sco80b, Sco80a] for more on the λ-calculus

Still ToDo: Normalization use Lambek-Scott, NbE use Altenkirch

[DRAFT: May 10, 2025]

78 Simple Type Theory

[DRAFT: May 10, 2025]

Chapter 3

Dependent Type Theory

The Curry-Howard correspondence from Chapter 1.3 can be extended to natural deduction
proofs in first-order logic, providing an extension of the “propositions as types/proofs as
terms” idea from propositional logic to first-order logic (see [Sco70, How80] . In addition
to simple types A,B, ... representing propositions, one then has dependent types x : A ⊢
B(x) representing “propositional functions” or predicates. In addition to the simple type
formers A × B and A → B, one has dependent type formers Σx:AB(x) and Πx:AB(x),
representing the quantified propositions ∃x:AB(x) and ∀x:AB(x). As before, these types may
have different terms s, t : Πx:AB(x), resulting from different proofs of the corresponding
propositions, so that the calculus of terms again records more information than mere
provability. Also as before, the resulting abstract structure turns out to be one that is
shared by other categories not arising from logic—and now the coincidence is even more
remarkable, because the structure at issue is a much more elaborate one. Where proofs
in the propositional calculus gave rise to a cartesian closed category, the category of proof
terms of first-order logic will be seen to be locally cartesian closed, a mathematical structure
also shared by sheaves on a space, Grothendieck toposes, categories of fibrations, and other
important examples.

Before stating a formal dependent type theory, we begin by infomally “categorifying”
first-order logic with an abstraction (due to Lawvere [Law70]) called a hyperdoctrine. A
hyperdoctrine is a contravariant functor P : Cop → Cat (see Section 3.1), and there are in
particular both poset-valued and “proper” category-valued ones. The former correspond
to propositional and predicate logic, while the latter correspond more closely to dependent
type theory, where the individual value categories P (C) may be proper cartesian closed
categories (rather than just Heyting algebras or CCC posets). Moreover, the reindexing
functors along all projections pA : X × A → A in the index category C of contexts are
also required to admit both left and right adjoints ΣA ⊣ p∗A ⊣ ΠA, according to Lawvere’s
adjoint analysis of quantification. An important difference between hyperdoctrines and
dependent type theories, however, is that the indexing category of contexts in dependent
type theory has not just finite products, but also some additional structure resulting from
an operation of context extension, which takes as input a type in context Γ ⊢ A and returns
a new context (Γ, x : A), together with a substitution arrow (Γ, x : A) → Γ. This is taking

[DRAFT: May 10, 2025]

80 Dependent Type Theory

the “propositions-as-types” idea even more seriously, by allowing every proposition Γ ⊢ φ
in first-order logic to form a new type {Γ ⊢ φ}, thus turning the objects A ∈ P (C) in the
value-categories of hyperdoctrine (C, P) into arrows {A} → C in C.1

3.1 Hyperdoctrines

Given an algebraic signature, let C be the category of contexts, with (non-dependent)
tuples of typed variables Γ = (x1 : C1, ..., xn : Cn) as objects, and as arrows γ : ∆ → Γ the
n-tuples of terms c1 : C1, . . . , cn : Cn, all in context ∆ = (y1 : D1, ..., ym : Dm),

∆ ⊢ ci : Ci , 1 ≤ i ≤ n .

Composition is given by substitution of terms for variables,

γ ◦ δ = (c1[d1/y1, . . . , dm/ym], . . . , cn[d1/y1, . . . , dm/ym],)

for δ = (d1, . . . , dm) : E → ∆ with E = (z1 : E1, ..., zk : Ek), and the identity arrows are
the variables themselves (terms are identified up to α-renaming of variables, as in Lawvere
algebraic theories, see Chapter ??). The category C then has all finite products, essentially
given by tupling.

For each object Γ, let P (Γ) be the poset of all first-order formulas (Γ | φ), ordered by
entailment Γ | φ ⊢ ψ and identified up to provable equivalence Γ | φ ⊣⊢ ψ. Substitution
of a term σ : ∆ → Γ into a formula (Γ | φ) then determines a morphism of posets
σ∗ : P (Γ) → P (∆), which also preserves all of the propositional operations,

σ∗(φ ∧ ψ) = φ[σ/x] ∧ ψ[σ/x] = σ∗(φ) ∧ σ∗(ψ), etc.

(Exercise!). Moreover, since substitutions into formulas and terms commute with each
other, τ ∗σ∗φ = φ[σ ◦ τ/x], this action is strictly functorial, and so we have a contravariant
functor

P : Cop −→ Heyt

from the category of contexts to the category of Heyting algebras.
Now consider the quantifiers ∃ and ∀. Given a projection of contexts pX : Γ×X → Γ,

in addition to the pullback functor

p∗X : P (Γ) −→ P (Γ×X)

induced by weakening, there are the operations of quantification

∃X ,∀X : P (Γ×X) −→ P (Γ) .

By the rules for the quantifiers, these are indeed left and right adjoints to weakening,

∃X ⊣ p∗X ⊣ ∀X .

The Beck-Chevalley rules assert that substitution commutes with quantification, in the
sense that (∀xφ)[s/y] = ∀x(φ[s/y]), and similarly for (∃xφ).

1[Law70] does just this.

[DRAFT: May 10, 2025]

3.1 Hyperdoctrines 81

Definition 3.1.1. A (posetal) hyperdoctrine consists of a Cartesian category C together
with a contravariant functor

P : Cop −→ Heyt ,

such that for each f : D → C the action maps f ∗ = Pf : PC → PD have both left and
right adjoints

∃f ⊣ f ∗ ⊣ ∀f

that satisfy the Beck-Chavalley conditions.

Exercise 3.1.2. Verify that the syntax of first-order logic can indeed be organized into a
hyperdoctrine in the way just described.

Examples

1. We just described the syntactic example of first-order logic. Indeed, for each first-
order theory T there is an associated hyperdoctrine (CT, PT), with the types and terms
of T as the category of contexts CT, and the formulas (in context) of T as “predicates”,
i.e. the elements of the Heyting algebras φ ∈ PT(Γ). A general hyperdoctrine can be
regarded as an abstraction of this example.

2. A hyperdoctrine on the index category C = Set is given by the powerset functor

P : Setop −→ Heyt ,

which is represented by the Heyting algebra 2, in the sense that for each set I one
has

P(I) ∼= Hom(I,2) .

Similarly, for any complete Heyting algebra H in place of 2, there is a hyperdoctrine
H-Set, with

PH(I) ∼= Hom(I,H) .

The adjoints to precomposition along a map f : J → I are given by

∃f (φ)(i) =
∨
j∈J

(f(j) = i) ∧ φ(j) ,

∀f (φ)(i) =
∧
j∈J

(f(j) = i) ⇒ φ(j) ,

where the value of x = y in H is defined to be
∨
{⊤ | x = y}.

We leave it as an exercise to verify that this is hyperdoctrine, in particular to show
that the Beck-Chevalley conditions are satisfied.

Exercise 3.1.3. Show this.

[DRAFT: May 10, 2025]

82 Dependent Type Theory

3. For a related example, let C be any small index category and C = Ĉ, the category
of presheaves on C. An internal Heyting algebra H in C, i.e. a functor Cop → Heyt,
is said to be internally complete if, for every I ∈ C, the transpose H → HI of the
projection H× I → H has both left and right adjoints. Such an internally complete
Heyting algebra determines a (representable) hyperdoctrine PH : C → Set just as for
the case of C = Set, by setting PH(C) = C(C,H).

4. For any Heyting category H let Sub(C) be the Heyting algebra of all subobjects
S ↣ C of the object C. The presheaf Sub : Hop → Heyt, with action by pullback, is
then a hyperdoctrine, essentially by the definition of a Heyting category.

Remark 3.1.4 (Lawvere’s Law). In any hyperdoctrine (C, P), for each object C ∈ C, we
can determine an equality relation =C in each P (C × C), namely by setting

(x =C y) = ∃∆C
(⊤) ,

where ∆C : C → C × C is the diagonal, ∃∆C
⊣ ∆∗

C , and ⊤ ∈ P (C). Displaying variables
for clarity, if ρ(x, y) ∈ P (C × C) then ∆∗

Cρ(x, y) = ρ(x, x) ∈ PC is the contraction of
the different variables, and the adjunction ∃∆C

⊣ ∆∗
C can be formulated as the following

two-way rule,

x : C | ⊤ ⊢ ρ(x, x)
x : C, y : C | (x =C y) ⊢ ρ(x, y)

(3.1)

which expresses that (x =C y) is the least reflexive relation on C. See [Law70] and Exercise
?? above.

Exercise 3.1.5. Prove the standard first-order laws of equality from the above hyperdoc-
trine formulation of Lawvere’s Law (3.1).

Proper hyperdoctrines

Now let us consider some hyperdoctrines of a different kind. For any set I, let SetI be the
category of families of sets (Ai)i∈I , with families of functions (gi : Ai → Bi)i∈I as arrows,
and for f : J → I let us reindex along f by the precomposition functor f ∗ : SetI → SetJ ,
with

f ∗((Ai)i∈I)j = Af(j) .

Thus we have a contravariant functor

P : Setop → Cat

with P (I) = SetI and f ∗(A : I → Set) = A ◦ f : J → Set.

[DRAFT: May 10, 2025]

3.1 Hyperdoctrines 83

Lemma 3.1.6. The precomposition functors f ∗ : SetI → SetJ have both left and right
adjoints f! ⊣ f ∗ ⊣ f∗ which can be computed by the formulas:

f!(A)i =
∐

j∈f−1{i}

Aj , (3.2)

f∗(A)i =
∏

j∈f−1{i}

Aj ,

for A = (Aj)j∈J . Moreover, these functors satisfy the Beck-Chevally conditions.

A closely related example uses the familiar equivalence of categories SetI ≃ Set/I , where
now the adjoints

f! ⊣ f ∗ ⊣ f∗ : Set/J −→ Set/I

to reindexing along f : J → I are (post-)composition, pullback, and “push-forward”, re-
spectively. In this case, the action of the pseudofunctor P is not strictly functorial, as it was
for the case of P (I) = SetI . Note that the Beck-Chevalley conditions for such Cat-valued
functors should now also be stated as (canonical) isomorphisms, rather than equalities as
they were for poset-valued functors. In this way, when the individual categories P (I) are
proper, and not just posets, the entire hyperdoctrine structure may be weakened to include
(coherent) isomorphisms, both in the functorial action of P , and in the B-C conditions.
We will not spell out the required coherences here, but the interested reader may look up
the corresponding notion of an indexed-category, which is a Cat-valued pseudofunctor (see
[?, B1.2]).

Example 3.1.7. Another example of a “proper” hyperdoctrine, with values in non-posetal
(large!) categories, is the category of presheaves construction Ĉ = SetC

op

, where:

P : Catop −→ CAT ,

C 7−→ Ĉ .

Here the action of P may be assumed to be strictly functorial, because it’s given by
precomposition. Nonetheless the B-C conditions must be stated as natural isos, because
the adjoints F! ⊣ F ∗ ⊣ F∗ : D̂ −→ Ĉ for F : D → C are given by left and right Kan
extensions, which need not be strictly functorial.

We shall consider several more examples of proper hyperdoctrines below. The inter-
nal logic of such categories generalizes and “categorifies” first-order logic, and is better
described as dependent type theory. Proper hyperdoctrines P : Cop → Cat are roughly
related to dependent type theory in the way that posetal ones P : Cop → Pos are related
to FOL. There are actually two distinct aspects of this generalization: (1) the individual
categories of “predicates” P (C) are proper categories rather than mere posets, (2) the
variation over the index category C of contexts (and its adjoints) is weakened accordingly
to pseudo-functoriality. Each of these aspects plays an important role in dependent type
theory and its categorical semantics.

[DRAFT: May 10, 2025]

84 Dependent Type Theory

First-Order Logic Dependent Type Theory

Propositional Logic Simple Type Theory

3.2 Dependently-typed lambda-calculus.

We give a somewhat informal specification of the syntax of the dependently-typed λ-calculus
(see [Hof95, AG] for a more detailed exposition).

Dependent type theories have four standard forms of judgement

A : type , A ≡ B : type , a : A , a ≡ b : A .

We refer to the triple equality relation ≡ in these judgements as definitional (or judgemen-
tal) equality. It should not be confused with the notions of (extensional and intensional)
propositional equality to be introduced below. A judgement J of one of the four above
kinds can also be made relative to a context Γ of variable declarations, a situation that
we indicate by writing Γ ⊢ J . When stating deduction rules for such judgements we make
use of standard conventions to simplify the exposition, such as omitting the (part of the)
context that is common to premisses and conclusions of the rule.

To formulate the rules, we revisit the rules of simple type theory from Section 2.1 and
adjust them as follows.

Judgements: The basic kinds of judgements are:

Γ ctx , Γ ⊢ A type , Γ ⊢ a : A .

along with the judgemental equalities of each kind:

Γ ≡ ∆ ctx A ≡ B type a ≡ b : A ,

each of which are assumed to satisfy the usual laws of equality.

Contexts: These are formed by the rules:

(·) ctx
Γ ⊢ A type

Γ, x : A ctx

Here it is assumed that x is a fresh variable, not already occurring in Γ. Note that, unlike
in the simple type theory of the previous chapter, the order of the types occurring in a
context now matters, since types to the right may depend on ones to their left.

[DRAFT: May 10, 2025]

3.2 Dependently-typed lambda-calculus. 85

Types: In addition to the usual simple types, generated from basic types by formation of
products and function types, we may also have some basic types in context,

Basic dependent types Γ1 ⊢ B1, Γ2 ⊢ B2, · · ·

where the contexts Γ need not be basic. Further dependent types are formed from the
basic ones by the sum Σ and product Π type formers, using the formation rules :

Γ, x : A ⊢ B type

Γ ⊢ Σx:AB type

Γ, x : A ⊢ B type

Γ ⊢ Πx:AB type

Terms: As for the simple types, we assume there is a countable set of variables x, y, z,
We are also given a set of basic constants. The set of terms is then generated from variables
and basic constants by the following grammar, just as for simple types:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

The rules for deriving typing judgments are much as for simple types. They are of course
assumed to hold in any context Γ.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An ⊢ xi : Ai

(1 ≤ i ≤ n)

• The constant ∗ has type 1:

∗ : 1

• The typing rules for pairs and projections now take the form:

a : A b : B(a)

⟨a, b⟩ : Σx:AB

c : Σx:AB

fst c : A

c : Σx:AB

snd c : B(fst c)

We write e.g. B(a) rather than B[a/x] to indicate a substitution of the term a for
the variable x in the type B. Similarly, we may write Σx:AB(x) to emphasize the
possible occurence of the variable x in B. We treat A×B as another way of writing
Σx:AB, when the variable x : A does not occur in the type B.

[DRAFT: May 10, 2025]

86 Dependent Type Theory

• The typing rules for application and λ-abstraction are now:

t : Πx:AB a : A

t a : B(a)

x : A ⊢ t : B
(λx : A . t) : Πx:AB

We treat A → B as another way of writing Πx:AB when the variable x : A does not
occur in the type B.

The (β and η) equations between these terms are just as they were for simple types:

• Equations for unit type:

t ≡ ∗ : 1

• Equations for sum types:

u ≡ v : A s ≡ t : B(a)

⟨u, s⟩ ≡ ⟨v, t⟩ : Σx:AB

s ≡ t : Σx:AB

fst s ≡ fst t : A

s ≡ t : Σx:AB

snd s ≡ snd t : A

t ≡ ⟨fst t, snd t⟩ : Σx:AB
(η-rule)

fst ⟨s, t⟩ ≡ s : A snd ⟨s, t⟩ ≡ t : A
(β-rule)

• Equations for product types:

s ≡ t : Πx:AB u ≡ v : A

su ≡ t v : B

x : A ⊢ t ≡ u : B

(λx : A . t) ≡ (λx : A . u) : Πx:AB

(λx : A . t)u ≡ t[u/x] : A
(β-rule)

λx : A . (t x) ≡ t : Πx:AB
if x ̸∈ FV(t) (η-rule)

Equality types: Just as for first-order logic, for each type A we have a primitive equality
type:

x, y : A ⊢ EqA(x, y) type .

[DRAFT: May 10, 2025]

3.2 Dependently-typed lambda-calculus. 87

This is called propositional equality. For convenience, we may sometimes also write x =A y
for EqA(x, y). Although they will turn out to be logically equivalent, the reader is warned
not to confuse propositional and judgemental equality x ≡ y : A.

The formation, introduction, elimination, and computation rules for equality types are
as follows:

s : A t : A

s =A t type

a : A

refla : (a =A a)

p : s =A t

s ≡ t : A

p : s =A t

p ≡ refls : (s =A s)

The elimination rule is known as equality reflection. We may say that two elements s, t : A
are propositionally equal if the type s =A t is inhabited. Thus the equality reflection rule
says that if two terms are propositionally equal then they are judgementally equal.

Exercise 3.2.1. Show that two terms are propositionally equal if, and only if, they are
judgementally equal.

Remark 3.2.2 (Identity types). The formulation of the rules for equality just given is
known as the extensional theory. There is also an intensional version, with different elimi-
nation (and computation) rules, to be considered in the next chapter. To help maintain the
distinction between these three (!) different relations, the intensional version is sometimes
called the identity type and written IdA(s, t) instead. See [AG] for details.

Remark 3.2.3 (Variant rules for sum types). Another formulation of the rules for Σ-types
using a single dependent elimination rule is as follows:

z : Σx:AB ⊢ C type x : A, y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
z : Σx:AB ⊢ split(z, c) : Σx:AB

with the associated computation rule:

z : Σx:AB ⊢ C type x : A, y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
x : A, y : B(x) ⊢ split(⟨x, y⟩, c) ≡ c(x, y) : C(⟨x, y⟩)

These rules permit one to derive the simple elimination terms fst c and snd c, and to prove
the above computation rules for them. The η-rule is derived using a dependent elimination
involving the Eq-type.

Exercise 3.2.4. Prove the simple elimination rules for sum-types (involving fst c and
snd c) from the dependent ones (involving split).

