
Notes on Type Theory
[DRAFT: January 21, 2025]

Steve Awodey

with contributions from Andrej Bauer

Contents

1 Introduction 5
1.1 A little history . 5
1.2 Proof relevance . 7
1.3 The Curry-Howard correspondence . 9
1.4 Categorification . 10
1.5 Completeness via representation theorems 11

1.5.1 Positive propositional calculus . 11
1.5.2 Heyting algebras . 16

1.6 Outline . 28

A Category Theory 31
A.1 Categories . 31

A.1.1 Examples . 32
A.1.2 Categories of structures . 33
A.1.3 Basic notions . 34

A.2 Functors . 35
A.2.1 Functors between sets, monoids and posets 36
A.2.2 Forgetful functors . 36

A.3 Constructions of Categories and Functors 36
A.3.1 Product of categories . 36
A.3.2 Slice categories . 37
A.3.3 Arrow categories . 38
A.3.4 Opposite categories . 39
A.3.5 Representable functors . 39
A.3.6 Group actions . 40

A.4 Natural Transformations and Functor Categories 41
A.4.1 Directed graphs as a functor category 43
A.4.2 The Yoneda embedding . 44
A.4.3 Equivalence of categories . 46

A.5 Adjoint Functors . 48
A.5.1 Adjoint maps between preorders . 49
A.5.2 Adjoint functors . 51
A.5.3 The unit of an adjunction . 53

[DRAFT: January 21, 2025]

4 CONTENTS

A.5.4 The counit of an adjunction . 55
A.6 Limits and Colimits . 56

A.6.1 Binary products . 56
A.6.2 Terminal objects . 57
A.6.3 Equalizers . 57
A.6.4 Pullbacks . 58
A.6.5 Limits . 59
A.6.6 Colimits . 63
A.6.7 Binary coproducts . 64
A.6.8 Initial objects . 64
A.6.9 Coequalizers . 65
A.6.10 Pushouts . 65
A.6.11 Limits as adjoints . 66
A.6.12 Preservation of limits . 68

B Logic 71
B.1 Concrete and abstract syntax . 71
B.2 Free and bound variables . 73
B.3 Substitution . 74
B.4 Judgments and deductive systems . 74
B.5 Example: Equational reasoning . 76
B.6 Example: Predicate calculus . 76

Bibliography 79

[DRAFT: January 21, 2025]

Chapter 1

Introduction

1.1 A little history

We begin with a few historical remarks, intended to correct a common misconception about
the origins of type theory. For an excellent survey of the history of modern type theory
see [Coq].

The history of type theory is closely tied to the history of logic, to which it is closely
related, but distinct. Modern logic emerged together with modern algebra in the 19th
century, as something like the algebra of “propositions”, as opposed to that of numbers or
quantities. As emphasized by Frege, the distinctive feature of logic was the notion of truth,
which establishes its connection to language, thought, judgement, and other anthropocen-
tric notions—as opposed to, say, numbers and sets, which could be regarded as existing
independently of human activity. Although Frege himself strove to establish logic as an
objective science, he struggled to define its basic objects in a way that did not rely on their
symbolic (one would now say “syntactic”) representations. Objects were determined as
things that could be named, possibly by complex symbolic expressions. The basic notion
of a function was, for Frege, something that derived from a complex name for an object by
allowing a constituent name to be replaced by another (think of forming an expression for
a polynomial function from an algebraic expression for a number). In this way, the basis
of logic was tied to the relation between symbolic expressions and their meaning (German
Bedeutung).

In addition to names of objects, and functional expressions regarded as fragmentary or
incomplete names, there were sentences, which were treated simply as names for objects
of a special kind, for which Frege coined the term truth value (German: Wahrheitswert).
Functions whose values were truth values – whose expressions were therefore fragmentary
sentences (i.e. predicates, or formulas with variables) – were called concepts (German: Be-
griffe). In this way, Frege’s system of logic was based on (i) objects, including truth values,
and functions, including concepts, all of which were in the objective realm of “things”, and
(ii) their symbolic or linguistic expressions, which were regarded as being in a separate
realm. Mediating between the two realms was a third one called that of “senses” (German:

[DRAFT: January 21, 2025]

6 Introduction

Symbols Senses Things
Total names, sentences propositions objects, truth values
Partial formulas, predicates properties functions, concepts

Table 1.1: Frege’s logical inventory

Sinne), which might now be called the intensions and included things like propositions,
which Frege called “thoughts” (German: Gedanken).

In this way, certain kinds of things (like functions) were inferred, or assumed, to corre-
spond to certain kinds of expressions. Accordingly, there were also assumed to be higher-
order functions, which resulted from complex expressions by removing the expressions for
functions and allowing these arguments to vary (a quantifier is an example of such a higher
function). Frege introduced a systematic use of different kinds of variables, notation for
variable binding, and other devices to permit the correct formal manipulation of expressions
denoting not only objects, but also functions of several arguments, functions of functions,
etc. He insisted, moreover, on a strict regimentation of the entities denoted by such ex-
pressions. A function of functions could no more take an object as argument than could a
noun replace a verb to make a sentence. In this way, Frege’s universe of logical entities was
partitioned into a rigid hierarchy of disjoint kinds that Russell later called logical types.

To be a bit more precise, if we let o denote the type of all objects (including truth
values), and A → B the type of functions from type A to type B, then Frege’s system of
all logical types T is generated simply by the rules:

T ::= o | (T1, . . . , Tn)→ o

where (T1, . . . , Tn) → o represents the type of o-valued functions in several arguments of
types T1, . . . , Tn, respectively. (This display can be read as a recursive specification as
follows: o is a type; if T1, . . . , Tn are types, then (T1, . . . , Tn) → o is a type; and nothing
else is a type.)

According to Russell [?], a type may be defined as “the range of significance of a
propositional function”, which corresponds roughly to Frege’s partition of all functions
according to what arguments they can take, with the ones taking no arguments being
the objects. Whereas for Frege, the values of such functions were arbitrary objects, for
Russell they were restricted to being propositions, thus corresponding (roughly1) to Frege’s
concepts. Representing the type of propositions by p, Russell’s hierarchy of logical types
is then generated by the similar rules:

T ::= o | p | (T1, . . . , Tn)→ p

which is to say, all (higher-order) relations on objects and propositions. Of course, Russell
did not rest with this, but also introduced a further “ramification”, determined by the

1We are suppressing the subtlety that Russell’s functions were intensional, at least in the original
formulation, and so took values in propositions, rather than truth values.

[DRAFT: January 21, 2025]

1.2 Proof relevance 7

quantificational structure of the expression specifying a given (propositional) function.
This was despite the fact that the unramified theory already sufficed to block the particular
inconsistency in Frege’s system that Russell had discovered [?]; nonetheless, Russell was
worried that other inconsistencies might yet result without the more elaborate ramified
theory of types.

The main point if these remarks is that Frege’s type theory, which roughly agrees with
what is now called simple type theory, was in fact not motivated by Russell’s discovery of an
inconsistency, but rather by a principled consideration of the nature of functions and their
relationship to the symbolic expressions by which they can be determined. Unfortunately,
Frege later effectively violated those restrictions by introducing the notion of the extension
(German: Wertverlauf) of a function to play the role of a proxy object. For ϕ a concept,
the extension x̂ϕ was essentially the set of objects satisfying the concept (the extension
of a general function was its “course of values”, something like its “graph”). It was this
assumption of extensions that led to the inconsistency in his system, via the infamous Law
V, which in modern predicate logical notation reads innocently enough as an “axiom of
extensionality”,

x̂ϕ = x̂ψ ⇔ ∀x(ϕ = ψ). (V)

It is indeed ironic that Frege, who first formulated, and strenuously insisted on, the natural
rules of logical types, ultimately fell victim to violating those very rules.

1.2 Proof relevance

An important aspect of Frege’s logic that distinguished it from the algebraic tradition of
the time was his emphasis on a rigorous formal system of derivations, specified by rules
of inference that made reference only to the outward logical (“syntactic”) form of the
expressions, and not to what they were assumed to mean. Frege regarded such formal
“gap-free” proofs as essential in determining the logical character of a judgement, unlike
some later logicians who regarded the logical status of a judgement as a property of the
expression alone, possibly determined by consideration of external “semantic” interpreta-
tions. The constructive tradition in logic and foundations can be seen as descending from
Frege’s invention of a formal deductive system for determining the truth of a judgement,
and his insistence on the importance of this notion; the related idea of proof-relevance in
constructive logic and modern theoretical computer science is arguably further evidence
for the validity of his point of view. The interaction between logic (with its emphasis on
truth) and type theory (which emphasizes proofs) is encapsulated in constructive logic and
type theory by the Curry-Howard correspondence. In these notes, we shall attempt to high-
light this relationship from yet another point of view: the interaction between conventional
algebraic structures and what we shall call categorified algebraic structures.

In a bit more detail:

• The Curry-Howard correspondence is sometimes presented as a somewhat mysteri-
ous connection between (say, propositional) logic and (simple) type theory, according

[DRAFT: January 21, 2025]

8 Introduction

to which the “meaning” of a propositional formula is not just a truth-value (or a
truth table of values), but rather the collection of its proofs. The Propositions-as-
Types/Proofs-as-Terms (or Proofs-as-Programs) paradigm is then a proof-theoretic
(or computational) alternative to Tarskian, truth-value semantics. The same corre-
spondence also extends to first-order logic and dependent type theory, as we shall see
below.

• The algebraic/categorical version of this correspondence is then as follows: not only
does propositional logic interpret into Boolean and Heyting algebras (and first- and
higher-order logic in (pre)toposes), but we also have categorical semantics of the
associated type theories, like the λ-calculus which is modeled by (locally) cartesian
closed categories, such as categories of (pre)sheaves.

• The poset algebra of truth-values used for the semantics of propositional or predicate
logic (e.g. the Boolean algebra {0, 1}) is seen to be the poset reflection of a suitably
structured, proper category (e.g. Set), which models a type theory that, in turn, is
the “proof-relevant” version of the logic. The general scheme can be represented as
follows, with the first row being the proof-relevant version of the first:

Type Theory Category
Logic Algebra

Indeed, a third axis could be added for propositional versus predicate logic and simple
versus dependent type theories:

Logic Algebra Type Theory Category
Propositional Boolean algebra Simple CCC
Predicate Boolean category Dependent LCCC

• The relationship between validity and provability, which is classically described by
the relationship between logic and type theory, is described categorically by the
(adjoint) notions of categorical generalization and “poset reflection” between (struc-
tured) posets and categories. In this way, the Curry-Howard correspondence relates
to the idea of “categorification”: a structured category whose poset reflection is a
given structured poset. For example, a category with finite products is a categori-
fication of a ∧-semilattice, and the category Set is a categorification of the Boolean
algebra {0, 1}.

Finally, some new ideas have recently deepened this perspective: the original Curry-
Howard paradigm, relating truth-value semantics (model theory) with type-theoretic syn-
tax (proof theory), has turned out to capture only the first two levels of an infinite hierarchy
of levels of structure. These levels are not merely cumulative, but are related by inclusion,
truncation, (co-)reflection, and other operations. The importance of “proof-relevance” that
underlies the Propositions-as-Types idea is essentially just one special case of the coherence

[DRAFT: January 21, 2025]

1.3 The Curry-Howard correspondence 9

issue that arises everywhere in higher category theory. And the once-bold replacement of
truth-values and sets by types in constructive logic and the foundations of computation
parallels the replacement of discrete structures (sheaves) by “higher” ones (stacks) in al-
gebra and geometry—except that we have now learned that the gap between the levels is
not just a single step, but rather an infinite hierarchy of levels of structure, each just as
significant as the first step.

These insights are reflected in current categorical logic in the recent extension from
algebraic logic (level 0) and topos theory (level 1) to higher topos theory and homotopy
type theory (level∞). The latter are the focus of much current research, and the unification
of the various earlier topics that has been achieved already shows how much we have learned
about what happens in passing from 0 to 1, by passing from the finite to the infinite.

1.3 The Curry-Howard correspondence

Consider the following natural deduction proof in propositional calculus.

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B
B

(1)
(A ∧B) ∧ (A⇒ B)⇒ B

This deduction shows that

⊢ (A ∧B) ∧ (A⇒ B)⇒ B.

But so does the following:

[(A ∧B) ∧ (A⇒ B)]1

A⇒ B

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
A

B
(1)

(A ∧B) ∧ (A⇒ B)⇒ B

As does:

[(A ∧B) ∧ (A⇒ B)]1

A ∧B
B

(1)
(A ∧B) ∧ (A⇒ B)⇒ B

There is a sense in which the first two proofs are “equivalent”, but not the first and the
third. The relation (or property) of provability in propositional calculus ⊢ A discards such
differences in the proofs that witness it. According to the “proof-relevant” point of view,
sometimes called propositions as types, one retains as relevant some information about the
way in which a proposition is proved. This can be done by annotating the proofs with
proof-terms as they are constructed, as follows:

[DRAFT: January 21, 2025]

10 Introduction

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B)⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π1(π1(x)) : A

[x : (A ∧B) ∧ (A⇒ B)]1

π2(x) : A⇒ B

π2(x)(π1(π1(x))) : B
(1)

λx.π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B)⇒ B

[x : (A ∧B) ∧ (A⇒ B)]1

π1(x) : A ∧B
π2(π1(x)) : B

(1)
λx.π2(π1(x)) : (A ∧B) ∧ (A⇒ B)⇒ B

The proof terms for the first two proofs are the same, namely λx.π2(x)(π1(π1(x))), but the
term for the third one is λx.π2(π1(x)), reflecting the difference in the proofs. The assign-
ment works by labelling assumptions as variables, and then associating term-constructors
to the different rules of inference: pairing and projection to conjunction introduction and
elimination, function application and λ-abstraction to implication elimination (modus po-
nens) and introduction. The use of variable binding to represent cancellation of premisses
is a particularly effective device.