Remark 3.2.5 (The type-theoretic axiom of choice). One of the oldest problems in the
foundations of mathematics is the logical status of the Axiom of Choice. Is it a “Law of
Logic”? A mathematical fact about sets? A falsehood with paradoxical consequences?

[DRAFT: May 10, 2025]

88 Dependent Type Theory

Per Martin-Löf discovered that the rules of constructive type theory that we have just
presented actually suffice to decide this question in favor of “Law of Logic” in a certain
sense [ML84] (see also [Tai68]). Since the statement of the type theoretic axiom of choice
goes (slightly) beyond standard first-order logic, this arguably provides a resolution that
also clarifies why the problem remained open for so long in conventional mathematics.

Under propositions as types, reading Σ as “there exists” and Π as “for all”, a type
such a Πx:AΣy:BR(x, y) can be regarded as a stating a proposition—in this case, “for all
x : A there is a y : B such that R(x, y)”. By Curry-Howard, such a “proposition” is then
provable if it has a closed term t : Πx:AΣy:BR(x, y), which then corresponds to a proof, by
unwinding the rules that constructed the term, and observing that they correspond to the
usual natural deduction rules for first-order logic.

Of course, the rules of construction for terms correspond to provability only under a
certain “constructive” conception of validity (see [Sco70]). Stated as follows,

Πx:AΣy:BR(x, y) → Σf :A→BΠx:AR(x, fx) , (3.3)

the “type theoretic axiom of choice” may sound like the classical axiom of choice under
the propositions as types interpretation, but this type is actually provable in (constructive)
type theory, rather than being an axiom!

Exercise 3.2.6. Prove the type theoretic axiom of choice (3.3) from the rules for sum and
product types given here.

3.2.1 Interaction of Eq with Σ and Π

The type theoretic axiom of choice Example 3.2.5, can be seen as a distributivity law
for Σ and Π. It is in fact an isomorphism of types : there are terms going both ways, the
composites of which are propositionally (and therefore definitionally!) equal to the identity
maps (i.e. λx : X. x : X → X). It is natural to ask, how do the other type formers interact?

Consider first the result of combining Eq-types with Σ. We can show that for s, t : A×B
there is always a term,

EqA×B(s, t) →
(
EqA(fst s, fst t)× EqB(snd s, snd t)

)
,

Moreover, there is a term in the other direction as well, and the composites are proposition-
ally equal to the identity. By equality reflection, it therefore follows that these types are
also syntactically isomorphic, in the sense just described. The same is true for dependent
sums, although this is a bit more awkward to state, owing to the fact that snd (s) : B(fst s)
and snd t : B(fst (t). However, since the first projection gives a term p : EqA(fst s, fst t)
we have fst s ≡ fst t and therefore B(fst s) ≡ B(fst t), so that EqB(fst s)(snd s, snd t)
makes sense, and is in fact judgementally equal to EqB(fst t)(snd s, snd t), so we can write:

EqΣx:AB(s, t) → Σp:EqA(fst s,fst t)EqB(fst s)(snd s, snd t) ,

[DRAFT: May 10, 2025]

3.3 Locally cartesian closed categories 89

Moreover, since EqB(fst s)(snd s, snd t) does not depend on p : EqA(fst s, fst t), this actially
rewrites to:

EqΣx:AB(s, t) → EqA(fst s, fst t)× EqB(fst s)(snd s, snd t) .

Moreover, these types are also isomorphic.
For Π-types, given terms f, g : A→ B, we can form a term of type

EqA→B(f, g) → Πx:AEqB(fx, gx) .

and again, this is an isomorphism of types. The corresponding law for dependent functions
f, g : Πx:AB takes the more perspicuous form

EqΠx:AB(f, g) → Πx:AEqB(x)(fx, gx) .

And again, this is also an iso. Note that these last two isomorphisms say that two functions
are equal just if they are so “pointwise”. This principle is called Function Extensionality.

Finally, let us consider equality of equality types. Given any terms a, b : C and p, q :
EqC(a, b), what more can be said? The principle called Uniqueness of Identity Proofs (UIP)
asserts that there is always a term of type

EqEqC(a,b)(p, q) .

Is there an argument for this principle, analogous to those for the equalities of terms of
types Σ and Π? We shall return to this question in the setting of intensional type theory
in the next chapter.

Exercise 3.2.7. Prove that extensional type theory satisfies (UIP).

3.3 Locally cartesian closed categories

Recall the following proposition from ??.

Proposition 3.3.1 (and Definition). The following conditions on a category C with a
terminal object 1 are equivalent:

1. Every slice category C/A is cartesian closed.

2. For every arrow f : B → A the (post-) composition functor Σf : C/B → C/A has a
right adjoint f ∗, which in turn has a right adjoint Πf .

B
f // A

C/B

Σf

%%

Πf

99
C/Af ∗oo

[DRAFT: May 10, 2025]

90 Dependent Type Theory

Such a category is called locally cartesian closed.

The notation Σf ⊣ f ∗ ⊣ Πf of course anticipates the interpretation of DTT. A common
alternate notation is f! ⊣ f ∗ ⊣ f∗.

Proof. Suppose every slice of C is cartesian closed. It suffices to consider the case of (2)
with A = 1, and to show that the functor B∗ : C → C/B with B∗(X) = (π2 : X ×B → B)
has both left and right adjoints ΣB ⊣ B∗ ⊣ ΠB : C/B → C. For ΣB we can just take
the forgetful functor. For ΠB(p : X → B) we use the CCC structure in C to form the
map pB : XB → BB, which we then pull back along the point ′1B

′ : 1 → BB that is the
transpose of the identity map 1B : B → B.

ΠB(X)

��

// XB

pB

��
1 ′1B

′
// BB

Conversely, if C is LCC, then in every slice C/X we can define the product of A→ X and
B → X as A×X B = ΣAA

∗B and the exponential as (BA)X = ΠAA
∗B. The universal

properties are then easily checked.

Exercise 3.3.2. Verify the details of the proof just sketched for Proposition 3.3.1.

Basic examples of LCCCs

1. We have already seen the hyperdoctrine C = Set and P : Setop → Cat where P (I) =
SetI , with action of f : J → I on A : I → Set by precomposition f ∗A = A ◦ f : J →
Set, which is strictly functorial. There is an equivalent hyperdoctrine with the slice
category Set/I as the “category of predicates” and action by pullback f ∗ : Set/I →
Set/J . The equivalence of categories

SetI ≃ Set/I

allows us to use post-composition as the left adjoint f! : Set/J → Set/I , rather
than the coproduct formula in (3.2). Indeed, this hyperdoctrine structure arises
immediately from the locally cartesian closed character of Set. We have the same
for any other LCC E , namely the pair (E , E/(−)) determines a hyperdoctrine, with
the action of E/(−) by pullback, and the left and right adjoints coming from the LCC
structure.

2. Another familiar example of a hyperdoctrine arising from LCC structure is presheaves
on a small category C, where for the slice category Ĉ/X we have another category of
presheaves, namely

Ĉ/X ∼=
∫̂
CX , (3.4)

[DRAFT: May 10, 2025]

3.3 Locally cartesian closed categories 91

on the category of elements
∫
CX. For a natural transformation f : Y → X we have

a functor
∫
f :

∫
Y →

∫
X, which (as usual) induces a triple of adjoints on presheaves,

(
∫
f)! ⊣ (

∫
f)∗ ⊣ (

∫
f)∗ :

∫̂
Y −→

∫̂
X ,

where the middle functor (
∫
f)∗ is precomposition with

∫
f , which preserves all

(co)limits. These satisfy the Beck-Chevalley conditions (up to isomorphism), be-
cause this indexed category is equivalent to the one coming from the LCC structure
(3.4), which we know satisfies them.

Note that each of the categories Ĉ/X is therefore also Cartesian closed, so that Ĉ is

indeed LCC by Proposition 3.3.1. Moreover each Ĉ/X also has coproducts 0, X + Y ,
so it is a “categorified” Heyting algebra—although we don’t make that part of the
definition of a hyperdoctrine.

3. An instructive example of a hyperdoctrine that is not an LCC is the subcategory
of Pos of posets and monotone maps, which we already met in Section ??, with
the “predicates” being the discrete fibrations. For each poset K, let us take as the
category of predicates P (K) the full subcategory dFib K ↪→ Pos/K consisting of the
discrete fibrations : monotone maps p : X → K with the “unique lifting property”:
for any x and k ≤ p(x) there is a unique x′ ≤ x with p(x′) = k. Since each category
dFib/K is equivalent to a category of presheaves SetK

op

, and pullback along any
monotone f : J → K preserves discrete fibrations, and moreover commutes with the
equivalences to the presheaf categories and the precomposition functor f ∗ : K̂ → Ĵ ,
we have a hyperdoctrine if only the Beck-Chevalley conditions hold. We leave this
as an exercise for the reader. Finally, observe that dFib cannot be an LCC, simply
because it does not have a terminal object; however, every slice of course does one,
and so every slice dFib/K is a CCC, and therefore also an LCC (since a slice of a slice
is a slice).

4. An example formally similar to the foregoing is the non-full subcategory LocHom ↪→
Top of topological spaces and local homeomorphisms between them, which also lacks
a terminal object, but each slice of which LocHom/X ≃ Sh(X) is equivalent to the
topos of sheaves on the space X, and is therefore CCC (and so LCCC).

5. Fibrations of groupoids. Another, similar, example of a hyperdoctrine not arising
simply from an LCCC is the category Grpd of groupoids and homomorphisms, which
is not LCC (cf. [Pal03]). We can however take as the category of predicates P (G)
the full subcategory Fib(G) ↪→ Grpd/G consisting of the fibrations into G: homomor-
phisms p : H → G with the “iso lifting property”: for any h ∈ H and γ : g ∼= p(h)
there is some ϑ : h′ ∼= h with p(ϑ) = γ. Now each category Fib(G) is biequivalent to a
category of presheaves of groupoids Fib(G) ≃ GrpdG

op

. It is not so easy to show that
this is a (bicategorical) hyperdoctrine; see [HS98]. This example will be important
in the next chapter as a model of intensional dependent type theory. The category
Cat, with iso-fibrations as the “predicates”, has a similar character.

[DRAFT: May 10, 2025]

92 Dependent Type Theory

Exercise 3.3.3. 1. Verify that the pullback of a discrete fibration X → K along a
monotone map f : J → K exists in Pos, and is again a discrete fibration.

2. Verify the equivalence of categories dFib(K) ≃ SetK
op

.

3. Show the Beck-Chavelley conditions for the indexed category of discrete fibrations of
posets.

Exercise 3.3.4. Let P : Cop → Cat be a hyperdoctrine for which there are equivalences
PC ≃ C/C, naturally in C, with respect to the left adjoints Σf : C/A → C/B for all
f : A→ B in C. Show that C is then LCC.

Exercise 3.3.5. Show that any LCCC C, regarded as a hyperdoctrine, has equality in the
sense of Remark 3.1.4.

3.4 Functorial semantics of DTT in LCCCs

We begin by describing a “naive” interpretation of dependent type theory in a locally
cartesian closed category which, although not strictly sound, is nonetheless useful and
intuitive. In particular, it extends the functorial semantics of simple type theory in CCCs
that we developed in the last chapter in a natural way. In a subsequent section, we shall
“strictify” the interpretation to one that is fully correct, but technically somewhat more
complicated. See Remark 3.4.4 below.

Contexts Γ are interpreted as objects [[Γ]], and dependent types Γ ⊢ A as morphisms
into the context [[Γ]]. To begin, let C be an LCCC, and interpret the empty context as the
terminal object, [[·]] = 1. Then to each closed basic type · ⊢ B, we assign a type [[B]] and
interpret [[· ⊢ B]] : [[B]] → 1. Proceeding by recursion, given any type in context Γ ⊢ A, we
shall have

[[Γ ⊢ A]] : [[Γ, A]] −→ [[Γ]] ,

abbreviating Γ, x : A to Γ, A. A basic dependent type Γ ⊢ B is interpreted by specifying
a map [[Γ ⊢ B]] : [[Γ, B]] −→ [[Γ]], where the interpretation [[Γ]] is assumed to have been
already given. Note that in this way, we also interpret the operation of context extension,
by taking the domain of the interpretation of a type in context.

Weakening a type in context Γ ⊢ C to one Γ, A ⊢ C is interpreted as

[[Γ, A ⊢ C]] = p∗[[Γ ⊢ C]],

that is, the lefthand vertical map in the following pullback square, where the substitution
p : [[Γ, A]] → [[Γ]] is the canonical projection p = [[Γ ⊢ A]] .

[[Γ, A, C]] //

[[Γ, A ⊢ C]]
��

[[Γ, C]]

[[Γ ⊢ C]]
��

[[Γ, A]] p
// [[Γ]]

(3.5)

[DRAFT: May 10, 2025]

3.4 Functorial semantics of DTT in LCCCs 93

Given Γ, A ⊢ B, we may assume that we already have maps

[[Γ, A,B]]
[[Γ,A⊢B]]−→ [[Γ, A]]

[[Γ⊢A]]−→ [[Γ]] ,

and we use the left and right adjoints to the pullback functor

[[Γ ⊢ A]]∗ : C/[[Γ]] → C/[[Γ,A]]

to interpret the eponymous type-forming operations:

[[Γ ⊢ Σx:AB]] = Σ[[Γ⊢A]]([[Γ, A ⊢ B]]) ,

[[Γ ⊢ Πx:AB]] = Π[[Γ⊢A]]([[Γ, A ⊢ B]]) .

A term Γ ⊢ a : A is interpreted as a section:

[[Γ]]

=

''

[[Γ ⊢ a : A]]
// [[Γ, A]]

[[Γ ⊢ A]]
��

[[Γ]]

Finally, as in first-order logic, substitution of a term Γ ⊢ a : A for a variable Γ, x : A in a
dependent type Γ, A ⊢ B is interpreted by taking a pullback,

[[Γ, B(a)]] //

[[Γ ⊢ B(a)]]

��

[[Γ, A,B]]

[[Γ, A ⊢ B]]

��
[[Γ]]

[[Γ ⊢ a : A]]
// [[Γ, A]]

and similarly for substitution into terms.
More generally, given any substitution γ : ∆ → Γ (a tuple of terms c1, . . . , cn in context

∆ of types those in Γ = (x1 : C1, . . . , xn : Cn)), we have a morphism [[γ]] : [[∆]] → [[Γ]].
Then, as in the substitution of a single term Γ ⊢ c : C for a variable Γ, x : C, we can obtain
a pullback diagram along [[γ]]:

[[∆, A(γ)]] //

[[∆ ⊢ A(γ)]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[∆]]
[[γ]]

// [[Γ]]

[DRAFT: May 10, 2025]

94 Dependent Type Theory

The lefthand vertical map is then by definition the interpretation of the substituted type
∆ ⊢ A(γ). The interpretation of a substitution into a term ∆ ⊢ a(γ) : A(σ) is similarly
induced by pullback.

Finally, we interpret an equality type x : A, y : A ⊢ EqA(x, y) as the diagonal of the
interpretation of A,

[[x, y : A ⊢ EqA(x, y)]] = ∆[[A]] : [[A]] −→ [[A]]× [[A]] .

As a map of contexts we then have

[[A,A, EqA(x, y)]] = [[A]] −→ [[A]]× [[A]] = [[A,A]] .

For Γ, A,A ⊢ EqA(x, y), with a context Γ, we take the diagonal of the map [[Γ ⊢ A]] :
[[Γ, A]] −→ [[Γ]] as an object in the slice category over [[Γ]].

Proposition 3.4.1 ([See84]). The rules of dependent type theory are sound with respect
to the naive interpretation in any LCCC, modulo the following Remark 3.4.4.

Proof. One needs to check that all of the typing judgements from Section 3.2 are sound, but
much of this work has already been done in the simply typed case, in virtue of Proposition
3.3.1. One thing that we cannot take over from that case is the interpretation of the
Eq-types, so let us check those rules by way of example.

The Formation rule (in the empty context) is clearly satified by the stated interpreta-
tion:

[[x : A, y : A ⊢ EqA(x, y)]] = ∆[[A]] : [[A]] −→ [[A]]× [[A]] . (3.6)

For the Introduction rule, we pull back the dependent type [[x : A, y : A ⊢ EqA(x, y)]]
along the substitution δ : [[z : A]] → [[x : A, y : A]] (the diagonal of [[A]] interpreting the
variable contraction ⟨z/x, z/y⟩) to obtain the diagram:

[[z : A, EqA(z, z)]]

[[z : A ⊢ EqA(z, z)]]

��

// [[x : A, y : A, EqA(x, y)]]

[[x : A, y : A ⊢ EqA(x, y)]]

��
[[z : A]]

δ
//

reflz

44

[[x : A, y : A]]

The term [[z : A ⊢ reflz : EqA(z, z)]] is to be a section of the left hand vertical map, or
equivalently, the indicated diagonal. This can be taken to be the identity arrow of [[A]] by
the specification of [[x : A, y : A ⊢ EqA(x, y)]] in (3.6). The Elimination and Computation
Rules are left as an exercise.

Exercise 3.4.2. Complete the verification of the Eq-rules.

Exercise 3.4.3. Verify either the Σ or the Π rules.

[DRAFT: May 10, 2025]

3.4 Functorial semantics of DTT in LCCCs 95

Remark 3.4.4 (Coherence). Although it is correct according to the intuition of slice
categories in an LCCC, the naive interpretation of substitution as pullback leads to a well-
known coherence problem [Hof95] for the interpretation of dependent type theory, arising
from the fact that pullbacks are only determined up to (canonical) isomorphism. For
example, in the foregoing situation, given another substitution Φ ⊢ δ : ∆, we obtain the
two-pullback diagram:

[[Φ, A(γ)(δ)]] //

[[Φ ⊢ A(γ)(δ)]]
��

[[∆, A(γ)]] //

[[∆ ⊢ A(γ)]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[Φ]]
[[Φ ⊢ δ : ∆]]

// [[∆]]
[[∆ ⊢ γ : Γ]]

// [[Γ]]

However, the composition of substitutions [[∆ ⊢ γ : Γ]] ◦ [[Φ ⊢ δ : ∆]] across the bottom is
the map [[Φ ⊢ γ(δ) : Γ]], and so there is another option for the vertical map on the left,
namely the single pullback:

[[Φ, A(γ(δ))]] //

[[Φ ⊢ A(γ(δ))]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[Φ]]
[[Φ ⊢ δ(γ) : Γ]]

// [[Γ]]

Since pullbacks are unique up to iso, there is of course a canonical isomorphism

[[Φ, A(γ)(δ)]] ∼= [[Φ, A(γ(δ))]]

over the base [[Φ]], but there is no reason for these two objects (and their associated pro-
jections) to be the same. To put the matter succinctly, the action of substitution between
contexts on dependent types is strictly functorial, but the action of pullback on slice cate-
gories is only a pseudofunctor.