1.4 Categorification

From the categorical point of view, the relation of deducibility A ⊢ B is a mere preorder.
The addition of proof terms x : A ⊢ t : B results in a categorification of this preorder, in
the sense that it becomes a “proper” category, the preordered reflection of which is the
deducibility preorder. And now a remarkable fact emerges: it is hardly surprising that the
deducibility preorder has, say, finite products A ∧ B or even exponentials A ⇒ B; but it
is amazing that the category with proof terms x : A ⊢ t : B as arrows also turns out to be
a cartesian closed category, and indeed a proper one, with distinct parallel arrows, such as

π2(x)(π1(π1(x))) : (A ∧B) ∧ (A⇒ B) −→ B,

π2(π1(x)) : (A ∧B) ∧ (A⇒ B) −→ B.

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 11

This category of proofs contains information about the “proof theory” of the propositional
calculus, as opposed to its mere relation of deducibility.

When the calculus of proof terms is formulated as a system of simple type theory, it
admits an alternate interpretation as a formal system of function abstraction and applica-
tion. This dual interpretation of the system of simple type theory—as the proof theory
of propositional logic, and as a formal system for manipulating functions—is sometimes
also referred to as the “Curry-Howard correspondence” [Sco70, ML84, Tai68]. From the
categorical point of view, it expresses an equivalence between two cartesian closed cate-
gories: that of proofs in propositional logic and that of terms in simple type theory, both of
which are categorifications of their common preorder reflection, the deducibility preorder
of propositional logic (cf. [MH92]).

In the next chapter, we shall consider this remarkable correspondence in more detail,
as well as some extensions of the basic case to λ-calculus, respectively cartesian closed
categories, with sums, with natural numbers objects, and with modal operators. In the
subsequent chapter, it will be seen that this correspondence extends even further to proofs
in quantified predicate logic via dependent type theory and locally cartesian closed cate-
gories, and far beyond.

1.5 Completeness via representation theorems

As an example of the sort of reasoning that we shall extend from logic to type theory by
“categorification”, we sketch the proof of the Kripke completeness theorem for Intuitionistic
Propositional Logic (IPL) via Joyal’s representation theorem for Heyting algebras. For a
fuller exposition see [Awo, §2.1]. We begin with a basic system without the coproducts ⊥
or ϕ ∨ ψ, and thus also without negation ¬ϕ = ϕ ⇒ ⊥, which we shall therefore call the
positive propositional calculus (a non-standard designation).

1.5.1 Positive propositional calculus

Classically, implication ϕ⇒ ψ can be defined by ¬ϕ∨ψ, but in categorical logic we prefer
to consider ϕ⇒ ψ as an exponential of ψ by ϕ defined as right adjoint to the conjunction
(−) ∧ ϕ, applied to to the argument ψ. Since this makes sense without negation ¬ϕ or
joins ϕ∨ψ, we can study just the cartesian closed fragment separately, and then add those
other operations later. The same approach will be used for type theory.

Definition 1.5.1. The positive propositional calculus PPC is the subsystem of the full
propositional calculus (see [Awo, §2.1]) containing just (finite) conjunction and implication.
So PPC is the set of all propositional formulas ϕ constructed from propositional variables
p1, p2, ..., a constant ⊤ for true, and the binary connectives of conjunction ϕ ∧ ψ and
implication ϕ⇒ ψ.

The system of deduction for PPC has one form of judgement

ϕ1, . . . , ϕm ⊢ ϕ

[DRAFT: January 21, 2025]

12 Introduction

where the formulas ϕ1, . . . , ϕm are called the assumptions (or hypotheses) and ϕ is the
conclusion. The assumptions are regarded as a (finite) set; so they are unordered, have
no repetitions, and may be empty. Deductive entailment, also denoted Φ ⊢ ϕ, is a relation
between finite sets of formulas Φ and single formulas ϕ, and is defined as the smallest such
relation satisfying the following rules:

1. Hypothesis:

Φ ⊢ ϕ
if ϕ ∈ Φ

2. Truth:

Φ ⊢ ⊤

3. Conjunction:
Φ ⊢ ϕ Φ ⊢ ψ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ ∧ ψ
Φ ⊢ ϕ

Φ ⊢ ϕ ∧ ψ
Φ ⊢ ψ

4. Implication:
Φ, ϕ ⊢ ψ

Φ ⊢ ϕ⇒ ψ

Φ ⊢ ϕ⇒ ψ Φ ⊢ ϕ
Φ ⊢ ψ

A proof of a judgement Φ ⊢ ϕ is a finite tree built from the above inference rules the
root of which is Φ ⊢ ϕ, and the leaves of which are either the Truth rule or an instance of
the Hypothesis rule. A judgment Φ ⊢ ϕ is provable if it has a proof.

Remark 1.5.2. An alternate form of presentation for proofs in natural deduction that is
more, well, natural uses trees of formulas, rather than of judgements, with leaves labelled by
assumptions ϑ that may also occur in cancelled form [ϑ]. Thus for example the introduction
and elimination rules for conjunction would be written in the form:

Φ
...
ϕ

Φ
...
ψ

ϕ ∧ ψ

Φ
...

ϕ ∧ ψ
ϕ

Φ
...

ϕ ∧ ψ
ψ

An example of a proof tree with (some) cancelled assumptions is the above rule of impli-
cation introduction, which takes the form:

Φ, [ϕ]

...
ψ

ϕ⇒ ψ

A proof tree in which all the assumptions have been cancelled represents a derivation of
an unconditional judgement such as ⊢ ϕ.

We will have a better way to record such proofs using the λ-calculus in the next chapter.

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 13

As a category, PPC is a preorder under the relation ϕ ⊢ ψ of logical entailment. As
usual, it will be convenient to pass to the poset reflection of the preorder by identifying ϕ
and ψ when ϕ ⊣⊢ ψ. This poset category is called the Lindenbaum-Tarski algebra of the
system PPC, and we denote it by

CPPC .