The naive LCCC interpretation, with substitution as pullback, is thus only sound “up
to (canonical) isomorphism”. The problem becomes more acute in the case of intensional
type theory, where the interpretation of certain type formers is not even determined up to
isomorphism. We shall consider one solution to this problem in detail in Section 4.4 below.
For the remainder of this chapter on extensional type theory, however, we can continue to
work “up to (canonical) isomorphism” without worrying about coherence.

As was done for simple type theory in Section 2.5, we can also again develop the
relationship between the type theory and its models using the framework of functorial
semantics. This is now a common generalization of λ-theories, modeled in CCCs, and
first-order logic, modeled in Heyting categories. The first step is to build a syntactic

[DRAFT: May 10, 2025]

96 Dependent Type Theory

classifying category CT from a theory T in dependent type theory, which we then show
classifies T-models in LCCCs. We omit the now essentially routine details (given the
analogous cases already considered), and merely state the main result, the proof of which
is also analogous to the previous cases. A detailed treatment can be found in the seminal
paper [See84].

Theorem 3.4.5. For any theory T in dependent type theory, the locally cartesian closed
syntactic category CT classifies T-models, in the sense that for any locally cartesian closed
category C there is an equivalence of categories

Mod
(
T, C

)
≃ LCCC

(
CT , C

)
, (3.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of LCCC functors.

As a corollary, again as before, we have that dependent type theory is complete with
respect to the semantics in locally cartesian closed categories, in virtue of the syntactic
construction of the classifying category CT. Specifically, any theory T has a canonical
interpretation [−] in the syntactic category CT which is logically generic in the sense that,
for any terms Γ ⊢ s : A and Γ ⊢ t : A, we have

T ⊢ (Γ ⊢ u ≡ t : A) ⇐⇒ [Γ ⊢ u : A] = [Γ ⊢ t : A]
⇐⇒ [−] |= (Γ ⊢ s ≡ t : A) .

Thus, for the record, we have:

Proposition 3.4.6. For any dependently typed theory T,

T ⊢ (Γ ⊢ u ≡ t : A) if, and only if, CT |= (Γ ⊢ u ≡ t : A) .

Of course, the syntactic model [−] in CT is the one associated under (3.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by LCCC functors (as in Proposition 2.3.2).

Corollary 3.4.7. For any dependently typed theory T,

T ⊢ (Γ ⊢ u ≡ t : A) if, and only if, M |= (Γ ⊢ u ≡ t : A) for every LCCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

Remark 3.4.8. In the current setting of extensional dependent type theory, soundness and
completeness with respect to inhabitation is actually to the same for equations, because
⊢ u ≡ t : A just if ⊢ e : EqA(u, t) for some (closed) term e, and similarly on the semantic
side.

[DRAFT: May 10, 2025]

3.5 Inductive types 97

The embedding and completeness theorems of the previous chapter with respect to
general presheaf models, Kripke models, and topological and sheaf semantics can also be
extended to dependently typed theories. See [AR11, Awo00] for details. The internal
language construction and Theorem 2.5.2, associating a dependently typed theory with an
LCCC, also extend from simple to dependent type theory. Indeed, this is the main result
of [See84]. In view of this result, we hereafter move back and forth freely between syntactic
(i.e., type theoretic) and semantic (i.e., categorical) statements and proofs.

Exercise 3.4.9. In the internal logic of an LCCC E , show that the category of types in
context Γ ∈ E is equivalent to the slice category E/Γ. (Hint : use Eq-types.)

3.5 Inductive types

3.5.1 Sum types

Recall from Chapter 2 the following rules for sum types 0, A+B in STT, with term-formers
! t, inl t, and inr t and [x.t1, x.t2]u.

1. The Introduction and Elimination rules are:

Γ | a : A

Γ | inl a : A+B

Γ | b : B
Γ | inr b : A+B

Γ | u : 0

Γ | !u : C

Γ, x : A | s : C Γ, y : B | t : C Γ | u : A+B

Γ | [x.s, y.t]u : C

2. The Computation rules are the following equations.

z : C | z ≡ !u : C [x.a, y.b](inl s) ≡ a[s/x] : C [x.a, y.b](inr t) ≡ b[t/y] : C

u ≡ [x.inlx, y.inr y]u : A+B

v
(
[x.s, y.t]u

)
≡ [x.vs, y.vt]u : D

To reformulate these in a form suitable for dependent types, we shall change the Elimi-
nation rule to allow for a type C varying over the type being defined. The idea is that the
simple elimination rule for A+B determines a (normal) function of the form A+B → C,
while the dependent eliminator determines a “dependent function” z : A+B ⊢ s(z) : C(z),
i.e. a section s,

C

��
A+B .

s

BB

[DRAFT: May 10, 2025]

98 Dependent Type Theory

We designate the former as recursion and the latter as induction, for reasons which will
be become clear shortly, but for now, one can think of C → A + B as a type-family or
“predicate” on A + B. Let us consider first the special of the “Boolean truth-values”
Bool = 1 + 1.

The Booleans. As a special case of sum types, consider the following rules for the type
Bool = 1 + 1, with the obvious renaming of the term-formers (cf. [?, Section 5.1])

• Formation rule.
Bool type .

• Introduction rules.
false : Bool , true : Bool .

• Elimination rule.

x : Bool ⊢ C(x) type c0 : C(false) c1 : C(true)

x : Bool ⊢ indBool(x, c0, c1) : C(x)

• Computation rules.

indBool(false, c0, c1) ≡ c0 : C(false) , indBool(true, c0, c1) ≡ c1 : C(true) (β)

x : Bool ⊢ c(x) : C(x) type

x : Bool ⊢ indBool(x, c(false), c(true)) ≡ c(x) : C(x)
(η)

A basic property of dependent elimination rules is now the following.

Proposition 3.5.1. The η-rule can be derived from the other rules.

Proof. We use the dependent Eq-type for C(x) as follows:
By Eq-elim it suffices to show that there is a term

x : Bool ⊢ e : EqC(x)

(
indBool(x, c(false), c(true)), c(x)

)
.

By Bool-elim it therefore suffices to have terms

e0 : EqC(false)

(
indBool(false, c(false), c(true)), c(false)

)
,

e1 : EqC(true)

(
indBool(true, c(false), c(true)), c(true)

)
.

But by the β-rules, we have

indBool(false, c(false), c(true)) ≡ c(false)

indBool(true, c(false), c(true)) ≡ c(true) ,

and so we can take

e0 := refl : EqC(false)

(
c(false), c(false)

)
,

e1 := refl : EqC(true)

(
c(true), c(true)

)
.

[DRAFT: May 10, 2025]

3.5 Inductive types 99

Exercise 3.5.2. Formulate the corresponding dependent rules for sum types A + B and
prove the η-rule from the others.

Exercise 3.5.3. Assuming the dependent rules for sum types A + B, prove the simple
rules, including the η and distributivity computation rules.

3.5.2 Natural numbers

First, recall the following definition, which can be stated in any category with a terminal
object. It is usually stated with additional parameters, but this is not required in the case
of an LCCC (see [LS88] for a discussion).

Definition 3.5.4 (Lawvere [Law63]). A natural numbers object in an LCCC E is an object
N equipped with the structure 0 : 1 → N and s : N → N, and initial in the category of such
structures.

Spelling this out: given any object A ∈ E together with morphisms a : 1 → A and
f : A→ A, there is a unique map

u : N → A ,

making the following diagram in E commute.

1 A A

1 N N

a f

0 s

u u

Of course, this is just a categorical way of stating the usual “definition by recursion”
property of the natural numbers. It can be shown to imply the usual Peano axioms in an
elementary topos (see [LS88]).

In type theory, we can formulate the corresponding notion as an inductive type. Indeed,
the type Nat of natural numbers is the paradigmatic inductive type. The familiar rules for
Nat in simple type theory are as follows.

• Formation rule.
Nat type

• Introduction rules.

zero : Nat n : Nat ⊢ succ(n) : Nat

• Simple elimination rule.

C type c0 : C x : C ⊢ c(x) : C

n : Nat ⊢ rec(n, c0, c) : C

Note that in the conclusion we treat c := λx : C. c(x) as a term of type C → C.

[DRAFT: May 10, 2025]

100 Dependent Type Theory

• Computation rules.

rec(zero, c0, c) ≡ c0 : C

rec(succ(n), c0, c) ≡ c(rec(n, c0, c)) : C

The function rec(c0,c) := λn : Nat. rec(n, c0, c) : Nat → C then satisfies the usual
recursion equations:

rec(c0,c)(zero) ≡ rec(zero, c0, c) ≡ c0 : C ,

rec(c0,c)(succ(n)) ≡ rec(succ(n), c0, c)

≡ c(rec(n, c0, c)

≡ c(rec(c0,c)(n)) : C .

Note that this specification follows Definition 3.5.4 of an NNO pretty closely, until we
come to the uniqueness of the function rec(c0,c) : Nat → C. In order to show that rec(c0,c) is
the unique function satisfying the Computation rules, we would need to add an appropriate
η-rule (see Exercise 3.5.9 below). Alternately, we can strengthen the elimination rule to a
dependent one, in order to allow the type EqNat to appear in the conclusion, as we did for
the example of Bool in Proposition 3.5.1. Such a dependent elimination rule corresponds
(under propositions as types) to the familiar rule of “proof by induction”: if for some
property of natural numbers P (n), we have P (0), and if P (n) implies P (n + 1) for all n,
then P (n) holds for all n. Reformulating this familiar principle in dependent type theory
with an explicit proof term for the inference from n to n + 1 results in a more powerful
recursion schema with parameters.

Dependent elimination. The rules for Nat in dependent type theory use the same
formation and introduction rules as above, but provide for eliminating into a type family,
parametrized by natural numbers.

• Dependent elimination rule.

n : Nat ⊢ C(n) type c0 : C(zero) n : Nat, x : C(n) ⊢ c(n, x) : C(succ(n))

n : Nat ⊢ ind(n, c0, c) : C(n)

Note that in the conclusion we now treat c := λn : Natλx : C(n). c(n, x) as a term
of type Πn:Nat. C(n) → C(succ(n)).

• Dependent computation rules.

ind(zero, c0, c) ≡ c0 : C(zero) ,

ind(succ(n), c0, c) ≡ c(n, ind(n, c0, c)) : C(succ(n)) .

Proposition 3.5.5. In the classifying category CNat with the dependent elimination and
computation rules just stated, the type Nat equipped with zero : Nat and succ : Nat → Nat
is a natural numbers object.

[DRAFT: May 10, 2025]

3.5 Inductive types 101

Proof. Let A be any type with a distinguished point a : A and an endo map f : A → A.
We need to find a unique map

u : Nat → A ,

making the following diagram commute in CNat.

1 A A

1 Nat Nat

a f

zero

u

succ

u

We therefore require a term n : Nat ⊢ u(n) : A with:

u(zero) ≡ a : A , (3.8)

n : Nat ⊢ u(succ(n)) ≡ f(u(n)) : A .

In the (dependent) elimination rule, we can take C(n) to be A (the constant family), and
c0 to be a, and for n : Nat, x : A we let c(n, x) be f(x). In the conclusion we then obtain
n : Nat ⊢ ind(n, a, f) : A, which we take to be the required map u : Nat → A. The
computation rules then clearly provide the required equations (3.8).

We then use the equality type to prove uniqueness. Namely, suppose that we also have
n : Nat ⊢ v(n) : A with

v(zero) ≡ a : A , (3.9)

n : Nat ⊢ v(succ(n)) ≡ f(v(n)) : A .

We wish to show u ≡ v : Nat → Nat. By equality reflection, it suffices to show EqNat→Nat(u, v),
and by function extensionality (3.2.1), it is therefore enough to show Πn:Nat.EqNat(u(n), v(n)).
Thus we will be done by the following dependent elimination with C(n) = EqNat(u(n), v(n)),
once we have found suitable terms e0 and e(n, x).

e0 : EqNat(u(zero), v(zero))
n : Nat, x : EqNat(u(n), v(n)) ⊢ e(n, x) : EqNat

(
u(succ(n)), v(succ(n))

)
n : Nat ⊢ ind(n, e0, e) : EqNat(u(n), v(n))

But since u(zero) ≡ a ≡ v(zero) by (3.8) and (3.9), we can take e0 := refl. By the same,
we also have u(succ(n)) ≡ f(u(n)) and v(succ(n)) ≡ f(v(n)), and by the assumption
x : EqNat(u(n), v(n)) we have u(n) ≡ v(n) and thus f(u(n)) ≡ f(v(n)). So for e(n, x) we
can again take a suitable refl.

Conversely, we also have the following result:

Proposition 3.5.6. Let E be an LCCC with a natural numbers object,

1 N N .0 s

Then (N, 0, s) satisfies the Formation, Introduction, (dependent) Elimination, and (depen-
dent) Computation rules for the type Nat.

[DRAFT: May 10, 2025]

102 Dependent Type Theory

Proof. The Formation and Introduction rules are immediate. For the Elimination rule,
suppose given an interpretation of the premises, namely: a dependent type [[N ⊢ C]] : C →
N, a section c0 : 1 → 0∗C of the pullback of C over 0 : 1 → N, and a map c as in the
following diagram:

C s∗C C

N N

c

⌟

s

Then we have, equivalently, a commutative diagram:

1 C C

1 N N

c0 c

0 s

By the universal property of N as an NNO, there is a (unique!) section i : N → C
commuting with the NNO structure maps.

1 C C

1 N N

c0 c

0

i

s

i

Taking [[n : Nat ⊢ ind(n, c0, c)]] := i then satisfies the dependent Elimination and Compu-
tation rules. (Why is i : N → C a section of C → N?)

Remark 3.5.7. We shall see that, in dependent type theory, the foregoing two propositions
are typical of inductive types in general: a structured type (S, s) is initial if and only if
every type family T → S equipped with the same kind of structure (T, t) over (S, s)
has a structure preserving section. We shall make this precise in terms of algebras for
(polynomial) endofunctors in the next section.

Exercise 3.5.8. Use the dependent rules for Nat to define the addition function + :
Nat× Nat → Nat in such a way that

m+ 0 ≡ m,

m+ succ(n) ≡ succ(m+ n) .

Exercise 3.5.9. Formulate a (simple) η-rule for Nat that allows one to prove the analog of
Proposition 3.5.5 from just the simple elimination and computation rules (including your
new η-rule).

[DRAFT: May 10, 2025]

3.5 Inductive types 103

3.5.3 Algebras for endofunctors

Let E be an LCCC with sums, and consider the endofunctor F : E → E with F (X) = 1+X.
As usual, an algebra for F is an object A equipped with a map a : F (A) → A, and a
homomorphism of F -algebras h : (A, a) → (B, b) is a map h : A→ B commuting with the
algebra structure maps:

FA FB

A B

Fh

a b

h

(3.10)

In this particular case, such an algebra a : FA = 1 + A → A corresponds to a unique
“successor algebra” structure a = [a0, as] where:

1 A A ,
a0 as

and an F -algebra homomorphism is just a successor algebra homomorphism. It follows
that a natural numbers object is the same thing as an initial F -algebra, i.e. an initial object
in the category F -Alg of F -algebras and their homomorphisms.

More generally, one can consider the category of algebras for any endofunctor F : E →
E , but there need not always be an initial one, in light of the following fact.

Lemma 3.5.10 (Lambek). Given F : E → E, if i : F (I) → I is an initial F -algebra, then
the map i is an isomorphism.

Exercise 3.5.11. Prove Lambek’s lemma and conclude that not every endofunctor has an
initial algebra.

When an initial algebra does exists, it can be regarded as a generalized “inductive
type”, in view of the following.

Proposition 3.5.12. Let F : E → E and let i : F (I) → I be an initial F -algebra. Let
p : C → I be a family over I with an F -algebra structure c : FC → C making the following
diagram commute.

FC C

FI I

c

Fp p

i

Then there is a section s : I → C that is an algebra homomorphism.
Conversely, if a : FA→ A is an algebra such that every algebra (C, c) → (A, a) over it

has an algebra section, then (A, a) is initial in the category F -Alg.

Proof. Since (I, i) is initial, there is an algebra homomorphism h : (I, i) → (C, c). Since ho-
momorphisms compose, p◦h : I → I is also one. But then p◦h = 1I since homomorphisms
from initial algebras are unique, and (I, i) is initial.

[DRAFT: May 10, 2025]

104 Dependent Type Theory

Conversely, suppose every algebra over (A, a) has an (algebra) section, and let (B, b)
be any algebra. We need a (unique) algebra homomorphism u : (A, a) → (B, b). Consider
the projection p1 : A×B → A as an algebra over (A, a) with structure map (aFp1, bFp2) :
F (A×B) → A×B.

F (A×B) A×B

FA A

Fp1

(aFp1, bFp2)

p1

a

Let s : A→ A×B be an algebra section, so that u := p2 ◦ s : A→ B is a homomorphism.
We claim that u is unique. Indeed, given any homomorphism t : A → B, consider the
equalizer e : E(t, u) ↣ A, which of course is the pullback of the diagonal ∆B : B ↣ B×B
along the map (t, u) : A→ B×B. It will suffice to equip E(t, u) with an algebra structure
map ε : F (E(t, u)) → E(t, u) over a : FA → A, for then we shall have an algebra section
s : A → E(t, u), whence e : E(t, u) ∼= A, and so t = u, since e : E(t, u) ↣ A is the
equalizer.