The conjunction ϕ∧ψ is a greatest lower bound of ϕ and ψ in CPPC, because ϕ∧ψ ⊢ ϕ
and ϕ ∧ ψ ⊢ ψ, and for all ϑ, if ϑ ⊢ ϕ and ϑ ⊢ ψ then ϑ ⊢ ϕ ∧ ψ. Since binary products
in a poset are the same thing as greatest lower bounds, we see that CPPC has all binary
products; and of course ⊤ is a terminal object, so CPPC is a ∧-semilattice. We have already
remarked that implication is right adjoint to conjunction in the sense that for any ϕ, there
is an adjunction between the monotone maps,

(−) ∧ ϕ ⊣ ϕ⇒ (−) : CPPC −→ CPPC . (1.1)

Therefore ϕ⇒ ψ is an exponential in CPPC. The counit of the adjunction (the “evaluation”
arrow) is the entailment

(ϕ⇒ ψ) ∧ ϕ ⊢ ψ ,

i.e. the familiar logical rule of modus ponens.
We therefore have the following:

Proposition 1.5.3. The poset CPPC of positive propositional calculus is cartesian closed.

We will use this fact to show that the positive propositional calculus is deductively
complete with respect to the following notion of Kripke semantics [?].

Definition 1.5.4 (Kripke semantics). We summarize this briefly as follows:

1. A Kripke model is a poset K (the “worlds”) equipped with a relation

k ⊩ p

between elements k ∈ K and propositional variables p, such that for all j ∈ K,

j ≤ k, k ⊩ p implies j ⊩ p . (1.2)

2. Given a Kripke model (K,⊩), extend the relation ⊩ to all formulas ϕ in PPC by
defining the relation of holding in a world k ∈ K inductively by the following condi-
tions:

k ⊩ ⊤ always,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (1.3)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

[DRAFT: January 21, 2025]

14 Introduction

3. Finally, say that ϕ holds in the Kripke model (K,⊩), written

K ⊩ ϕ

if k ⊩ ϕ for all k ∈ K. (One sometimes also says that ϕ holds on the poset K if
K ⊩ ϕ for all such Kripke relations ⊩ on K.)

Theorem 1.5.5 (Kripke completeness for PPC). A propositional formula ϕ is provable
from the rules of deduction for PPC if, and only if, K ⊩ ϕ for all Kripke models (K,⊩),

PPC ⊢ ϕ iff K ⊩ ϕ for all (K,⊩).

For the proof, we first require the following.

Lemma 1.5.6. For any poset P , the poset Down(P) of all downsets in P , ordered by
inclusion, is cartesian closed. Moreover, the downset embedding,

↓(−) : P −→ Down(P)

preserves any CCC structure that exists in P .

Proof. The total downset P is obviously terminal, and for any downsets S, T ∈ Down(P),
the intersection S ∩ T is also closed down, so we have the products S ∧ T = S ∩ T . For
the exponential, let

S ⇒ T = {p ∈ P | ↓(p) ∩ S ⊆ T}. (1.4)

Then for any downset Q we have

Q ⊆ S ⇒ T iff for all q ∈ Q, q ∈ S ⇒ T ,

iff for all q ∈ Q, ↓(q) ∩ S ⊆ T ,

iff
⋃

q∈Q(↓(q) ∩ S) ⊆ T ,

iff (
⋃

q∈Q ↓(q)) ∩ S ⊆ T ,

iff Q ∩ S ⊆ T .

The preservation of CCC structure by ↓ (−) : P −→ Down(P) follows from its preser-
vation by the Yoneda embedding, of which ↓(−) is a factor,

SetP
op

P Down(P)

y

↓(−)

Indeed, we can identify Down(P) with the subcategory Sub(1) ↪→ SetP
op

of subobjects of
the terminal presheaf 1, and the result then follows easily by using the left adjoint left
inverse sup of the inclusion

sup ⊣ i : Sub(1) ↪→ SetP
op

,

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 15

to be considered later (cf. Lemma ??).
But it is also easy enough to check the preservation of CC structure directly: preser-

vation of the limits 1, p ∧ q are immediate from the definitions. Suppose p ⇒ q is an
exponential in P ; then for any downset D we have:

D ⊆↓(p⇒ q) iff d ∈↓(p⇒ q) , for all d ∈ D
iff d ≤ p⇒ q , for all d ∈ D
iff d ∧ p ≤ q , for all d ∈ D
iff ↓(d ∧ p) ⊆↓(q) , for all d ∈ D
iff ↓(d) ∩ ↓(p) ⊆↓(q) , for all d ∈ D
iff D ⊆↓(p)⇒↓(q)

where the last line is by (1.4). Now take D to be ↓ (p⇒ q) and ↓ (p)⇒↓ (q) respectively
(or just apply Yoneda!). (Note that in line (3) we assumed that d ∧ p exists for all d ∈ D;
this can be avoided by a slightly more complicated argument.)

We can now give the proof of the completeness theorem. It follows a standard pattern,
which we will see again.

Proof. (of Theorem 1.5.5)

1. The syntactic category CPPC is a CCC, with ⊤ = 1, ϕ×ψ = ϕ∧ψ, and ψϕ = ϕ⇒ ψ.
In fact, it is evidently the free cartesian closed poset on the generating set Var =
{p1, p2, . . . } of propositional variables.

2. By Step 1 and the fact that Down(K) is cartesian closed, Lemma 1.5.6, a CCC
functor CPPC → Down(K) is just an arbitrary map Var→ Down(K). But this is just
a (Kripke) model (K,⊩), as in (1.2).

3. Thus we have a bijective correspondence between Kripke relations ⊩ : Kop×Var −→
2, arbitrary maps Var → Down(K), CCC functors [[−]] : CPPC → Down(K), and
monotone maps (also called) ⊩ : Kop × CPPC −→ 2:

⊩ : Kop × Var −→ 2

[[−]] : Var −→ 2
Kop ∼= Down(K)

[[−]] : CPPC −→ Down(K) ∼= 2
Kop

⊩ : Kop × CPPC −→ 2

where we use the poset 2 to classify downsets in the poset K, or equivalently, upsets
in Kop (the contravariance will be convenient in Step 6). Here we are using the CCC
structure of the category of posets. Note that the monotonicity of ⊩ in the last line
yields both of the conditions

j ≤ k , k ⊩ ϕ =⇒ j ⊩ ϕ

[DRAFT: January 21, 2025]

16 Introduction

and
k ⊩ ϕ , ϕ ⊢ ψ =⇒ k ⊩ ψ .

4. Moreover, the CCC preservation of the map [[−]] in the third line yields the Kripke
forcing conditions (1.3) (exercise!).

5. For any model (K,⊩), by the adjunction in (3) we then have

K ⊩ ϕ ⇐⇒ [[ϕ]] = K ,

where K ⊆ K is the maximal downset.

6. Because the downset embedding ↓ preserves the CCC structure (by Lemma 1.5.6),
CPPC has a canonical model, namely the special case of (3) with K = CPPC and ⊩
resulting from the transposition:

↓(−) : CPPC −→ Down(CPPC) ∼= 2
Cop
PPC

⊩ : CopPPC × CPPC −→ 2

7. Now observe that for the Kripke relation ⊩ in (6) we therefore have ⊩ = ⊢, since it
is the transpose of the downset embedding, and the poset CPPC is ordered by ϕ ⊢ ψ.
So the canonical model (CPPC,⊩) is logically generic, in the sense that

ϕ ⊩ ψ ⇐⇒ ϕ ⊢ ψ .

Thus in particular,
CPPC ⊩ ϕ ⇐⇒ PPC ⊢ ϕ .

The case of a general (K,⊩) now follows easily.

Exercise 1.5.7. Verify the claim in (4) that CCC preservation of the transpose [[−]] of ⊩
yields the Kripke forcing conditions (1.3).

Exercise 1.5.8. Give a Kripke countermodel to show that PPC ⊬ (ϕ⇒ ψ)⇒ ϕ.

1.5.2 Heyting algebras

Let us now extend the positive propositional calculus to the full intuitionistic propositional
calculus. This involves adding the finite coproducts 0 and p∨ q to the notion of a cartesian
closed poset, to arrive at the general notion of a Heyting algebra. Heyting algebras are to
intuitionistic logic as Boolean algebras are to classical logic: each is an algebraic description
of the corresponding logical calculus. We shall review both the algebraic and the logical
points of view; as we shall see, many aspects of the theory of Boolean algebras carry over
to Heyting algebras. For instance, in order to prove the Kripke completeness of the full
system of intuitionistic propositional calculus, we will need an alternative to Lemma 1.5.6,
because the Yoneda embedding does not in general preserve coproducts. For that we will
again use a version of the Stone representation theorem (see [Awo, §2.7]), this time in a
generalized form due to Joyal.

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 17

Distributive lattices

Recall first that a (bounded) lattice is a poset that has finite limits and colimits. In other
words, a lattice (L,≤,∧,∨, 1, 0) is a poset (L,≤) with distinguished elements 1, 0 ∈ L, and
binary operations of meet ∧ and join ∨, satisfying for all x, y, z ∈ L,

0 ≤ x ≤ 1
z ≤ x z ≤ y

z ≤ x ∧ y
x ≤ z y ≤ z

x ∨ y ≤ z

A lattice homomorphism is a function f : L → K between lattices which preserves finite
limits and colimits, i.e., f0 = 0, f1 = 1, f(x∧ y) = fx∧ fy, and f(x∨ y) = fx∨ fy. The
category of lattices and lattice homomorphisms is denoted by Lat.

Lattices are an algebraic theory, and can be axiomatized equationally in a signature
with two distinguished elements 0 and 1 and two binary operations ∧ and ∨, satisfying the
following equations:

(x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z) ,
x ∧ y = y ∧ x , x ∨ y = y ∨ x ,
x ∧ x = x , x ∨ x = x ,

1 ∧ x = x , 0 ∨ x = x ,

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x .

(1.5)

The partial order on L is then determined by

x ≤ y ⇐⇒ x = x ∧ y .

Exercise 1.5.9. Show that in a lattice we also have x ≤ y if and only if x ∨ y = y.

A lattice is distributive if the following distributive laws hold:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) ,
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) .

(1.6)

It turns out that if one distributive law holds then so does the other [Joh82, I.1.5].

Definition 1.5.10. A Heyting algebra is a cartesian closed lattice. This means that a
Heyting algebra H has a binary operation of implication x ⇒ y, satisfying the following
condition, for all x, y, z ∈ H:

z ≤ x⇒ y

z ∧ x ≤ y

A Heyting algebra homomorphism is a lattice homomorphism f : K → H between
Heyting algebras that preserves implication, i.e., f(x⇒ y) = (fx⇒ fy). The category of
Heyting algebras and their homomorphisms is denoted by Heyt. (Caution: unlike Boolean

[DRAFT: January 21, 2025]

18 Introduction

algebras, the subcategory of lattices consisting of Heyting algebras and their homomor-
phisms is not full.)

Heyting algebras can be axiomatized equationally as a set H with two distinguished
elements 0 and 1 and three binary operations ∧, ∨ and ⇒. The equations for a Heyting
algebra are the ones listed in (1.5), as well as the following ones for ⇒.

(x⇒ x) = 1 ,

x ∧ (x⇒ y) = x ∧ y ,
y ∧ (x⇒ y) = y ,

(x⇒ (y ∧ z)) = (x⇒ y) ∧ (x⇒ z) .

(1.7)

For a proof, see [Joh82, I.1], where one can also find a proof that every Heyting algebra is
distributive (exercise!).

Exercise 1.5.11. Show that every Heyting algebra is indeed a distributive lattice.

Example 1.5.12. We know from Lemma 1.5.6 that for any poset P , the poset Down(P)
of all downsets in P , ordered by inclusion, is cartesian closed. Moreover, we know that

Down(P) ∼= Pos(P op,2) ,

the latter regarded as a poset with the pointwise ordering on the monotone maps P op → 2

(i.e. the natural transformations). The assignment takes a map f : P op → 2 to the
filter-kernel f−1(1) ⊆ P op, which is therefore an upset in P op, and so a downset in P .

Since 2 is a lattice, we can take joins f ∨ g in Pos(P op,2) pointwise, in order to get
joins in Down(P) ∼= Pos(P op,2), which then correspond to (set theoretic) unions of the
corresponding downsets f−1(1) ∪ g−1(1). Thus for any poset P , the lattice Down(P) is a
Heyting algebra, with the downsets ordered by inclusion, and the (contravariant) classifying
maps P op → 2 ordered pointwise:

Proposition 1.5.13. For any poset P , the poset Down(P) of all downsets in P ordered
by inclusion is a Heyting algebra. The lattice operations of meet and join agree with the
set-theoretic ones of intersection and union. The Heyting implication S ⇒ T is given as
in (1.4) by:

S ⇒ T = {p ∈ P | ↓(p) ∩ S ⊆ T}.

Of course, one can also compose the classifying maps with the negation iso ¬ : 2
∼→ 2 to

get Down(P) ∼= Pos(P,2), with covariant classifying maps P → 2 for the downsets, using
the ideal-kernels f−1(0) ⊆ P instead of the filters; but then the ordering on Pos(P,2) will
be the reverse pointwise ordering of maps f : P → 2.

Example 1.5.14. For any topological space X, the poset of open sets O(X) is a Heyting
algebra, with the lattice operations inherited from the powerset, and the Heyting implica-
tion given by

U ⇒ V =
⋃{

W ∈ OX
∣∣ W ∩ U ⊆ V

}
.