F (E(t, u)) E(t, u)

FA A

Fe

ε

e

a

s

We claim that a ◦ Fe : F (E(t, u)) → FA → A precomposes equally with t, u : A → B,
which will suffice for ε. But this follows by a chase around the following diagram, recalling
that t and u are homomorphisms, and te = ue.

F (E(t, u)) E(t, u)

FA A

FB B

Fe

ε

e

F t Fu

a

t u

b

Exercise 3.5.13. Reformulate and prove Proposition 3.5.12 in dependent type theory,
using Eq-types for the equalizer.

Polynomial endofunctors. One class of endofunctors F : Set → Set for which initial
algebras do exist are the (finitary) polynomial functors,

F (X) = C0 + C1×X + · · ·+ Cn×Xn , (3.11)

where C0, . . . , Cn are sets and Xk = X× . . .×X is the k-fold product. The endofunctor
1 +X for the natural numbers N was of course of this kind. An algebra (A, a) for e.g. the

[DRAFT: May 10, 2025]

3.5 Inductive types 105

functor 1 +X +X2 will be a pregroup structure on the set A,

[a0, a1, a2] : 1 + A+ A2 −→ A ,

corresponding to an element a0 ∈ A, a unary operation a1 : A→ A and a binary operation
a2 : A×A→ A. We say “pregroup structure” to emphasize that no equations are required
to hold; this is just an interpretation of the “signature” of a group.

An algebra a : F (A) → A for the functor (3.11) would thus be a “conventional” alge-
braic structure on A (in the sense of universal algebra) consisting of C0-many “constants”
1 → A and C1-many “unary operations” A → A, . . . , and Cn-many n-ary “operations”
An → A. Note that algebra homomorphisms in the sense of (3.10) are just homomorphisms
in the usual sense of algebraic structures.

Proposition 3.5.14. Any finitary polynomial functor F : Set → Set such as (3.11) has
an initial algebra.

An elementary proof would proceed by forming the “term algebra” A consisting of all
expressions of the form ack(t1, . . . , tk), where ck ∈ Ck, and the tk are “previously” formed
terms of the same kind. A more abstract proof (that also generalizes to other settings) is
as follows:

Proof. By [Awo10, 10.13], it suffices to show that F preserves ω-colimits, for then the
colimit of the sequence

0 → F0 → FF0 → . . .

will be an initial algebra. The coproduct C0 + C1×X + · · · + Cn×Xn preserves all of
the colimits preserved by the monomials Ck×Xk, and each of these preserves the colimits
preserved by the functor Xk = X×. . .×X, which includes the filtered ones like ω.

The proof obviously generalizes to a much larger class of endofunctors, including ones on
categories other than Set (see e.g. [Awo10, 10.14]). Rather than pursuing this topic further,
however (for which, see [AR94]), we want to consider a type-theoretic reformulation that
captures a range of inductive types with good properties. Let us first apply Proposition
3.5.12, and state the resulting rules for an initial algebra of a polynomial functor, for
example:

F (X) = A+B×X + C×X2 ,

as a simplified version of (3.11) (the general case will be covered below). Let us write
s : F (I) → I for an initial F -algebra (assuming it exists). Then we have the following
rules:

The assumption that the initial algebra exists takes the form:

• I-formation rule.
A type B type C type

I type

[DRAFT: May 10, 2025]

106 Dependent Type Theory

And I also will come with an algebra structure s : F (I) → I, given by:

• I-introduction rules for the operation s : A+B×I + C×I2 −→ I,

a : A

s0(a) : I

b : B , i : I

s1(b, i) : I

c : C , i : I , j : I

s2(c, i, j) : I

We also have an induction principle, as in Proposition 3.5.12, for any F -algebra f : F (X) →
X over F (I) → I:

• I-elimination rule.

i : I ⊢ X(i) type
a : A ⊢ f0(a) : X(s0(a))
b : B, i : I, x : X(i) ⊢ f1(b, x) : X(s1(b, i))
c : C, i, j : I, x : X(i), y : X(j) ⊢ f2(c, x, y) : X(s2(c, i, j))

i : I ⊢ rec(i, f0, f1, f2) : X(i)

And, of course, there is a computation rule, resulting from first introducing and then
eliminating, which says that the following diagram commutes.

F (X) X

FI I

f

s

rec
rec

• I-computation rules.

a : A ⊢ rec(s0(a), f0, f1, f2) ≡ f0(a) : X(s(a)) ,

b : B, i : I ⊢ rec(s1(b, i), f0, f1, f2) ≡ f1(b, rec(i, f⃗)) : X(s1(b, i)) ,

c : C, i, j : I ⊢ rec(s2(c, i, j), f0, f1, f2) ≡ f2(c, rec(i, f⃗), rec(j, f⃗)) : X(s2(c, i, j)) .

Exercise 3.5.15. Specialize the foregoing to the case F (X) = 1 +X and derive the rules
for Nat from Section 3.5.2.

3.5.4 W-types

The rules just given for initial algebras for polynomial functors are a bit unwieldy as the
degree of the polynomial F increases, but they simplify when stated in a more general
form, which can actually be applied in any LCCC E . Indeed, let p : B → A be any map
in E , regarded as a type family a : A ⊢ B(a). We can form the (generalized) polynomial
endofunctor P : E → E as:

P (X) = Σa:AX
B(a) = A! ◦ p∗ ◦B∗(X) , (3.12)

[DRAFT: May 10, 2025]

3.5 Inductive types 107

as indicated in the following:

X X×B P (X)

B Ap

Observe that B∗ = p∗ ◦ A∗, so that

ΣA p∗B
∗ (X) = ΣA p∗ p

∗A∗(X) = ΣA(A
∗X)p ,

which justifies the polynomial notation Σa:AX
B(a), since the type B(a) is the fiber of

p : B → A at a : A.

Definition 3.5.16 (cf. [MP00]). A (semantic)W-type in a locally cartesian closed category
E is an initial algebra for a polynomial endofunctor P : E → E associated to a map
p : B → A, as in (3.12).

We shall see that W-types can be used to introduce a wide class of inductive types in
dependent type theory. The following rules for W-types are due to [?]. To state them more
perspicuously, for a fixed type family x : A ⊢ B(x) we may write W instead of Wx:AB(x).

• W-formation rule.
A type x : A ⊢ B(x) type

Wx:AB(x) type

• W-introduction rule.
a : A t : B(a) → W

wsup(a, t) : W

• W-elimination rule.

w : W ⊢ C(w) type
x : A, u : B(x) → W, v : Πy:B(x)C(u(y)) ⊢ c(x, u, v) : C(wsup(x, u))

w : W ⊢ wind(w, c) : C(w)

• W-computation rule.

w : W ⊢ C(w) type
x : A, u : B(x) → W, v : Πy:B(x)C(u(y)) ⊢ c(x, u, v) : C(wsup(x, u))

x : A, u : B(x) → W ⊢ wind(wsup(x, u), c) ≡
c(x, u, λy.wind(u(y), c)) : C(wsup(x, u))

[DRAFT: May 10, 2025]

108 Dependent Type Theory

Informally, the W-type for a family x : A ⊢ B(x) can be regarded as the free algebra
for a signature with A-many operations, each of (possibly infinite) arity B(a) – and no
equations. Indeed, the premisses of the formation rule above can be thought of as specifying
a signature that has the terms a : A as the operations themselves, and (the cardinality of)
the type B(a) as the “arity” of a : A. Then, the introduction rule specifies an element of
the free algebra, namely wsup(a, t) : W, where t : B(a) → W. The elimination rule then
states that W is the initial algebra of the assocated polynomial functor Σa:AX

B(a).

Proposition 3.5.17. An object W satisfies the rules for W-types if, and only if, it is an
initial algebra for the polynomial functor P (X) = Σa:AX

B(a).

Proof. We use Proposition 3.5.12. Suppose W satisfies the rules for W types above. From
the introduction rule, we have a P -algebra structure wsup : P (W) → W. Let C → W with
a P -algebra structure c : P (C) → C over wsup : P (W) → W. This is exactly what the
premises of the elimination rule say, so by the conclusion of that rule there is a section
w : W ⊢ wind(w, c) : C(w), which is a P -algebra homomorphism by the computation rule.
The converse is left as an exercise.

Exercise 3.5.18. Complete the proof of Proposition 3.5.17.

Remark 3.5.19 (cf. [AGS17]). The foregoing (dependent)W-elimination rule implies what
may be called the simple W-elimination rule:

C type x : A, v : B(x) → C ⊢ c(x, v) : C

w : W ⊢ wrec(w, c) : C

This can be recognized as a recursion principle for maps from W into P -algebras, since the
premisses of the rule describe exactly a type C equipped with a structure map c : PC → C.
For this special case of the elimination rule, the corresponding computation rule again states
that the function

λw.wrec(w, c) : W → C ,

where c(x, v) = c(⟨x, v⟩) for x : A and v : B(x) → C, is a P -algebra homomorphism.
Moreover, this homomorphism can then be shown to be (definitionally) unique, using Eq-
types, the elimination rule, and the reflection rule, as in the proof of Proposition 3.5.12.
The converse implication also holds: one can derive the general W-elimination rule from
the simple elimination rule and the following η-rule.

C : type w : W ⊢ h(w) : C
x : A, v : B(x) → C ⊢ c(x, v) : C
x : A , u : B(x) → W ⊢ h (wsup(x, u)) = c(x, λy.hu(y)) : C

w : W ⊢ h(w) ≡ wrec(w, c) : C

This rule states the uniqueness of the wrec term among algebra maps. Overall, we therefore
have that induction and recursion are inter-derivable in the present theory with extensional

[DRAFT: May 10, 2025]

3.5 Inductive types 109

Eq-types:

Induction ⇔ Recursion

Dependent elimination Simple elimination
Dependent computation Simple computation + η-rule

Examples of W-types. We conclude by noting that many familiar inductive types can
be reduced to W-types. We mention the following examples, among many others (see [?],
[?], [?], [?], [?], [?]):

1. Natural numbers. The usual rules for Nat as an inductive type can be derived from
its formalization as a W-type. Consider the signature determined by the map inl :
1 → 1 + 1 (say): it has two operations, one of which has arity 0 and one of which
has arity 1, since these are the pullbacks of the map inl : 1 → 1 + 1 along the two
points 1 ⇒ 1 + 1. To present this in type theory, we need a type family over Bool
(say) with the types 0 and 1 as its values. Consider the family

v : Bool ⊢ EqBool(v, true) type,

which has the values:

EqBool(v, true)
∼=

{
1 v = true

0 v = false

Indeed, one can show that the projection Σv:BoolEqBool(v, true) → Bool is isomorphic
to the map true : 1 → Bool over Bool.

The corresponding polynomial functor can then be defined as

P (X) = Σv:Bool EqBool(v, true) → X

= 1+X .

The corresponding W type is then the initial algebra of P (X) = 1 +X, namely the
type Nat of natural numbers,

Nat = Wv:Bool EqBool(v, true) .

The canonical element zero : Nat and the successor function succ : Nat → Nat result
from the two cases of introduction rule,

b : Bool t : EqBool(b, true) → Nat

wsup(b, t) : Nat

namely:
false : Bool t : (EqBool(false, true) → Nat)

wsup(false, t) : Nat

[DRAFT: May 10, 2025]

110 Dependent Type Theory

and
true : Bool t : (EqBool(true, true) → Nat)

wsup(true, t) : Nat

Thus we can take

zero := λt. wsup(false, t) : 1 → Nat ,

succ := λt. wsup(true, t) : Nat → Nat .

2. Second number class. As shown in [?], the second number class can be obtained as a
W-type determined by the polynomial functor

P (X) = 1+X + (Nat → X) .

This has algebras with three operations, one of arity 0, one of arity 1, and one of
arity (the cardinality of) Nat.

3. Lists. The type List(A) of finite lists of elements of some type A can be built as a
W-type determined by the polynomial functor

P (X) = 1+ A×X ,

associated to the map ! + A : 0 + A→ 1 + 1. We refer to [?] for details.

Exercise 3.5.20. If a signature for an algebraic theory has no constants, then the free
algebra on the empty set 0 will itself be empty, as can be seen by considering the term
algebra construction of the free algebra F (0). Something similar is true for W-types (say,
in Set): if p : B ↠ A is an epimorphism, then P (0) = Σa:A 0B(a) ∼= 0, and soWa:AB(a) ∼= 0.
Prove this.

3.6 Propositional truncation

Even under the Propositions-as-Types (PaT) conception there are certain types P that are
proof irrelevant in the sense that for any p, q : P , we have EqP (p, q) (meaning that we have
a term t : EqP (p, q), and so p ≡ q). For example, the type 1 has this property, as does 0.
Let us call this such special types propositional, which is definable by

IsProp(P) = Πp,q:PEqP (p, q) .

This condition is equivalent to P ∼= P × P .

Exercise 3.6.1. Prove this: a type P is propositional if and only if P ∼= P×P (canonically)
and, moreover, if and only if the unique map P → 1 is a monomorphism.

The propositions are easily seen to be closed under finite products P × Q, and if
x : X ⊢ P (x) is a family of propositions, then Πx:XA(x) is also a proposition. Finally, if P
is a proposition, then so is A→ P for any A.

[DRAFT: May 10, 2025]

3.6 Propositional truncation 111

Exercise 3.6.2. Prove the last three statements.

It therefore makes sense to expect that for any type A, there could be a universal
propositional approximation p : A → PA, with the universal property that every map
A→ P with P a proposition factors (uniquely) through p : A→ PA, as in:

A P

PA

p

This is equivalent to saying that for any proposition P , the map P p : P PA → PA induced
by precomposing with p : A→ PA is an iso. When it exists, we shall call such an object a
propositional truncation of A, and denote it by A→ [A].

Definition 3.6.3. Given a type A, a propositional truncation of A is a type [A] equipped
with a map A→ [A] such that, for any proposition P , the canonical precomposition map

P [A] → PA

is an isomorphism.

Example 3.6.4. In a category of presheaves SetC
op

the propositions are exactly the sub-
objects of 1, by Exercise 3.6.1. But since every map A→ B in presheaves can be factored
into an epi followed by a mono A ↠ M ↣ B, every object A has a propositional trunca-
tion A ↠ [A] ↣ 1. Moreover, since these factorizations are stable under pullback (Ĉ is
regular), the propositional truncation operation [A] commutes with pullback, in the sense
that for B → 1 we have B∗[A] ∼= [B∗A]. More generally, for any f : Y → X and any
A→ X, we have

f ∗[A] ∼= [f ∗A] ,

as in the following diagram,

f ∗A A

[f ∗A] [A]

Y X

⌟

⌟

f

as is seen by applying the foregoing remark to the presheaf category Ĉ/X ∼=
∫̂
CX.

The “stability under pullback” of the operation A 7→ [A] means that it can be added
to dependent type theory as a new type former, because it exists in any context and
commutes with substitution. We shall formulate rules for [A] in the next section 3.6.1.
The propositional truncation [A] of a type A may be regarded as “erasing (or ignoring)

[DRAFT: May 10, 2025]

112 Dependent Type Theory

the (computational) content” of A and treating it as a “mere truth-value”: either A is
inhabited or not, and all inhabitants a : A are identified.

The reg-epi/mono factorizations in a regular category fit into an orthogonal factoriza-
tion system in the following sense.

Definition 3.6.5. An orthogonal factorization system on a category C consists of two
classes of arrows (E,M) such that:

1. The classes of maps E,M ⊆ C1 are closed under isos in the arrow category.

2. Every map f : A→ B factors f = m ◦ e into e ∈ E followed by m ∈ M,

A B

C

f

e m

3. Given any commutative square with an E-map on the left and an M-map on the right,

A B

C D

there is a unique diagonal filler (as indicated) making both triangles commute.

Exercise 3.6.6. Show that the epimorphisms and monomorphisms form an orthogonal
factorization system on the category Set. Infer that the same is true for any presheaf
category SetC

op

.

3.6.1 Bracket types

The rules for bracket types [A] in dependent type theory are as follows (cf. [?, ?]):

• Formation rule.
A type

[A] type

• Introduction rules.
a : A

|a| : [A]

a : [A], b : [A]

eq(a, b) : Eq[A](a, b)

• Elimination rule.

z : [A] ⊢ C(z) type x : A ⊢ c(x) : C(|x|)
x : A, u : C(|x|), v : C(|x|) ⊢ p(x, u, v) : EqC(|x|)(u, v)

z : [A] ⊢ ind(z, c, p) : C(z)

[DRAFT: May 10, 2025]

3.6 Propositional truncation 113

• Computation rule.
x : A ⊢ ind(|x|, c, p) ≡ c(x) : C(|x|)

The Computation rule can be understood semantically as stating that, when it exists,
the section z : [A] ⊢ ind(z, c, p) : C(z) makes the following diagram commute.

C

A [A]

c

|−|

ind

And the Elimination rule states that such a section exists if any u, v : C(|x|) are always
equal, so that C(z) is a family of propositions.

The simple rules are perhaps easier to understand:

• Simple Elimination rule.

P type x : A ⊢ p(x) : P u : P, v : P ⊢ q(u, v) : EqP (u, v)

z : [A] ⊢ rec(z, p, q) : P

• Simple Computation rule.

x : A ⊢ rec(|x|, p, q) ≡ p(x) : P

The Simple Computation rule states that, when it exists, the map z : [A] ⊢ rec(z, p, q) :
P makes the following diagram commute.

A P

[A]

|−|

p

rec

And by the Simple Elimination rule, such a map z : [A] ⊢ rec(z, p, q) : P exists whenever P
is a proposition. Taken together with the Introduction rule, which says that [A] is always
a proposition, this clearly states that the inclusion i : Props ↪→ Types of the propositions
into the types has the propositional truncation operation [−] as a left adjoint.

Props Typesi

[−]

[−] ⊣ i

Exercise 3.6.7. Prove the adjointness between the inclusion of propositions into types and
the propositional truncation operation. Why doesn’t one need to add an η computation
rule to the simple Elimination rule to get the uniqueness of the eliminator required for the
adjunction?

[DRAFT: May 10, 2025]

114 Dependent Type Theory

3.6.2 Propositions as [types]

In dependent type theory with the type-forming operations

0, 1, [A], A+B, EqA, Πx:AB, Σx:AB

the propositions in every context model intuitionistic first-order logic (IFOL), under the
following definitions:

⊤ = 1

⊥ = 0

ϕ ∧ ψ = ϕ× ψ

ϕ ∨ ψ = [ϕ+ ψ]

ϕ⇒ ψ = ϕ→ ψ

¬ϕ = ϕ→ 0 (3.12)

∀x : A. ϕ = Πx:A ϕ

∃x : A. ϕ = [Σx:A ϕ]

x = y = EqA(x, y)

The bracket is thus used to “rectify” the operations + and Σ , because they lead out
of propositions. The operations defined in (3.12) satisfy the usual rules for intuitionistic
first-order logic, and the resulting system is then a hybrid of dependent type theory with
first-order logic over each type. It can be described categorically as the internal logic of a
regular LCCC with finite sums. This formulation is equivalent to the more customary one
using both type theory and predicate logic (such as in [?]), despite the fact that the first-
order logical operations on the propositions are here defined in terms of the type-theoretic
operations on types, rather than being taken as primitive.

In addition to first-order logic, one can also use brackets to define subset types. For any
type Γ, x : A ⊢ B, the associated subset type

Γ ⊢ {x : A |B}

is defined by
{x : A |B} = Σx:A [B(x)] .

Semantically, this can therefore be modeled by the image factorization:

Σx:AB(x) B

{x : A |B} [B]

A A

This hybrid logic of dependent types with first-order logic over each type is a very
expressive system, and is used in many modern settings [Uni13, ?, ?].

[DRAFT: May 10, 2025]

3.6 Propositional truncation 115

3.6.3 Completeness of propositions as types

We can use bracket types to compare conventional first-order logic with the propositions-
as-types interpretation, and relate first-order provability to provability in dependent type
theory (without brackets). Consider the standard propositions-as-types translation of first-
order logic into type theory:

∗ : FOL → DTT

For a single-sorted first-order theory T, consisting of constants, function and relation sym-
bols, the ∗-translation is determined by first fixing the translations of the basic sort of
individuals, and the constants, function and relation symbols. The rest of the translation
is then determined inductively in the expected way, using the type-forming operations in
place of the corresponding logical ones.

For example,

(∀x ∃y.R(x, y) ∨ P (x))∗ = Πx:I Σy:I R
∗(x, y) + P ∗(x) ,

where I is a basic type representing the domain of “individuals” (which is usually implicit
in FOL), and the dependent types x : I ⊢ P ∗(x) and x : I, y : I ⊢ R∗(x, y) interpret the
relation symbols P and R.

If we then add a constant a : α∗ for each axiom α, the translation ϕ∗ of a provable,
closed formula ϕ is then inhabited by a closed term, that is obtained from a straightforward
translation of the IFOL proof of ϕ into type theory (recalling that the rules of type theory
are proof-relevant versions of those of IFOL).

Thus we have:
IFOL(T) ⊢ ϕ implies DTT(T) ⊢ ϕ∗, (3.13)

where by DTT(T) ⊢ ϕ∗ we mean that the type ϕ∗ is inhabited in dependent type theory
enriched with the basic types and constants needed for the translation ∗, and with constants
inhabiting the translations of axioms of T. We emphasize that we are not using the defined
operations (3.12), but rather the standard “PAT” ones.

The question we want to consider now is the converse implication: if ϕ∗ is “PAT-
provable”, i.e. inhabited in DTT(T), must ϕ be provable in the intuitionistic first-order
theory T? Note that functions of higher types may be used in a term inhabiting ϕ∗, so this
is not merely a matter of tracing out proofs in first-order logic from those in DTT, as was
the converse case.

Proofs of partial converses of (3.13), for different fragments of first-order logic, have
been given by Martin-Löf (∀, ⇒ in [?]), Tait (∀, →, ∃, ∧, ¬ in [?]), and Constable (∀, →
, ∃, ∧, ∨, ¬ in [?]). These results are for type theory with no equality types, and proceed
from proofs of normalization. We state a result below that applies to type theory with
(extensional) equality and a large fragment of first-order logic. The proof uses the bracket
types translation.

Definition 3.6.8. A formula ϑ in first-order logic with equality is stable when it contains
neither ∀ nor ⇒, but negation ¬ is allowed as a special case of ⇒. A first-order formula ϕ
is left-stable when in every subformula of the form ϑ⇒ ψ, the formula ϑ is stable.

[DRAFT: May 10, 2025]

116 Dependent Type Theory

Theorem 3.6.9. If ϕ is left-stable, then

DTT(T) ⊢ ϕ∗ implies IFOL(T) ⊢ ϕ .

For the proof, see [?].
Finally, observe that every first-order formula ϕ is classically equivalent to one ϕs that

is stable. The stabilization ϕs of ϕ is obtained by replacing in ϕ every ∀x. ϑ and ϑ ⇒ ψ
by ¬∃x.¬ϑ and ¬(ϑ ∧ ¬ψ), respectively. The equivalence ϕ ⇔ ϕs holds intuitionistically
if ϕ = ψ¬¬ is the double-negation translation of a formula ψ. Therefore, the stabilized
double-negation translation

(ϕ¬¬)s

takes a formula ϕ of first-order logic with equality to a stable one, for which provability in
IFOL is equivalent to classical provability (in CFOL),

CFOL ⊢ ϕ if and only if IFOL ⊢ (ϕ¬¬)s .

If we further compose the (¬¬s)-translation with the propositions-as-types translation ∗,
we obtain a translation

ϕ+ := ((ϕ¬¬)s)∗

which takes formulas of (classical) first-order logic into dependent type theory, in such a
way that every formula ϕ is classically equivalent to one covered by Theorem 3.6.9.

Corollary 3.6.10. The translation ϕ 7→ ϕ+ of first-order logic with equality into dependent
type theory is sound and complete, in the sense that for every formula ϕ,

CFOL ⊢ ϕ if and only if DTT ⊢ ϕ+ .

Here DTT ⊢ ϕ+ means that the type ϕ+ is inhabited.

Remark 3.6.11 (Thierry Coquand). The following formula is not provable in intuition-
istic first-order logic, but its ∗-translation is inhabited in dependent type theory, by an
application of the axiom of choice.

(∀x ∃y.R(x, y)) ⇒ ∀x, x′ ∃y, y′. (R(x, y) ∧R(x′, y′) ∧ (x = x′ ⇒ y = y′)) .

Theorem 3.6.9 therefore cannot be extended to full intuitionistic first-order logic.

[DRAFT: May 10, 2025]

Chapter 4

Homotopy Type Theory

The extensional dependent type theory of the previous chapter is in some ways a very
natural system that admits an intuitively clear model in the locally cartesian closed cat-
egory of sets and related categories. But for computational purposes, and specifically for
the important application of type theory to proof checking in a computer proof assistant
such as Agda or Lean, it has some serious defects: the equality relation between terms
(or types) is not decidable: there is no algorithm that will determine whether two closed
terms of a given type s, t : A are (judgementally) equal s ≡ t : A. Indeed, there is no
normalization procedure for reducing terms to normal forms—otherwise we could use it to
decide whether two terms were equal by normalizing them and then comparing their nor-
mal forms. Relatedly, one cannot effectively decide whether a given type (e.g an equality
type such as EqA(s, t)) is inhabited (which would be a decision procedure for the provability
of s =A t), even given a candidate “proof term” p : EqA(s, t) (which would be a decision
procedure for being a proof).

For this reason, the extensional system is often replaced in applications by a weaker
one, called intensional type theory, which enjoys better computational behavior, such as
decidability of equality and type-checking, and normalization. A good discussion of these
and several related issues, such as canonicity and consistency can be found in Chapter 3
of the book [AG].

However, this is only one side of the story. The intensional theory was mainly a tech-
nical device for specialists in computational type theory (and a conceptual challenge from
the semantic point of view) until around 2006, when it was discovered that this theory
admitted a homotopical (and higher-categorical) interpretation, which led to the discovery
of Homotopy type theory (HoTT) [Awo12]. This interpretation not only helped to clarify
the intensional theory, and prove useful in investigating its computational properties, but
also opened up a wide range of applications outside of the conventional areas of type the-
ory, vis. computational and constructive mathematics. For, quite independently of such
applications, the homotopical interpretation permits the use of intensional type theory as
a powerful and expressive internal language for formal reasoning in homotopy theory and
higher category theory, both highly abstract areas of mathematics, for which new and rig-
orous tools for calculation and proof are quite welcome. Moreover, the fortuitous fact that

[DRAFT: May 10, 2025]

118 Homotopy Type Theory

this system also has the good computational behavior that it does has led to the use of
computational proof assistants in homotopy theory and higher category theory, even ahead
of some more down-to-earth branches of mathematics, where such exotic semantics were
not needed.

The homotopical interpretation was already anticipated by a 2-dimensional one in the
category of groupoids, a special case of a higher categorical model that already suffices to
make some of the essential features of such models clear. Thus we shall briefly review this
model below, after introducing the intensional theory, and before considering the general
homotopical semantics using weak factorization systems. Such “weak” interpretations also
bring to a head the coherence issues that we deferred in the previous chapter, and we
conclude with one approach to strictifying such interpretations using natural models, aka,
categories with families.

4.1 Identity types

We begin by recalling from Section 3.2 the rules for equality types in the extensional system:
The formation, introduction, elimination, and computation rules for equality types were
as follows:

s : A t : A

s =A t type

a : A

refl(a) : (a =A a)

p : s =A t

s ≡ t : A

p : s =A t

p ≡ refl(s) : (s =A s)

The Identity types in the intensional theory, also written x =A y, or sometimes IdA(x, y),
have the same formation and introduction rules as the Equality types, but the elimination
rule of “equality reflection” is replaced by the following elimination rule:

x : A, y : A, z : IdA(x, y) ⊢ C(x, y, z) type, x : A ⊢ c(x) : C(x, x, refl(x))
x : A, y : A, z : IdA(x, y) ⊢ J(x, y, z, c) : C

in which the variable x is bound in the occurance of c within the eliminator J. The
associated computation rule then becomes:

x : A ⊢ J(x, x, refl(x), c) ≡ c(x) : C(x, x, refl(x))

In HoTT, the elimination rule is called path induction, for reasons that will become clear.
To see how the elimination rule works, let us derive the basic laws of identity, namely

reflexivity, symmetry, and transitivity, as well as Leibniz’s Law the indicernibility of iden-
ticals, also known as the substitution of equals for equals.

• Reflexivity: states that x =A y is a reflexive relation, but this is just the Id-formation
and intro rules:

x : A, y : A ⊢ x =A y type , x : A ⊢ refl(x) : x =A x

[DRAFT: May 10, 2025]

4.1 Identity types 119

• Symmetry: can be stated as x : A, y : A, u : x =A y ⊢ ? : y =A x , which can be
proved with an Id-elim as follows:

x : A ⊢ refl(x) : x =A x

x : A, y : A, u : x =A y ⊢ J(x, y, u, refl) : y =A x

• Transitivity: we wish to show

x : A, y : A, z : A, u : x =A y, v : y =A z ⊢ ? : x =A z

regarding z : A as a fixed parameter, which we can move to the front of the context,
we want to apply an Id-elim with respect to the assumption u : x =A y, so we can
set x to y, and look for a premiss of the form:

z : A, y : A, v : y =A z ⊢ ? : y =A z

We cannot simply take v, however, since the order of the types in the context is still
wrong for Id-elim, but we can move the assumption v : y =A z to the right with a
λ-abstraction to obtain

z : A, y : A ⊢ λv .v : y =A z → y =A z ,

and now we can apply the planned Id-elim with respect to u : x =A y with the
“motive” being y =A z → x =A z to obtain

z : A, y : A, x : A, u : x =A y ⊢ J(x, y, u, λv.v) : y =A z → x =A z

from which follows the desired

x : A, y : A, z : A, u : x =A y, v : y =A z ⊢ J(x, y, u, λv.v) v : x =A z .

• Substitution: to show

x : A ⊢ C(x) type

x : A, y : A, u : x =A y ⊢ ? : C(x) → C(y)

it suffices to have a premiss of the form

x : A ⊢ c(x) : C(x) → C(x)

for this, we can take c(x) = λz : C(x). z : C(x) → C(x) to obtain

x : A, y : A, u : x =A y ⊢ J(x, y, u, x.λz : C(x).z) : C(x) → C(y) .

Note that the variable x is bound in the J term.

[DRAFT: May 10, 2025]

120 Homotopy Type Theory

Many more properties of Id-types and their associated J-terms are shown in the in-
troductory texts [?, Rij25]. One key fact is that the higher identity types IdIdA(a,b)(p, q)
are no longer degenerate, but themselves may have terms that are non-identical, i.e. not
propositionally equal, leading to so-called higher types. This “failure of UIP” (uniqueness
of identity proofs) in the intensional system was first shown using the groupoid model,
which sheds considerable light on the intensional system.

Exercise 4.1.1. Show that given any a, b, c : A and p : a =A b and q : b =A c, one
can define a composite p · q : a =A c (using the transitivity of =A). Then show that, for
any p : a =A b, the symmetry term σ(p) : b =A a satisfies the (propositional) equation
σ(p) · p = refl. Is either of σ(p) · p = refl or refl · σ(p) = refl judgemental? What
about associativity of p · q

Exercise 4.1.2. Show that p · q from the previous exercise is (propositionally) associative.

Exercise 4.1.3. Show that any term f : A→ B acts on identities p : a =A b, in the sense
that there is a term ap(f)(p) : fa =B fb. Is ap(f) “functorial” (in the evident sense)?

Exercise 4.1.4. Observe that the Substitution property means that the assignment

(a : A) 7→ C(a) type

is functorial (in some sense). Is it strictly functorial?

4.1.1 The naive interpretation

We can try to interpret the (intensional) identity types in the naive way, as we did for
extensional dependent type theory. This would give the formation and introduction rules
as a type family IdA → A × A with a partial section over the diagonal substitution
δA : (x : A) → (x : A, y : A).

IdA

A A× A

prefl

δA

where we are writing IdA for the extended context (A,A, IdA) and p for the dependent
family (x : A, y : A ⊢ IdA(x, y)). The elimination rule then takes the form:

A C

IdA IdA

refl

c

J
(4.1)

for any type family C → IdA, with the computation rule asserting that the top triangle
commutes (the bottom triangle commutes by the assumption tht J is a section of C → IdA).

[DRAFT: May 10, 2025]

4.2 The groupoid model 121

But now recall that in extensional type theory, any map f : B → A can be regarded
as a type family over A, namely by taking the graph factorization

B ∼= Σa:AΣb:BEqA(a, fb) −→ B × A.

So we can take the family C in the elimination to be refl : A→ IdA, to obtain:

A A

IdA IdA

refl refl
J

We therefore get an iso A ∼= IdA, making the identity type isomorphic to the extensional
equality type EqA = A→ A× A.

Exercise 4.1.5. Prove that in the extensional theory, the graph factorization does indeed
make any map f : B → A isomorphic to a family of types over its codomain. Hint:
Consider the following two-pullback diagram.

Σa:AΣb:BEqA(a, fb) A

A×B A× A

B A

⌟

A×f

p2
⌟

p2

f

4.2 The groupoid model

Exercises 4.1.1 – 4.1.4 from the last section suggest an interpretation of the intensional
version of dependent type theory, namely with types as groupoids and type families as
functors. Such an interpretation was first given by [HS98] in order to show that the
principle of Uniqueness of Identity Proofs (UIP) – which holds in the extensional theory –
indeed fails in the intensional one. We shall briefly sketch this result here.

In order to give a model of intensional type theory we should define what it means to
be be a model of (intensional) type theory. We will do this in section 4.4 below – for now
we simply describe a single model in the category Gpd of groupoids, which will turn out
to be an instance of the general notion. For the extensional theory, we defined a model
simply to be an interpretation into an LCCC E , with contexts Γ interpreted as objects of
E , substitutions σ : ∆ → Γ as arrows of E , type families Γ ⊢ A as objects of E/Γ, and
terms Γ ⊢ a : A as sections of the associated families. Substitution into families and terms
was (weakly) interpreted’ as pullback (in the sense that there was an unresolved coherence
issue), and the Σ and Π type formers were adjoints to pullback. Finally, the equality type

[DRAFT: May 10, 2025]

122 Homotopy Type Theory

x : A, y : A ⊢ EqA(x, y) was interpreted as the diagonal A→ A× A.

(x : A, y : A, z : EqA(x, y)) A

(x : A, y : A) A× A

We may simplify the notation for category of contexts by using Σ-types, writing e.g. (x :
A, y : A, z : EqA(x, y)) = Σx:AΣy:AEqA(x, y) or even EqA, and (x : A, y : A) = A× A, etc.

The groupoid interpretation of the intensional theory is based on the idea that the
identity type of a type (interpreted as a groupoid) G can be interpreted by the path groupoid
of G, which we shall write as GI.

Definition 4.2.1. If the groupoid G = G0 ⇒ G1 has objects G0 and arrows G1, the path
groupoid GI = (|(GI)I| ⇒ |GI|) has as objects |GI| = G1, and as arrows |(GI)I| the set of all
commutative squares in G, with the obvious source and target maps.

In other words, the path groupoid is the arrow category G↓. Recall that the category
Gpd of (small) groupoids is a cartesian closed subcategory of Cat, and that there is a
walking arrow groupoid I with exactly two objects and two (mutually inverse) non-identity
arrows,

I = (0 1)

The notation GI for the path groupoid is then correctly the exponential of G by I in Gpd (and
in Cat). Observe that there are functors dom, cod : GI ⇒ G, as well as one id : G → GI,
making GI ⇒ G into an internal groupoid in Gpd, for any object G. This will be our
interpretation of the identity type of the type interpreted by G.