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 19

Intuitionistic propositional calculus

There is an obvious forgetful functor U : Heyt → Set mapping a Heyting algebra to
its underlying set, and a homomorphism of Heyting algebras to the underlying function.
Because Heyting algebras are also models of an equational theory, there is a left adjoint
H ⊣ U , which is the usual “free” construction for algebras, mapping a set X to the free
Heyting algebra H(X) generated by it. As for all algebraic structures, the construction
of H(X) can be performed in two steps: first, define a set H[X] of formal expressions in
the signature, and then quotient it by an equivalence relation generated by the equations
(1.5) and (1.7).

In more detail, let H[X] be the set of formal expressions generated inductively by the
following rules:

1. Generators: if x ∈ X then x ∈ H[X].

2. Constants: ⊥,⊤ ∈ H[X].

3. Connectives: if ϕ, ψ ∈ H[X] then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ) ∈ H[X].

We then impose an equivalence relation ∼ on H[X], defined as the smallest equivalence
relation containing all instances of the axioms (1.5) and (1.7) and closed under substitution
of equals for equals (sometimes called the smallest congruence). This then forces the
quotient

H(X) = H[X]/∼

to be a Heyting algebra, as is easily checked.

We define the action of the functor H on morphisms as usual: a function f : X → Y is
mapped to the Heyting algebra homomorphism H(f) : H(X) → H(Y) (well-)defined (on
equivalence classes) by

H(f)⊥ = ⊥ , H(f)⊥ = ⊥ , H(f)x = fx ,

H(f)(ϕ ∗ ψ) = (H(f)ϕ) ∗ (H(f)ψ) ,

where ∗ stands for ∧, ∨ or ⇒.

The inclusion of generators ηX : X → UH(X) into the underlying set of the free
Heyting algebra H(X) is then the component at X of a natural transformation η : 1Set =⇒
U ◦ H, which is of course the unit of the adjunction H ⊣ U . To see this, consider a
Heyting algebra K and an arbitrary function f : X → UK. Then the Heyting algebra
homomorphism f : H(X)→ K is defined in the evident way, by

f⊥ = ⊥ , f⊥ = ⊥ , fx = fx ,

f(ϕ ∗ ψ) = (fϕ) ∗ (fψ) ,

[DRAFT: January 21, 2025]

20 Introduction

where, again, ∗ stands for ∧, ∨ or ⇒. The map f then makes the following triangle in Set
commute:

X UH(X)

UK

ηX

f Uf

The homomorphism f : H(X)→ K is the unique one with this property, because any two
homomorphisms from H(X) that agree on generators must clearly be equal (formally, this
can be proved by induction on the structure of the expressions in H[X]).

We can now define the intuitionistic propositional calculus IPC to be the free Heyting
algebraH(p0, p1, . . .) on countably many generators {p0, p1, . . . }, called atomic propositions
or propositional variables. This is a somewhat unorthodox definition from a logical point of
view—normally we would start from a deductive calculus consisting of a formal language,
entailment judgements, and rules of inference. But of course, by now, we realize that the
two approaches are essentially equivalent.

Having said that, let us also briefly describe IPC in the conventional way: The formulas
of IPC are built inductively as usual from propositional variables p0, p1, . . . , constants
false ⊥ and true ⊤, and binary operations ∧, disjunction ∨ and implication ⇒.

The rules are those of the positive calculus 1.5.1, together with the following:

5. Falsehood:
Φ ⊢ ⊥
Φ ⊢ ϕ

6. Disjunction:

Φ ⊢ ϕ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ψ
Φ ⊢ ϕ ∨ ψ

Φ ⊢ ϕ ∨ ψ Φ, ϕ ⊢ θ Φ, ψ ⊢ θ
Φ ⊢ θ

For the purpose of deduction, we define ¬ϕ := ϕ⇒ ⊥ and ϕ⇔ ψ := (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).
Then let CIPC be the poset reflection of the formulas of IPC, preordered by entailment

ϕ ⊢ ψ. The elements of CIPC are thus equivalence classes [ϕ] of formulas, where two
formulas ϕ and ψ are equivalent if both ϕ ⊢ ψ and ψ ⊢ ϕ are provable in natural deduction,

[ϕ] = [ψ] ⇐⇒ ϕ ⊣⊢ ψ .

This syntactic category CIPC is then easily seen to be the free Heyting algebra on the
countably many generators {p0, p1, . . . },

CIPC ∼= H(p0, p1, . . .) ,

just as the corresponding Lindenbaum-Tarski algebra CPPC was seen to be the free CCC
poset on the propositional variables.

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 21

Classical propositional calculus

Let us have a brief look at the theory of classical propositional logic from the current point
of view, i.e. as a special kind of Heyting algebra. An element x ∈ L of a lattice L is said
to be complemented when there exists y ∈ L such that

x ∧ y = 0 , x ∨ y = 1 .

We say that y is the complement of x. In a distributive lattice, the complement of x is
unique if it exists. Indeed, if both y and z are complements of x then

y ∧ z = (y ∧ z) ∨ 0 = (y ∧ z) ∨ (y ∧ x) = y ∧ (z ∨ x) = y ∧ 1 = y ,

hence y ≤ z. A symmetric argument shows that z ≤ y, therefore y = z. The complement
of x, if it exists, is denoted by ¬x.

A Boolean algebra may be defined as a distributive lattice in which every element is
complemented. In other words, a Boolean algebra B has a complementation operation
¬ : B → B which satisfies, for all x ∈ B,

x ∧ ¬x = 0 , x ∨ ¬x = 1 . (1.8)

The full subcategory of Lat consisting of Boolean algebras is denoted by BA.

Exercise 1.5.15. Prove that every Boolean algebra is a Heyting algebra. (Hint : how is
implication encoded in terms of negation and disjunction in classical logic?)

In a Heyting algebra, not every element is complemented. However, we can still define
a pseudo complement or negation operation ¬ by

¬x = (x⇒ 0) ,

Then ¬x is the largest element for which x∧¬x = 0. While in a Boolean algebra ¬¬x = x,
in a Heyting algebra we only have x ≤ ¬¬x in general. An element x of a Heyting algebra
for which x = ¬¬x is called regular.

Exercise 1.5.16. Derive the following properties of negation in a Heyting algebra:

x ≤ ¬¬x ,
¬x = ¬¬¬x ,

x ≤ y ⇒ ¬y ≤ ¬x ,
¬¬(x ∧ y) = ¬¬x ∧ ¬¬y .

Exercise 1.5.17. We know from Example 1.5.14 that the topologyO(X) of any topological
space X is a Heyting algebra. Describe in topological language the implication U ⇒ V ,
the negation ¬U , and the regular elements U = ¬¬U in OX.

[DRAFT: January 21, 2025]

22 Introduction

Exercise 1.5.18. Show that for a Heyting algebra H, the regular elements of H form a
Boolean algebra H¬¬ =

{
x ∈ H

∣∣ x = ¬¬x
}
. Here H¬¬ is viewed as a subposet of H. Hint:

negation ¬′, conjunction ∧′, and disjunction ∨′ in H¬¬ are expressed as follows in terms of
negation, conjunction and disjunction in H, for x, y ∈ H¬¬:

¬′x = ¬x , x ∧′ y = ¬¬(x ∧ y) , x ∨′ y = ¬¬(x ∨ y) .