More formally, we interpret:

• Contexts Γ: groupoids, i.e. objects of Gpd,

• Substitutions σ : ∆ → Γ: homomorphisms of groupoids, i.e. arrows of Gpd,

• Types Γ ⊢ A: functors A : G → Gpd, where G interprets Γ,

• Terms Γ ⊢ a : A: natural transformations a : 1 → A between functors, where 1 is the
terminal functor in GpdG,

• Context extension (Γ, A) → Γ: the Grothendieck construction
∫
G
A→ G .

In order to model the type formers Σ, Π, etc. of intensional type theory in Gpd, we
must deal with the fact that Gpd is not locally cartesian closed, although it is cartesian
closed. Recall that in order to model extensional type theory in presheaves we used the
fact that SetC

op

is always a CCC and that for any P ∈ SetC
op

we have an equivalence

SetC
op

/P ≃ Set
∫
P op

,

[DRAFT: May 10, 2025]

4.2 The groupoid model 123

and thus every slice is also a CCC. For groupoids, something similar is the case, but instead
of the full slice category Gpd/G we use the subcategory of fibrations FibG ↪→ Gpd/G, for
which we have an equivalence

FibG ≃ GpdG ≃ Gpd(SetG
op

) ,

Since the proof that Gpd is a CCC doesn’t depend on the classical logic of Set, the category
of internal groupoids in a topos like SetG

op

is also a CCC. Thus we have that FibG is a CCC
for any groupoid G.

Definition 4.2.2. A (split op-) fibration of groupoids p : A → G is a functor satisfying
the condition: for every a ∈ A and γ : pa → g there is given a “lift” ℓ(a, γ) : a → g̃ with
p(ℓ(a, γ)) = p, and moreover,

1. ℓ(a, 1pa) = 1a : a→ a ,

2. for γ′ : g = p(g̃) → h, the lift of the composite is the composite of the lifts:

ℓ(a, γ′ ◦ γ) = ℓ(g̃, γ′) ◦ ℓ(a, γ) : a→ h̃ .

Proposition 4.2.3. The category FibG of fibrations of groupoids and functors f : A → B
over G that preserve the lifts is equivalent to the functor category GpdG.

The interpretation of the context extension (Γ, A) → Γ is to be projection
∫
G
A → G

given by the Grothendieck construction, and this is indeed a fibration of groupoids. Indeed,
the functor taking A : G → Gpd to

∫
G
A→ G mediates the equivalence

∫
: GpdG ≃ FibG.

For the base change functors along a fibration p : A → G, we then have left and right
adjoints as follows:

A GpdA FibA

G GpdG FibG

p

∼

∫
Σ Πp∗

∼

∫ p∗

To show this, it needs to be shown that:

1. the pullback of a fibration is a fibration,

2. the composite of fibrations is a fibration,

3. there is a push-forward fibration of a fibration along a fibration, which is right adjoint
to pullback.

The proof uses the CCC structure in the categories FibA ≃ GpdA ≃ Gpd(SetA) and is similar
to the proof of the LCCC structure for a category of presheaves.

[DRAFT: May 10, 2025]

124 Homotopy Type Theory

Identity types

To interpret the Id-type of a type (interpreted as, say) A = (A1 ⇒ A0) in Gpd (or indeed
in any relative version Gpd(SetG)), we shall use the path groupoid

IdA = AI → A× A ,

which is easily seen to be a fibration, and therefore corresponds to a functor IdA : A×A →
Gpd, namely that with discrete groupoids as its values:

IdA(a, b) = {p : a→ b} ⊆ A1 .

Note that for two objects a, b ∈ A there may be many different arrows f : a → b in
IdA(a, b), but for two such parallel arrows f, g : a ⇒ b in A, regarded as objects in the
path groupoid IdA = AI, there need be no arrow between them in the (discrete) groupoid
IdA(a, b); and indeed, there will be one (which is then unique) just if f = g. Thus we will
have the desired violation of UIP, once we have shown that this interpretation satisfies the
rules for intensional Id-types.

To show that, consider the diagram below, which we have already encountered as
(4.6.2). We take any fibration p : C → IdA and any section c : A → C over the insertion of
identity arrows into the path groupoid refl : A → AI = IdA, and we need a diagonal filler
J.

A C

IdA IdA

refl

c

p
J

Since the diagram commutes by assumption, for any a ∈ A we have pca = 1a. Let
α : a→ b be any object in IdA = AI and observe that there is always an arrow χα : 1a ⇒ α
in IdA = AI, namely χα = (1a, α).

a a

a b

1a

1a

χα α

α

Since p : C → IdA is a fibration, there is a lift ℓ(ca, χα) : ca→ α̃. We then set

J(α) = α̃

to obtain a functor J : IdA → A making the two triangles in the diagram commute.

Exercise 4.2.4. Prove this!

Exercise 4.2.5. Show that the composition of fibrations B → A and A → G is a fibration.
(This will be used for the interpretation of the type Γ ⊢ ΣAB, where Γ ⊢ A and Γ,A ⊢ B.)

[DRAFT: May 10, 2025]

4.3 Weak factorization systems 125

4.3 Weak factorization systems

We can axiomatize the features of the groupoid model that allowed us to model intensional
type theory using the notion of a weak factorization system, which is important in axiomatic
homotopy theory. This is a weakening of the notion of an orthogonal factorization system
from Definition 3.6.5:

Definition 4.3.1. An weak factorization system (wfs) on a category C consists of two
classes of arrows (L,R) such that:

1. Every map f : A→ B factors f = r ◦ ℓ into ℓ ∈ L followed by r ∈ R,

A B

C

f

ℓ r

2. Given any commutative square with an L-map on the left and an R-map on the right,

A B

C D

ℓ r
j

(4.2)

there is a (not necessarily unique) diagonal filler j as indicated, making both triangles
commute.

3. The classes L,R are closed under retracts in the arrow category C↓.

Given such a wfs on a finitely complete category C, we shall interpret the contexts and
substitutions as the objects and arrows of C, the type families as the right maps R, and
the terms as sections of the right maps. The first part of the following is required for
the interpretation of substitution, and the second part is used for context extension and
Σ-types.

Lemma 4.3.2. In a wfs (L,R) on a finitely complete category C, the right maps are stable
under pullback along all maps. (Dually, the left maps are stable under pushouts along all
maps.) Moreover, both L and R are closed under composition.

Before giving the proof, we develop an important aspect of wfs’s: weak orthogonality.
For any maps f : A→ B and g : C → D, let us write

f ⋔ g

and say that f is weakly orthogonal to g if every commutative square with f on the left
and g on the right has a diagonal filler j as in (4.2). We also say that “f has the left lifting

[DRAFT: May 10, 2025]

126 Homotopy Type Theory

property with respect to g” and “g has the right lifting property with respect to f”. More
generally, for any class of arrows S in C, write

S ⋔ f = s ⋔ f for all s ∈ S

f ⋔ S = f ⋔ s for all s ∈ S

and let

S ⋔ = {f | S ⋔ f}
⋔S = {f | f ⋔ S} .

Finally, let S ⋔ T mean that s ⋔ t for all s ∈ S and t ∈ T . Then in a wfs (L,R) we clearly
have

L ⋔ R ,

by axiom 2, but in fact more is true:

Lemma 4.3.3. Given two classes of maps (L,R) in a category C satisfying the factorization
and diagonal filler axioms for a wfs above, L and R are also closed under retracts if and
only if

L⋔ = R and L = ⋔R .

Proof. Suppose (L,R) is a wfs, so both classes are closed under retracts. We need to show
that if f : A→ B satisfies L ⋔ f, then f ∈ R (the converse is already true by L ⋔ R. Factor
f = r ◦ ℓ and consider the diagram

A A

C B

ℓ f
j

r

(4.3)

which commutes and has a diagonal filler j, since ℓ ∈ L. We can rearrange (4.3) into a
retract diagram as follows.

A C A

B B B

f

ℓ

r

j

f (4.4)

Thus f ∈ R, since R is closed under retracts. The argument for L = ⋔R is dual. We leave
the converse as an exercise.

Exercise 4.3.4. Show that (L,R) is a wfs if the factorization axiom holds and L⋔ = R and
L = ⋔R.

[DRAFT: May 10, 2025]

4.3 Weak factorization systems 127

Proof. (of Lemma 4.3.2) Let f : A → B be in R and consider its pullback along any
B′ → B:

A′ A

B′ B

f ′
⌟

f (4.5)

To show f ′ ∈ R, it suffices by Lemma 4.3.3 to show that f ′ has the right lifting property
with respect to L, but this follows easily from f ′ being a pullback of f , which does. We
leave the rest of the proof as an exercise.

Exercise 4.3.5. Finish the proof of Lemma 4.3.2.

It now follows that we can interpret the structural rules of dependent type theory, as
well as the context extension operation, using the R maps as the type families, just as we
did using arbitrary maps in an lccc. The rules for Σ types will also be satisfied, since these
essentially state that Σ is left adjoint to pullback along type families, and therefore closure
of the right maps under composition means that they are closed under Σ-types.

Let us see that we can also interpret the rules for Id-types. The formation rule for IdA
is interpreted by factoring the diagonal substitution δ : A→ A×A into a left map followed
by a right map:

IdA

A A× A

prefl

δ

This also interprets the introduction rule, using the left map in the factorization as the
interpretation of the refl term. For the elimination rule, suppose we have a type family
p : C → IdA and a section c : A → C over refl : A → IdA; then we need a diagonal filler J.

A C

IdA IdA

refl

c

p
J

But since refl : A→ IdA is a left map by the factorization, and C → IdA is a right map
by the interpretation of type families as right maps, there is such a filler by the second
axiom of wfs’s. Thus we have already shown:

Proposition 4.3.6 ([AW09]). In a fintely complete category C with a wfs, the rules of
intensional identity types are soundly modeled by interpreting the type families as the right
maps and the identity type IdA as a factorization of the diagonal δ : A→ A×A into a left
map refl : A→ IdA followed by a right map IdA → A× A.

This kind of interpretation includes many important “naturally occurring” examples
involving Quillen model categories, which are categories equipped with two interlocking

[DRAFT: May 10, 2025]

128 Homotopy Type Theory

wfs’s (see [AW09]). The Π-types can also be interpreted in this way, if the right maps
of the wfs pushforward along right maps, as is the case in examples such as right-proper
Quillen model categories and Π-tribes in the sense of [Joy17]. Indeed, the groupoid model
from the previous section was an instance of such a wfs: as the right maps one can take
the isofibrations, and the left maps are then the equivalences that are injective on objects
[GG08].

Remark 4.3.7 (Coherence). The coherence issue that we have been postponing is now
even more pressing, however, because the factorizations in a wfs need not be stable under
pullback, and so the following (slightly schematic) substitution rule for the Id type former
will not be soundly modeled, even up to isomorphism.

Γ ⊢ A , Γ ⊢ a : A, Γ ⊢ b : A, σ : ∆ → Γ

∆ ⊢ IdA(a, b)[σ] ≡ IdA[σ](a[σ], b[σ])

A similar problem occurs with respect to the J-term, which is also required to respect
(certain) substitutions, but need not do so under this interpretation. One solution to this
problem makes use of an algebraic structure on the weak factorization system called an
algebraic weak factorization system. This approach is discussed in [GL23]. We shall develop
a different solution in the next section.

4.4 Natural models

The semantics of DTT in LCCCs employed in the previous sections uses the “slice category”
hyperdoctrine of an LCCC to interpret the dependent types. Thus the contexts Γ and
substitutions σ : ∆ → Γ are interpreted as the objects and arrows of an LCCC C, and
the dependent types Γ ⊢ A and terms Γ ⊢ a : A are interpreted as objects A → Γ in
the slice category C/Γ and their global sections a : Γ → A (over Γ). As we mentioned
in Remark 3.4.4, however, there is a problem with this kind of semantics (as first pointed
out by [Hof95]): as a hyperdoctrine, this interpretation is a pseudofunctor C/ : Cop → Cat,
but the syntax of DTT produces an actual presheaf of types in context Ty : Cop → Set,
since substitution into dependent types is strictly functorial with respect to composition
of substitutions, in the sense that for a type in context Γ ⊢ A and substitutions σ : ∆ → Γ
and τ : Φ → ∆ we have a judgemental equality of types in context,

Φ ⊢ (A[σ])[τ] ≡ A[σ ◦ τ] ,

rather than the (canonical) isomorphism ∼= fitting into the two-pullbacks diagram of the
hyperdoctrine, namely:

(σ ◦ τ)∗A ∼=
//

$$

))
τ ∗σ∗A //

��

σ∗A //

��

A

��
Φ τ //

σ ◦ τ
44∆ σ // Γ

[DRAFT: May 10, 2025]

4.4 Natural models 129

A similar problem occurs in the Beck-Chavalley conditions, where the hyperdoctrine struc-
ture has only canonical isos, rather than the strict equalities that obtain in the syntax,
such as

(Πx:AB)[σ] ≡ (Πx:A[σ]B[σ]) .

Exactly the same problem occurs, of course, if we use only the right maps in a wfs,
rather than all maps in the slice category of an LCC. And for the Id-type former, we
have an even more acute probelm, as noted in Remark 4.3.7, since the factorization of the
diagonal is not even determined up to isomorphism, and need not be stable under pullback

There are various different solutions to these “coherence problems” in the literature,
some involving strictifications of the LCC slice-category (or wfs-pullback) hyperdoctrine
(including both left- and right-adjoint strictifications [LW15, Hof94]), as well as other
semantics altogether, such as categories-with-families [Dyb96], categories-with-attributes

[?], and comprehension categories [?]. A solution based on the notion of a universe Ũ → U
was first proposed by Voevodsky [?]; in [Awo16], the universe approach is combined with
the notion of a representable natural transformation to determine the semantic notion of
a natural model, as follows.

Definition 4.4.1. For a small category C, a natural transformation f : Y → X of
presheaves on C is called representable if for every C ∈ C and x ∈ X(C), there is given a
p : D → C and a y ∈ Y (D) such that the following square is a pullback.

yD Y

yC X

yp

y

⌟
f

x

(4.6)

We will show that a representable natural transformation is essentially the same thing
as a category with families in the sense of Dybjer [Dyb96]. Indeed, let us write the objects
of C as Γ,∆, . . . and the arrows as σ : ∆ → Γ, . . . , thinking of C as a “category of contexts”.
Let t : Ṫ → T be a representable map of presheaves, and interpret the elements as

T(Γ) = {A | Γ ⊢ A}
Ṫ(Γ) = {a | Γ ⊢ a : A, for some A},

so that under Yoneda we have:

A ∈ T(Γ) iff Γ ⊢ A
a ∈ Ṫ(Γ) iff Γ ⊢ a : A, where t ◦ a = A

as indicated in:

Ṫ

yΓ T

t
a

A

[DRAFT: May 10, 2025]

130 Homotopy Type Theory

Thus we are regarding T as the presheaf of types, with T(Γ) the set of all types in
context Γ, and Ṫ as the presheaf of terms, with Ṫ(Γ) the set of all terms in context Γ,
while the component tΓ : Ṫ(Γ) → T(Γ) is the typing of the terms in context Γ.

The naturality of t : Ṫ → T just means that for any substitution σ : ∆ → Γ, we have
an action on types and terms:

Γ ⊢ A 7→ ∆ ⊢ Aσ
Γ ⊢ a : A 7→ ∆ ⊢ aσ : Aσ .

While, by functoriality, given any further τ : Φ → ∆, we have

(Aσ)τ = A(σ ◦ τ) (aσ)τ = a(σ ◦ τ),

as well as
A1 = A a1 = a

for the identity substitution 1 : Γ → Γ.
Finally, the representability of the natural transformation t : Ṫ → T is exactly the

operation of context extension: given any Γ ⊢ A, by Yoneda we have the corresponding
map A : yΓ → T, and we let pA : Γ.A → Γ be (the map representing) the pullback of t
along A, as in (4.6). We therefore have a pullback square:

yΓ.A Ṫ

yΓ T

ypA

qA

⌟
t

A

(4.7)

where the map qA : Γ.A→ Ṫ now determines a term

Γ.A ⊢ qA : ApA.

In type theory, the term qA : Γ.A→ Ṫ corresponds to the rule of “assumption”:

Γ ⊢ A type

Γ, x : A ⊢ x : A

We may hereafter omit the y for the Yoneda embedding, letting the Greek letters serve to
distinguish representable presheaves and their maps.

Exercise 4.4.2. Show that the fact that (4.4.3) is a pullback means that given any σ :
∆ → Γ and ∆ ⊢ a : Aσ, there is a map

(σ, a) : ∆ → Γ.A,

and this operation satisfies the equations

pA ◦ (σ, a) = σ

qA(σ, a) = a,

[DRAFT: May 10, 2025]

4.4 Natural models 131

as indicated in the following diagram.

∆

σ

(σ, a)

a

!!
Γ.A

pA

��

qA
// Ṫ

t

��
Γ

A
// T

Show moreover that the uniqueness of (σ, a) means that for any τ : ∆′ → ∆ we also have:

(σ, a) ◦ τ = (σ ◦ τ, aτ)
(pA, qA) = 1.

Comparing the foregoing with the definition of a category with families in [Dyb96], we
have shown:

Proposition 4.4.3. Let t : Ṫ → T be a representable natural transformation of presheaves
on a small category C with a terminal object. Then t determines a category with families,
with C as the contexts and substitutions, T(Γ) as the types in context Γ, and Ṫ(Γ) as the
terms in context Γ.

Remark 4.4.4. A category with families is usually defined in terms of a presheaf

Ty : Cop → Set

of types on the category C of contexts, together with a presheaf

Tm′ : (
∫
CTy)

op → Set

of typed-terms on the category
∫
CTy of types-in-context. We are using the equivalence of

categories, valid for any category of presheaves SetC
op

,

SetC
op

/P ≃ Set(
∫
CP)op

between the slice category over a presheaf P and the presheaves on its category of elements∫
CP , to turn the presheaf Tm′ : (

∫
CTy)

op → Set into one Tm : Cop → Set together with a
map Tm → Ty in Cop → Set.

We think of a representable map of presheaves on an arbitrary category C as a “type
theory over C”, with C as the category of contexts and substitutions. We will show in
Section 4.4.3 that such a map of presheaves is essentially determined by a class of maps
in C that is closed under all pullbacks, corresponding to the “incoherent” interpretation of
types in context as maps A→ Γ.

[DRAFT: May 10, 2025]

132 Homotopy Type Theory

Definition 4.4.5. A natural model of type theory on a small category C is a representable
map of presheaves t : Ṫ → T.

Exercise 4.4.6 (The natural model of syntax). Let T be a dependent type theory and CT
its category of contexts and substitutions. Define the presheaves Ty : CTop → Set of types-
in-context and Tm : CTop → Set of terms-in-context, along with a natural transformation

tp : Tm → Ty

that takes a term to its type. Show that tp : Tm → Ty is a natural model of type theory.

4.4.1 Modeling 1,Σ,Π

Given a natural model t : Ṫ → T, we will make extensive use of the associated polynomial
endofunctor Pt : Ĉ −→ Ĉ (cf. [GK13]), defined by

Pt = T! ◦ t∗ ◦ Ṫ∗ : Ĉ −→ Ĉ ,

SetC
op

Ṫ∗
��

Pt // SetC
op

SetC
op

/Ṫ t∗
// SetC

op

/T

T!

OO

The action of Pt on an object X may be depicted:

X X × Ṫoo

��

Pt(X)

��
Ṫ

t
// T

We call t : Ṫ → T the signature of Pt and briefly recall the following universal mapping
property from [Awo16].

Lemma 4.4.7. For any p : E → B in a locally cartesian closed category E, the polynomial
functor Pp : E → E has the following universal property: for any objects X,Z ∈ E, maps
f : Z → Pp(X) correspond bijectively to pairs of maps f1 : Z → B and f2 : Z ×B E → Z,
as indicated below.

Z Pp(X)

X Z ×B E E

Z B

f

f2
⌟ p

f1

(4.8)

The correspondence is natural in both X and Z, in the expected sense.

[DRAFT: May 10, 2025]

4.4 Natural models 133

This universal property is also suggested by the conventional type theoretic notation,
namely:

Pp(X) = Σb:BX
Eb

The lemma can be used to determine the signature p · q for the composite Pp ◦ Pq of two
polynomial functors, which is again polynomial, and for which we therefore have

Pp·q ∼= Pp ◦ Pq . (4.9)

Indeed, let p : B → A and q : D → C, and consider the following diagram resulting from
applying the correspondence (4.10) to the identity arrow,

⟨a, c⟩ = 1Pp(C) : Pp(C) → Pp(C) ,

and taking Q to be the indicated pullback.

D Q

C π∗B B

Pp(C) A

q
⌞ p·q

c
⌟

p

a

(4.10)

The map p · q is then defined to be the indicated composite,

p · q = a∗p ◦ c∗q .

The condition (4.9) can then be checked using the correspondence (4.10) (also see [GK13]).

Definition 4.4.8. A natural model t : Ṫ → T over C will be said to model the type
formers 1,Σ,Π if there are pullback squares in Ĉ of the following form,

1 Ṫ

1 T

⌟
t

Ṫ2 Ṫ

T2 T

t·t
⌟

t

Pt(Ṫ) Ṫ

Pt(T) T

Pt(t)
⌟

t (4.11)

where t · t : Ṫ2 → T2 is determined by Pt·t ∼= Pt ◦ Pt as in (4.9).

The terminology is justified by the following result from [Awo16].

Theorem 4.4.9 ([Awo16] Theorem XXX). Let t : Ṫ → T be a natural model. The
associated category with families satisfies the usual rules for the type-formers 1,Σ,Π just
if t : Ṫ → T models the same in the sense of Definition 4.4.8.

We only sketch the case of Π-types, but the other type formers will be treated in detail
in Section ??.

[DRAFT: May 10, 2025]

134 Homotopy Type Theory

Proposition 4.4.10. The natural model t : Ṫ → T models Π-types just if there are maps
λ and Π making the following a pullback diagram.

Pt(Ṫ) Ṫ

Pt(T) T

Pt(t)

λ

⌟
t

Π

(4.12)

Proof. Unpacking the definitions, we have Pt(T) = ΣA:TT
A, etc., so diagram (4.14) be-

comes:

ΣA:TṪ
A Ṫ

ΣA:TT
A T

ΣA:Tt
A

λ

t

Π

For Γ ∈ C, maps Γ → ΣA:TT
A correspond to pairs (A,B) withA : Γ → T andB : Γ, A→ T,

and thus to Γ ⊢ A and Γ, A ⊢ B. Similarly, a map Γ → ΣA:TṪ
A corresponds to a pair

(A, b) with Γ ⊢ A and Γ, A ⊢ b : B, the typing of b resulting from composing with the map

ΣA:Tt
A : ΣA:TṪ

A → ΣA:TT
A .

ΣA:TṪ
A Ṫ

Γ

ΣA:TT
A T

λ

t

(A,B)

(A,b)

λAb

ΠAB

Π

The composition across the top is then the term Γ ⊢ λx:Ab , the type of which is determined
by composing with t and comparing with the composition across the bottom, namely
Γ ⊢ Πx:AB. In this way, the lower horizontal arrow in the diagram models the Π-formation
rule:

Γ, A ⊢ B
Γ ⊢ Πx:AB

and the upper horizontal arrow, along with the commutativity of the diagram, models the
Π-introduction rule:

Γ, A ⊢ b : B
Γ ⊢ λx:Ab : Πx:AB

The square (4.14) is a pullback just if, for every (A,B) : Γ → ΣA:TT
A and every t : Γ → Ṫ

with t ◦ t = ΠAB, there is a unique (A, b) : Γ → ΣA:TṪ
A with b : B and λAb = t. In terms

of the interpretation, given Γ, A ⊢ B and Γ ⊢ t : Πx:AB, there is a term Γ, A ⊢ t′ : B
with λx:At

′ = t, and t′ is unique with this property. This is just what is provided by the
Π-elimination rule:

Γ, A ⊢ B Γ ⊢ t : Πx:AB Γ ⊢ x : A

Γ, A ⊢ t x : B

[DRAFT: May 10, 2025]

4.4 Natural models 135

in conjunction with the Π-computation rules :

λx:A(t x) = t : ΠAB

(λx:Ab)x = b : B

4.4.2 Identity types

A natural model t : Ṫ → T in a presheaf category Ĉ was defined in [Awo16] to model both
the extensional and intensional identity types of Martin-Löf type theory in terms of the
existence of certain additional structures, which we briefly review. Condition (1) below
captures the extensional equality types of Martin-Löf type theory. The condition given
in op.cit. for the intensional case is replaced below by a simplification suggested by R.
Garner.

Definition 4.4.11. Let t : Ṫ → T be a map in an lccc E .

1. The map t : Ṫ → T is said to model the (extensional) equality type former if there
are structure maps (refl,Eq) making a pullback square:

Ṫ Ṫ

Ṫ×T Ṫ T

refl

δ
⌟

t

Eq

2. The map t : Ṫ → T is said to model the (intensional) identity type former if there
are structure maps (i, Id) making a commutative square,

Ṫ Ṫ

Ṫ×T Ṫ T

i

δ t

Id

(4.13)

together with a weak pullback structure J for the resulting comparison square, in the
sense of (4.15) below.

To describe the map J, let us see how (2) models identity types. Under the interpretation
already described in Section ?? the maps Id and i in

Ṫ Ṫ

Ṫ×T Ṫ T

i

δ t

Id

[DRAFT: May 10, 2025]

136 Homotopy Type Theory

respectively, directly model the formation and introduction rules.

x, y : A ⊢ IdA(x, y)

x : A ⊢ i(x) : IdA(x, x)

Next, pull t back along Id to get an object I and a map ρ : Ṫ → I,

Ṫ I Ṫ

Ṫ×T Ṫ T

δ

ρ

i

⌟
t

Id

which commutes with the compositions to T as indicated below.

Ṫ

t ��

ρ // I

q
��
T

The map ρ : Ṫ → I, which can be interpreted as the substitution (x) 7→ (x, x, ix), gives rise
to a “restriction” natural transformation of polynomial endofunctors ([GK13]),

ρ∗ : Pq → Pt ,

evaluation of which at t : Ṫ → T results in the following commutative naturality square.

PqṪ PtṪ

PqT PtT

Pqt

ρ∗
Ṫ

Ptt

ρ∗T

(4.14)

A weak pullback structure J is a section of the resulting comparison map.

PqṪ PqT×PtT PtṪ

J

(4.15)

To show that this models the standard elimination rule

x : A ⊢ c(x) : C(ρx)
x, y : A, z : IdA(x, y) ⊢ Jc(x, y, z) : C(x, y, z)

take any object Γ ∈ C and maps (A,A, IdA ⊢ C) : Γ → PqT and (A ⊢ c) : Γ → PtṪ with
equal composites to PtT, meaning that A ⊢ c : C(ρx). Composing the resulting map

(A ⊢ c(x) : C(ρx)) : Γ −→ PqT×PtT PtṪ

[DRAFT: May 10, 2025]

4.4 Natural models 137

with J : PqT×PtT PtṪ → PqṪ then indeed provides a term

x : A, y : A, z : IdA(x, y) ⊢ Jc(x, y, z) : C(x, y, z) .

The computation rule
x : A ⊢ Jc(ρx) = c(x) : C(ρx)

then says exactly that J is indeed a section of the comparison map (4.15).

Proposition 4.4.12 (R. Garner). The map t : Ṫ → T models intensional identity types
just if there are maps (i, Id) making the diagram (4.13) commute, together with a weak
pullback structure J for the resulting comparison square (4.14).

4.4.3 Strictification

Let t : Ṫ → T be a natural model over a (small) finitely complete category C, and consider
the set

Dt ⊆ C1

of all d : D′ → D in C that occur as pullbacks of t, as in

yD′ Ṫ

yD T

yd
⌟

t

Clearly Dt is closed under pullbacks in C and isos in the arrow category C↓, and so (C,Dt)
is a category with display maps in the sense of [Tay99](§8.3). Such a pair (C,D) consisting
of a finitely complete category C with a “stable” class of maps D can be used to basic
model dependent type theory as a common generalization of semantics in an LCCC and
in a category with an wfs. Additional conditions on (C,D) are of course needed to model
the different type formers, leading to such notions as clans and tribes [Joy17].

Given a category with display maps (C,D) we can form the natural transformation tD
over C simply by taking the coproduct of all the display maps d : D′ → D in D:

ṪD
∐

d∈DD
′

TD
∐

d∈DD

tD
∐

d∈D d (4.16)

The proof of following is an easy exercise.

Lemma 4.4.13. The natural transformation tD : ṪD → TD is representable.

Exercise 4.4.14. Give the proof!

[DRAFT: May 10, 2025]

138 Homotopy Type Theory

We now have constructions going back and forth:

NaturalModels Cats w/DisplayMaps
Dt

tD

By defining suitable morphisms on both sides, these operations can be made functorial,
and the constructions become adjoint, tD ⊣ Dt. We can leave the details to the reader.

Finally, by considering the appropriate additional structures on a category with display
maps in order to model the type formers (for example local cartesian closure or a right
proper weak factorization system), one can refine the adjunction to give a proof of the
following “strictification theorem” (cf. [LW15]):

Theorem 4.4.15 ([Awo16]). If (C,D) is a Π-tribe in the sense of Joyal [Joy17] then
tD : ṪD → TD is a natural model with the type constructors 1,Σ,Π, Id.

4.5 Universes

We recall the notion of a Hofmann-Streicher universe [HS], as reformulated in [Awo24].

4.5.1 A realization ⊣ nerve adjunction

For any presheaf X on a small category C, recall that the category of elements is the
comma category, ∫

CX = yC/X ,

where yC : C → SetC
op

is the Yoneda embedding, which we may supress and write simply
as C/X . The following can be found already in [Gro83](§28).

Proposition 4.5.1. The category of elements functor
∫
C : Ĉ −→ Cat has a right adjoint,

which we denote

νC : Cat −→ Ĉ .

For a small category A, we call the presheaf νC(A) the C-nerve of A.

Proof. As suggested by the name, the adjunction
∫
C ⊣ νC can be seen as the familiar

“realization ⊣ nerve” construction with respect to the covariant post-composition functor
C/− : C → Cat, as indicated below.

Ĉ Cat

C

∫
C

νC

y
C/−

(4.17)

[DRAFT: May 10, 2025]

4.5 Universes 139

In detail, for A ∈ Cat and c ∈ C, let νC(A)(c) be the Hom-set of functors,

νC(A)(c) = Cat
(
C/c , A

)
,

with contravariant action on h : d → c given by pre-composing a functor P : C/c → A
with the post-composition functor

C/h : C/d −→ C/c .

For the adjunction, observe that the slice category C/c is the category of elements of the
representable functor yc , ∫

C yc
∼= C/c .

Thus for representables yc , we indeed have the required natural isomorphism

Ĉ
(
yc , νC(A)

) ∼= νC(A)(c) = Cat
(
C/c , A

) ∼= Cat
(∫

C yc , A
)
.

For arbitrary presheaves X, one uses the presentation of X as a colimit of representables
over the index category

∫
CX, and the easy to prove fact that

∫
C itself preserves colimits.

Indeed, for any category D, we have an isomorphism in Cat,

lim−→
d∈D

D/d ∼= D .

When C is fixed, as here, we may omit the subscript from the expressions yC and
∫
C

and νC. The unit and counit maps of the adjunction
∫
⊣ ν,

η : X −→ ν
∫
X ,

ϵ :
∫
νA −→ A ,

are as follows. At c ∈ C, for x : yc → X, the functor (ηX)c(x) : C/c → C/X is just
composition with x,

(ηX)c(x) = C/x : C/c −→ C/X . (4.18)

For A ∈ Cat, the functor ϵ :
∫
νA → A takes a pair (c ∈ C, f : C/c → A) to the object

f(1c) ∈ A,
ϵ(c, f) = f(1c).

Lemma 4.5.2. For any f : Y → X, the naturality square below is a pullback.

Y ν
∫
Y

X ν
∫
X.

f

ηY

ν
∫
f

ηX

(4.19)

[DRAFT: May 10, 2025]

140 Homotopy Type Theory

Proof. It suffices to prove this for the case f : X → 1. Thus consider the square

X ν
∫
X

1 ν
∫
1.

ηX

η1

(4.20)

Evaluating at c ∈ C and applying (4.18) gives the following square in Set.

Xc Cat
(
C/c , C/X

)
1c Cat

(
C/c , C/1

)
C/−

C/−

(4.21)

The image of ∗ ∈ 1c along the bottom is the forgetful functor Uc : C/c → C, and its fiber
under the map on the right is therefore the set of functors F : C/c → C/X such that
UX ◦ F = Uc, where UX : C/X → C is also a forgetful functor. But any such F is easily
seen to be uniquely of the form C/x for x = F (1c) : yc→ X.

Remark 4.5.3. For the category of elements of the terminal presheaf 1 we have
∫
1 ∼= C. So

for every presheaf X there is a canonical projection
∫
X → C, and the functor

∫
: Ĉ → Cat

thus factors through the slice category Cat/C.

Ĉ Cat/C

Cat

∫
/1

∫ C!
(4.22)

The adjunction
∫
⊣ ν : Cat → Ĉ factors as well, but it is the unfactored adjunction that

is more useful for the present purpose.

4.5.2 Classifying families

For every presheaf X the canonical projection
∫
X → C of Remark 4.5.3 is easily seen to be

a discrete fibration. It follows that for any natural transformation Y → X the associated
functor

∫
Y →

∫
X is also a discrete fibration. Ignoring size issues (dealt with in [Awo24]),

recall that discrete fibrations in Cat are classified by the forgetful functor ˙Set
op → Setop

from (the opposites of) the category of pointed sets to that of sets (cf. [Web07]). For every

presheaf X ∈ Ĉ, we therefore have a pullback diagram as follows in Cat.∫
X ˙Set

op

C Setop

⌟

X

(4.23)

[DRAFT: May 10, 2025]

4.5 Universes 141

Using
∫
1 ∼= C and transposing by the adjunction

∫
⊣ ν then gives a commutative square

in Ĉ,

X ν ˙Set
op

1 νSetop.
X̃

(4.24)

Lemma 4.5.4. The square (4.24) is a pullback in Ĉ. More generally, for any map Y → X

in Ĉ, there is a pullback square

Y ν ˙Set
op

X νSetop .

⌟ (4.25)

Proof. Apply the right adjoint ν to the pullback square (4.23) and paste the naturality
square (4.19) from Lemma 4.5.2 on the left, to obtain the transposed square (4.25) as a
pasting of two pullbacks.

Let us write V̇ → V for the vertical map on the right in (4.25); that is, let:

V̇ := ν ˙Set
op

(4.26)

V := νSetop

We can then summarize our results so far as follows.

Proposition 4.5.5. The C-nerve V̇ → V of the classifier ˙Set
op → Setop for discrete

fibrations in Cat, as defined in (4.26), (weakly) classifies natural transformations Y → X

in presheaves Ĉ, in the sense that there is always a pullback square as follows.

Y V̇

X V

⌟

Ỹ

(4.27)

The classifying map Ỹ : X → V is determined by the adjunction
∫
⊣ ν as the transpose of

the classifying map of the discrete fibration
∫
Y →

∫
X.

Of course, as defined in (4.26), the classifier V̇ → V cannot be a map in Ĉ, for reasons
of size; this is addressed in [Awo24].

[DRAFT: May 10, 2025]

142 Homotopy Type Theory

4.5.3 Type universes

A universe such as V̇ → V in a category of presheaves (or indeed a natural model t : Ṫ → T)
can be used to model the following rules for type universes in Martin-Löf type theory.

Γ ⊢ U type

Γ ⊢ a : U

Γ ⊢ El(a) type

Of course, we interpret the “decoding family” x : U ⊢ El(x) as the display map V̇ → V. In
practice, one often simply writes

Γ ⊢ A : U

Γ ⊢ A type

leaving the “decoding” El implicit. The above are the formation and elimination rules for
a universe; one might also expect to see an introduction rule such as

Γ ⊢ A type

Γ ⊢ code(A) : U

along with computation rules like

El(code(A)) ≡ A , code(El(a)) ≡ a .