From logical point of view, the classical propositional calculus CPC is obtained from the
intuitionistic propositional calculus by the addition of either one of the following additional
rules.

7. Classical logic:

Φ ⊢ ϕ ∨ ¬ϕ
Φ ⊢ ¬¬ϕ
Φ ⊢ ϕ

Identifying logically equivalent formulas of CPC, we obtain a poset CCPC ordered by
logical entailment. This poset is, of course, the free Boolean algebra on the countably
many generators {p0, p1, . . . }. The free Boolean algebra can be constructed just as the
free Heyting algebra above, either equationally, or in terms of deduction. The equational
axioms for a Boolean algebra are the axioms for a lattice (1.5), the distributive laws (1.6),
and the complement laws (1.8).

Exercise∗ 1.5.19. Is CCPC isomorphic to the Boolean algebra CIPC¬¬ of the regular elements
of CIPC?

Exercise 1.5.20. Show that in a Heyting algebra H, one has ¬¬x = x for all x ∈ H
if, and only if, y ∨ ¬y = 1 for all y ∈ H. Hint : half of the equivalence is easy. For the
other half, observe that the assumption ¬¬x = x means that negation is an order-reversing
bijection H → H. It therefore transforms joins into meets and vice versa, and so the De
Morgan laws hold:

¬(x ∧ y) = ¬x ∨ ¬y , ¬(x ∨ y) = ¬x ∧ ¬y .

Together with y∧¬y = 0, the De Morgan laws easily imply y∨¬y = 1. See [Joh82, I.1.11].

Kripke semantics for IPC

Let us now prove the Kripke completeness of IPC, extending Theorem 1.5.5, namely:

Theorem 1.5.21 (Kripke completeness for IPC). Let (K,⊩) be a Kripke model, i.e. a
poset K equipped with a forcing relation k ⊩ p between elements k ∈ K and propositional
variables p, satisfying

j ≤ k, k ⊩ p implies j ⊩ p. (1.9)

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 23

Extend ⊩ to all formulas ϕ in IPC by defining

k ⊩ ⊤ always,

k ⊩ ⊥ never,

k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ , (1.10)

k ⊩ ϕ ∨ ψ iff k ⊩ ϕ or k ⊩ ψ , (1.11)

k ⊩ ϕ⇒ ψ iff for all j ≤ k, if j ⊩ ϕ, then j ⊩ ψ .

Finally, write K ⊩ ϕ if k ⊩ ϕ for all k ∈ K.
A propositional formula ϕ is then provable from the rules of deduction for IPC if, and

only if, K ⊩ ϕ for all Kripke models (K,⊩). Briefly:

IPC ⊢ ϕ iff K ⊩ ϕ for all (K,⊩).

Let us first see that we cannot simply reuse the proof from Theorem 1.5.5 for the
positive fragment PPC, because the downset (Yoneda) embedding that we used there

↓ : CPPC ↪→ Down(CPPC) (1.12)

would not preserve the coproducts ⊥ and ϕ ∨ ψ. Indeed, ↓ (⊥) ̸= ∅, because it contains
⊥ itself! And in general ↓ (ϕ ∨ ψ) ̸= ↓ (ϕ) ∪ ↓ (ψ), because the righthand side need not
contain, e.g., ϕ ∨ ψ.

Instead, we will generalize the Stone Representation theorem [Awo, §2.6] from Boolean
algebras to Heyting algebras using a theorem due to A. Joyal (cf. [MR95, MH92]). First,
recall that the Stone representation provides, for any Boolean algebra B, an injective
Boolean homomorphism into a powerset,

B↣ PX .

For X we take the set of prime filters, which we can identify with the homset of Boolean
homomorphisms BA(B,2) by taking the filter-kernel f−1(1) ⊆ B of a homomorphism f :
B → 2. The injective homomorphism η : B↣ P(BA(B,2)) is then given by:

η(b) = {F | b ∈ F} = {f : B → 2 | f(b) = 1} .

Now, the set BA(B,2) can be regarded as a (discrete) poset, and since the inclusion
Set ↪→ Pos as discrete posets is left adjoint to the forgetful functor |−| : Pos→ Set, for the
powerset P(BA(B,2)) we have

P(BA(B,2)) ∼= Set(BA(B,2), 2) ∼= Pos(BA(B,2),2) ∼= 2
BA(B,2)

where the latter is the exponential in the cartesian closed category Pos. Composing with
the Stone representation η : B↣ P(BA(B,2)) and transposing in Pos,

B↣ P(BA(B,2)) ∼= 2
BA(B,2)

BA(B,2)× B → 2

[DRAFT: January 21, 2025]

24 Introduction

we arrive at the (monotone) evaluation map

eval : BA(B,2)× B → 2. (1.13)

Finally, recall that the category of Boolean algebras is full in the category DLat of distribu-
tive lattices, so that

BA(B,2) = DLat(B,2) .

Now for anyHeyting algebra H (or indeed any distributive lattice), the homset DLat(H,2),
ordered pointwise, is isomorphic to the poset of all prime filters in H ordered by inclusion,
again by taking h : H → 2 to its (filter) kernel h−1{1} ⊆ H. In particular, when H is
not Boolean, the poset DLat(H,2) is no longer discrete, since prime filters in a Heyting
algebra need not be maximal. Indeed, recall that Proposition ?? described the prime filters
in a Boolean algebra B as those with a classifying map f : B → 2 that is a lattice homo-
morphism and therefore those with a complement f−1(0) ⊆ B that is a (prime) ideal. In
the Boolean case, these were also the maximal filters, because the preservation of Boolean
negation ¬b allowed us to deduce that for every b ∈ B, exactly one of b or ¬b must be in
such a filter F . In a Heyting algebra, however, the last condition need not obtain; and
indeed prime filters in a Heyting algebra need not be maximal.

The transpose in Pos of the evaluation map,

eval : DLat(H,2)×H → 2. (1.14)

is again a monotone map
η : H −→ 2

DLat(H,2), (1.15)

which takes p ∈ H to the “evaluation at p” map f 7→ f(p) ∈ 2, i.e.,

ηp(f) = f(p) for p ∈ H and f : H → 2 .

As before (cf. Example 1.5.12), the poset 2DLat(H,2) (ordered pointwise) may be identified
with the downsets in the poset DLat(H,2)op, ordered by inclusion, which recall from Ex-
ample 1.5.12 is always a Heyting algebra. Thus, in sum, for any Heyting algebra H, we
have a monotone map,

η : H −→ Down(DLat(H,2)op) , (1.16)

generalizing the Stone representation from Boolean to Heyting algebras.