Unfortunately, this would imply U : U, which is inconsistent. Instead of the introduction
and computation rules, there are other ways of populating a universe; see [AG](§2.6.2) for
a good discussion.

A type universe U is convenient, because it can be used to replace a dependent family of
types Γ, x : X ⊢ A type by a term Γ ⊢ A : X → U. It can also used in further constructions,
such as the polynomials Pt(T) from section 4.4.1. See [AG](§2.6.2) for some other important
consequences of adding type universes to the type theory, such as proving true ̸= false :
Bool.

Given a universe U, we may regard the types A : U as small. A universe of types
interpreted as V̇ → V then acts as a “small type classifier,” because a display map A→ X
interpreting the small type family X ⊢ A type, is classified by a map Ã : X → V,
interpreting the term ⊢ A : X → V, as in (4.27).

A V̇

X V

⌟

Ã

(4.28)

Unlike with subobject classifiers, however, the classifying map Ã : X → V of a given family
A→ X cannot be expected to be unique, essentially because pullbacks are determined only
up to isomorphism. That such maps can be chosen uniquely “up to homotopy,” in a certain
precise sense, is the content of the celebrated univalence axiom, to which we now turn.

[DRAFT: May 10, 2025]

4.6 Univalence 143

4.6 Univalence

Let U̇ → U be a universe in presheaves, e.g., a natural model as in Section 4.4, or a
Hofmann-Streicher universe as in Section 4.5, and suppose that U̇ → U supports the
structures for 1,Σ,Π, Id in the sense of Sections 4.4.1–4.4.2. It follows that the maps
A → X that are classified by U̇ → U, in the sense of (4.28), are closed under those same
type formers, in the sense of the “incoherent” interpretation in LCCCs, wfs’s, or categories
with display maps, regarding objects X as contexts and classified maps A→ X (together
with a chosen classifier Ã : X → U) as families of types in context X.

An equivalence between types A ≃ B (possibly over X) is like an isomorphism of sets,
but formulated in a way that is more suitable for types with “higher structure” arising
from non-degenerate Id-types. Formally:

Definition 4.6.1. A map e : A → B is a (type) equivalence if it has both right and left
inverses, in the sense that there are maps f, g : B ⇒ A such that

e ◦ f =BB 1B and g ◦ e =AA 1A .

Formally, given e : A→ B we define

isEquiv(e) :≡ Σf,g:B→A IdBB(e ◦ f, 1B)× IdAA(g ◦ e, 1A) .

and then for A,B : U, we define the notation A ≃ B by

A ≃ B = Equiv(A,B) :≡ Σe:A→B isEquiv(e) .

We construct the interpretation of the type family A,B : U ⊢ A ≃ B as a map
Equiv → U× U as follows.

First, pull U̇ → U back along the two different projections U × U ⇒ U to obtain two
different objects U̇1, U̇2 over U × U, and then take their exponential [U̇1, U̇2] in the slice
category over U× U, which interprets the type family A,B : U ⊢ A→ B.

U̇ U̇1 [U̇1, U̇2] U̇2 U̇

U U× U U

⌞ ⌟

Indeed, after pulling U̇1, U̇2 back to [U̇1, U̇2] there is a (universal) arrow ε : U̇′
1 → U̇′

2 over
[U̇1, U̇2], as indicated below.

U̇′
1 U̇′

2

U̇ U̇1 [U̇1, U̇2] U̇2 U̇

U U× U U

⌟

ε

⌞

⌞ ⌟

(4.29)

[DRAFT: May 10, 2025]

144 Homotopy Type Theory

As Equiv → U × U we then take the composite of the canonical projection isEquiv(ε) →
[U̇1, U̇2] with the map [U̇1, U̇2] → U× U.

Σe:A→B isEquiv(e) [U̇1, U̇2]

Equiv U× U

Given Ã, B̃ : X → U classifying types A → X and B → X, factorizations of the map
(Ã, B̃) : X → U× U through Equiv → U× U can then be seen using (4.29) to correspond
to equivalences A ≃ B over X, as indicated in the following, in which the indicated map
E1 ≃ E2 is the pullback of ε : U̇′

1 → U̇′
2 along Equiv → [U̇1, U̇2].

E1 E2

A B Equiv

X U× U

≃

≃

(Ã,B̃)

The correspondence is natural in X, because it is mediated by pulling back a universal
instance.

If U is itself a type in a “larger” model U̇1 → U1 with Id-types, then there is also the
type family A,B : U ⊢ IdU(A,B), which is interpreted as a map IdU → U × U. Since for
every A : U the map 1A : A → A is an equivalence, by IdU-elim we obtain a distinguished
map IdU(A,B) → Equiv(A,B) over U × U. The univalence axiom is the statement that
this map is itself an equivalence:

IdU Equiv

U× U U× U

≃

(4.30)

Pulling the equivalence back along any (A,B) : X → U × U results in the more familiar
formulation:

(A =U B) ≃ (A ≃ B) . (UA)

The interpretation of univalence thus requires at least a universe U with 1,Σ,Π, Id (in
order to define A ≃ B), inside a larger universe U : U1 also with 1,Σ,Π, Id (in order to
have the family A =U B and to state the central equivalence in UA). The operations on
the larger universe are usually required to restrict to the corresponding ones on the smaller
universe. See [AG] for a detailed presentation.

[DRAFT: May 10, 2025]

4.6 Univalence 145

Example 4.6.2 (Univalence in the groupoid model [HS98]). We have a univalent universe
U̇ → U in the groupoid model of section 4.2. Namely, the groupoid set of small, discrete
groupoids, where we identify sets with their discrete groupoids, and by small we mean sets
of size ≤ κ for a sufficiently large cardinal bound κ. Thus we interpret:

U = setcore

U̇ = ˙set
core

where setcore is the groupoid core of the category of small sets (i.e. the category of small
sets and bijections between them), and ˙set

core
is the groupoid of small pointed sets.

The interpretation of the Id-type of the universe U in Gpd, like that of any type, is the
path groupoid

IdU = UI → U× U ,

which in this case is the small discrete groupoid of isos of small sets, and therefore corre-
sponds to the functor IdU : U × U → Gpd, with discrete groupoids as its values, namely
for small sets A,B, the small discrete groupoid of isos i : A ∼= B,

IdU(A,B) = {i : A ∼= B} . (4.31)

Now consider the interpretation of the type Equiv → U × U. Unpacking the definition
4.6.1 in this case, for small sets A,B, we have the groupoid:

Equiv(A,B) = Σe:A→B isEquiv(e)

= Σe:A→B Σf,g:B→A IdBB(e ◦ f, 1B)× IdAA(g ◦ e, 1A) .

The comparison map j : IdU → Equiv (sometimes called “IdtoEq”) over U × U results as
the J-term in the following Id-elim

U Equiv

IdU U× U

refl

e

J

where e : U → Equiv is the map that takes a small set A to its identity map 1A : A → A,
along with 1A itself as left- and right-inverses. Note that the map refl : U → IdU = UI is
indeed an injective-on-objects equivalence and Equiv → U× U is a fibration of groupoids.

Exercise 4.6.3. Prove that U → UI is an injective-on-objects equivalence, and the projec-
tion Equiv → U× U is a (split) fibration of groupoids, as just claimed.

Finally, to verify the univalence axiom, we must prove that j : IdU → Equiv is an equiv-
alence of groupoids. It suffices to show this fiberwise j(A,B) : IdU(A,B) → Equiv(A,B), and
since A,B are both discrete groupoids, we have Equiv(A,B) ≃ Iso(A,B). But Iso(A,B) is
exactly the interpretation of IdU(A,B), by (4.31), and j(i : A ∼= B) is just (i, i−1, i−1), so
we do indeed have

(A =U B) = IdU(A,B) ≃ Equiv(A,B) = (A ≃ B) .

[DRAFT: May 10, 2025]

Bibliography

[ADHS01] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evalu-
ation for typed lambda calculus with coproducts. In Proceedings 16th Annual
IEEE Symposium on Logic in Computer Science (LICS 2001), pages 303–310,
2001.

[AG] C. Angiuli and D. Gratzer. Principles of dependent type theory. Online at
https://carloangiuli.com/courses/b619-sp24/notes.pdf. Version 2024-
11-26.

[AGH24] S. Awodey, N. Gambino, and S. Hazratpour. Kripke-Joyal forcing for type
theory and uniform fibrations, 2024. Preprint available as https://arxiv.

org/abs/2110.14576.

[AGS17] Steve Awodey, Nicola Gambino, and Kristina Sojakova. Homotopy-initial alge-
bras in type theory. 2017.

[AR94] Jiri Adamek and Jiri Rosicky. Locally Presentable and Accessible Categories.
Number 189 in London Mathematical Society Lecture Notes. Cambridge Uni-
versity Press, 1994.

[AR11] S. Awodey and F. Rabe. Kripke semantics for Martin-Löf’s extensional type
theory. Logical Methods in Computer Science, 7(3):1–25, 2011.

[AW09] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity
types. Math. Proc. Cambridge Philos. Soc., 146(1):45–55, 2009.

[Awo] Steve Awodey. Introduction to categorical logic. Fall 2024, https://awodey.
github.io/catlog/notes/catlogdraft.pdf.

[Awo00] Steve Awodey. Topological representation of the λ-calculus. Mathematical
Structures in Computer Science, 10:81–96, 2000.

[Awo10] Steve Awodey. Category Theory. Number 52 in Oxford Logic Guides. Oxford
University Press, 2010.

[DRAFT: May 10, 2025]

https://arxiv.org/abs/2110.14576
https://arxiv.org/abs/2110.14576
https://awodey.github.io/catlog/notes/catlogdraft.pdf
https://awodey.github.io/catlog/notes/catlogdraft.pdf

148 BIBLIOGRAPHY

[Awo12] Steve Awodey. Type theory and homotopy. In Peter Dybjer, Sten Lindström,
Erik Palmgren, and Göran Sundholm, editors, Epistemology Versus Ontology:
Essays on the Philosophy and Foundations of Mathematics in Honour of Per
Martin-Löf, pages 183–201. Springer, 2012. arXiv:1010.1810.

[Awo16] Steve Awodey. Natural models of homotopy type theory. Mathematical Struc-
tures in Computer Science, 28:1–46, 11 2016.

[Awo24] Steve Awodey. On Hofmann-Streicher universes. Mathematical Structures in
Computer Science, 34:894–910, 2024.

[Baua] A. Bauer. On a proof of cantor’s theorem. Blogpost at https://math.andrej.
com/2007/04/08/on-a-proof-of-cantors-theorem.

[Baub] A. Bauer. On fixed-point theorems in synthetic computabil-
ity. Blogpost at https://math.andrej.com/2019/11/07/

on-fixed-point-theorems-in-synthetic-computability.

[Coq22] Thierry Coquand. Type theory, 2022. The Stanford Encyclopedia of Philosophy,
https://plato.stanford.edu/archives/fall2022/entries/type-theory.

[Ded88] R. Dedekind. Was sind und was sollen die Zahlen? Vieweg, 1888.

[Dyb96] P. Dybjer. Internal type theory. LNCS, 1158:120–134, 1996.

[FDCB02] M. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomorphisms in typed
lambda calculi with empty and sum types. In Proceedings 17th Annual IEEE
Symposium on Logic in Computer Science (LICS 2002), pages 147–156, 2002.

[Fri75] H. Friedman. Equality between functionals. In R. Parikh, editor, Logic Collo-
quium. Springer-Verlag, New York, 1975.

[FS99] Marcelo Fiore and Alex Simpson. Lambda definability with sums via
Grothendieck logical relations. In Jean-Yves Girard, editor, Typed Lambda
Calculi and Applications, pages 147–161, Berlin, Heidelberg, 1999. Springer.

[GG08] Nicola Gambino and Richard Garner. The identity type weak factorisation
system. Theoretical Computer Science, 409(1):94–109, 2008.

[GK13] Nicola Gambino and Joachim Kock. Polynomial functors and polynomial
monads. Mathematical Proceedings of the Cambridge Philosophical Society,
154(1):153–192, 2013.

[GL23] N. Gambino and M.F. Larrea. Models of Martin-Löf type theory from alge-
braic weak factorisation systems. The Journal of Symbolic Logic, 88(1):242–289,
March 2023.

[DRAFT: May 10, 2025]

https://math.andrej.com/2007/04/08/on-a-proof-of-cantors-theorem
https://math.andrej.com/2007/04/08/on-a-proof-of-cantors-theorem
https://math.andrej.com/2019/11/07/on-fixed-point-theorems-in-synthetic-computability
https://math.andrej.com/2019/11/07/on-fixed-point-theorems-in-synthetic-computability
https://plato.stanford.edu/archives/fall2022/entries/type-theory

BIBLIOGRAPHY 149

[Gro83] Alexander Grothendieck. Pursuing stacks. unpublished, 1983.

[Hof94] Martin Hofmann. On the interpretation of type theory in locally cartesian
closed categories. Lecture Notes in Computer Science, 933:427–441, 1994.

[Hof95] Martin Hofmann. Syntax and semantics of dependent types. In Semantics
and logics of computation, volume 14 of Publ. Newton Inst., pages 79–130.
Cambridge University Press, Cambridge, 1995.

[How80] William A. Howard. The formulae-as-types notion of construction. In
Jonathan P. Seldin and J. Roger Hindley, editors, To H.B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. 1980.
Reprinted from 1969 manuscript.

[HS] Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. un-
published, dated Spring 1997.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory (Venice, 1995), vol-
ume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York,
1998.

[Joh82] P.T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in advanced
mathematics. Cambridge University Press, 1982.

[Joh03] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, 2
vol.s. Number 43 in Oxford Logic Guides. Oxford University Press, 2003.

[Joy17] André Joyal. Notes on clans and tribes, 2017. unpublished https://arxiv.

org/abs/1710.10238.

[JT84] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck.
Memoirs of the AMS. American Mathematical Society, 1984.

[Law63] F. W. Lawvere. Functorial semantics of algebraic theories. Ph.D. thesis,
Columbia University, 1963.

[Law69] F.W. Lawvere. Diagonal arguments and cartesian closed categories. In Category
Theory, Homology Theory and their Applications II, volume 92 of Lecture Notes
in Mathematics. Springer, Berlin, 1969. Reprinted with author commentary in
Theory and Applications of Categories (15): 1–13, (2006).

[Law70] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. Proceedings of the AMS Symposium on Pure Mathematics
XVII, pages 1–14, 1970.

[DRAFT: May 10, 2025]

https://arxiv.org/abs/1710.10238
https://arxiv.org/abs/1710.10238

150 BIBLIOGRAPHY

[LS88] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic.
Cambridge, 1988.

[LW15] Peter Lefanu Lumsdaine and Michael A. Warren. The local universes model:
An overlooked coherence construction for dependent type theories. ACM Trans.
Comput. Logic, 16(3), 2015.

[MH92] Michael Makkai and Victor Harnik. Lambek’s categorical proof theory and
Läuchli’s abstract realizability. Journal of Symbolic Logic, 57(1):200–230, 1992.

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984.

[MM92] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Intro-
duction to Topos Theory. Springer-Verlag, New York, 1992.

[MP00] Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Annals of
Pure and Applied Logic, 104(1):189–218, 2000.

[MR95] Michael Makkai and Gonzalo Reyes. Completeness results for intuitionistic
and modal logic in a categorical setting. Annals of Pure and Applied Logic,
72:25–101, 1995.

[Pal03] Erik Palmgren. Groupoids and local cartesian closure. 08 2003. unpublished.

[Plo73] G. D. Plotkin. Lambda-definability in the full type hierarchy. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press, New York, 1973.

[Rij25] Egbert Rijke. Introduction to Homotopy Type Theory. Cambridge University
Press, 2025.

[Sco70] Dana S. Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, volume
125, pages 237–275. Springer-Verlag, 1970.

[Sco80a] Dana S. Scott. The lambda calculus: Some models, some philosophy. In The
Kleene Symposium, pages 223–265. North-Holland, 1980.

[Sco80b] Dana S. Scott. Relating theories of the lambda calculus. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 403–450.
Academic Press, 1980.

[See84] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 95(1):33, 1984.

[DRAFT: May 10, 2025]

BIBLIOGRAPHY 151

[Sim95] A. Simpson. Categorical completeness results for the simply-typed lambda-
calculus. In M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda
Calculi and Applications, Lecture Notes in Computer Science, pages 414–427.
Springer, 1995.

[Tai68] WilliamW. Tait. Constructive reasoning. In Logic, Methodology and Philos. Sci.
III (Proc. Third Internat. Congr., Amsterdam, 1967), pages 185–199. North-
Holland, Amsterdam, 1968.

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge University
Press, 1999.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute
for Advanced Study, 2013.

[Web07] Mark Weber. Yoneda structures from 2-toposes. Applied Categorical Structures,
15, 2007.

[DRAFT: May 10, 2025]

https://homotopytypetheory.org/book

	Introduction
	A little history
	Proof relevance
	The Curry-Howard correspondence
	Categorification
	Completeness via representation theorems
	Positive propositional calculus
	Heyting algebras

	Outline

	Simple Type Theory
	The -calculus
	Cartesian closed categories
	Interpretation of the -calculus in a CCC
	Functorial semantics
	The internal language of a CCC
	Embedding theorems and completeness
	Kripke models
	Topological models
	Extensions of the -calculus
	-Calculus with sums
	Natural numbers objects
	Higher-order logic
	Modalities

	Dependent Type Theory
	Hyperdoctrines
	Dependently-typed lambda-calculus.
	Interaction of Eq with and

	Locally cartesian closed categories
	Functorial semantics of DTT in LCCCs
	Inductive types
	Sum types
	Natural numbers
	Algebras for endofunctors
	W-types

	Propositional truncation
	Bracket types
	Propositions as [types]
	Completeness of propositions as types

	Homotopy Type Theory
	Identity types
	The naive interpretation

	The groupoid model
	Weak factorization systems
	Natural models
	Modeling 1, ,
	Identity types
	Strictification

	Universes
	A realization nerve adjunction
	Classifying families
	Type universes

	Univalence

	Bibliography