Theorem 1.5.22 (Joyal). LetH be a Heyting algebra. There is an injective homomorphism
of Heyting algebras

H ↣ Down(J)

into the Heyting algebra of downsets in a poset J .

Note that in this form, the theorem literally generalizes the Stone representation the-
orem: when H is Boolean we can take J to be discrete, and then Down(J) ∼= Pos(J,2) ∼=
Set(J, 2) ∼= P(J) is Boolean, whence the Heyting embedding is also Boolean.

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 25

The proof will again use the transposed evaluation map,

η : H −→ 2
DLat(H,2) ∼= Down(DLat(H,2)op)

which, as before, is injective, by the Prime Ideal Theorem (see [Awo] Lemma ??). We will
use the latter in the following form due to Birkhoff.

Lemma 1.5.23 (Prime Ideal Theorem). Let D be a distributive lattice, I ⊆ D an ideal,
and x ∈ D with x ̸∈ I. There is a prime ideal I ⊆ P ⊂ D with x ̸∈ P .

Proof. As in the proof of Lemma ??, it suffices to prove it for the case I = (0). This time,
we use Zorn’s Lemma: a poset in which every chain has an upper bound has maximal
elements. Consider the poset I\x of “ideals I without x”, x ̸∈ I, ordered by inclusion.
The union of any chain I0 ⊆ I1 ⊆ ... in I\x is clearly also in I\x, so we have (at least
one) maximal element M ∈ I\x. We claim that M ⊆ D is prime. To that end, take
a, b ∈ D with a ∧ b ∈ M . If a, b ̸∈ M , let M [a] = {n ≤ m ∨ a | m ∈ M}, the ideal join
of M and ↓(a), and similarly for M [b]. Since M is maximal without x, we therefore have
x ∈ M [a] and x ∈ M [b]. Thus let x ≤ m ∨ a and x ≤ m′ ∨ b for some m,m′ ∈ M . Then
x ∨m′ ≤ m ∨m′ ∨ a and x ∨m ≤ m ∨m′ ∨ b, so taking meets on both sides gives

(x ∨m′) ∧ (x ∨m) ≤ (m ∨m′ ∨ a) ∧ (m ∨m′ ∨ b) = (m ∨m′) ∨ (a ∧ b).

Since the righthand side is in the ideal M , so is the left. But then x ≤ x∨ (m∧m′) is also
in M , contrary to our assumption that M ∈ I\x.

Proof of Theorem 1.5.22. As in (1.16), let Jop = DLat(H,2) be the poset of prime filters
in H, and consider the transposed evaluation map (1.16),

η : H −→ Down(DLat(H,2)op) ∼= 2
DLat(H,2) (1.17)

given by η(p) = {F | p ∈ F prime} ∼= {f : H → 2 | f(p) = 1}.
Clearly η(0) = ∅ and η(1) = DLat(H,2), and similarly for the other meets and joins,

so η is a lattice homomorphism. Moreover, if p ̸= q ∈ H then, as in the proof of ??, we
have that η(p) ̸= η(q), by the Prime Ideal Theorem (Lemma 1.5.23). Thus it only remains
to show that

η(p⇒ q) = η(p)⇒η(q) .

Unwinding the definitions, this means that, for all f ∈ DLat(H,2),

f(p⇒ q) = 1 iff for all g ≥ f , g(p) = 1 implies g(q) = 1. (1.18)

Equivalently, for all prime filters F ⊆ H,

p⇒ q ∈ F iff for all prime G ⊇ F , p ∈ G implies q ∈ G. (1.19)

Now if p ⇒ q ∈ F , then for all (prime) filters G ⊇ F , also p ⇒ q ∈ G, and so p ∈ G
implies q ∈ G, since (p⇒ q) ∧ p ≤ q.

[DRAFT: January 21, 2025]

26 Introduction

Conversely, suppose p ⇒ q ̸∈ F , and we seek a prime filter G ⊇ F with p ∈ G but
q ̸∈ G. Consider the filter

F [p] = {x ∧ p ≤ h ∈ H | x ∈ F} ,

which is the join of F and ↑(p) in the poset of filters. If q ∈ F [p], then x∧ p ≤ q for some
x ∈ F , whence x ≤ p ⇒ q, and so p ⇒ q ∈ F , contrary to assumption; thus q ̸∈ F [p]. By
the Prime Ideal Theorem again (applied to the distributive lattice Hop) there is a prime
filter G ⊇ F [p] with q ̸∈ G.

The proof of the Kripke completeness theorem 1.5.21 now proceeds as in the case of
PPC: given a formula ϕ such that K ⊩ ϕ in every Kipke model (K,⊩), then in particular,
for the universal model J = DLat(IPC,2)op, ordered by inclusion of downsets, we must
have J ⊩ ϕ. This means that for the embedding (1.17), we have ηϕ = IPC = η⊤, the
maximal downset, and so by injectivity of η, we must have ⊤ ⊢ ϕ. The converse follows
from the universality of IPC as the free Heyting algebra.

The classical case of “truth tables” results by considering arbitrary assignments v from
Var = {p0, p1, . . . } to truth values 2, which correspond to Boolean homomorphisms from
the free Boolean algebra B(p0, p1, . . .), and therefore to maximal filters in B(p0, p1, . . .).
Joyal’s representation theorem then agrees with that of Stone, and the resulting complete-
ness theorem is then exactly the classical one for CPC: a propositional formula is provable
in CPC if, and only if, its truth value computes to 1 by the usual “truth-table rules” (i.e.
the definition of a Boolean homomorphism) under every assignment v : {p0, p1, . . . } → 2

of truth values to the propositional letters it contains.

Corollary 1.5.24 (Completeness for classical PC). The classical propositional calculus is
deductively complete with respect to truth-value semantics (“truth tables”).

Exercise 1.5.25. Give a Kripke countermodel to show that the Law of Excluded Middle
ϕ ∨ ¬ϕ is not provable in IPC.

Topological semantics for IPC

Finally, we recall the topological interpretation of IPC, because it will also be generalized
to type theory. It is clear how to interpret IPC into a topological space X: each formula ϕ
is assigned to an open set [[ϕ]] ∈ OX in such a way that [[−]] is a homomorphism of Heyting
algebras.

Definition 1.5.26. A topological model of IPC consists of a space X and a function

[[−]] : Var→ O(X)

from the propositional variables Var = {p0, p1, . . . } to open sets of X. The interpretation
is then extended to all formulas,

[[−]] : IPC→ O(X) ,

[DRAFT: January 21, 2025]

1.5 Completeness via representation theorems 27

by setting:

[[⊤]] = X

[[⊥]] = ∅
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[ϕ⇒ ψ]] = [[ϕ]]⇒ [[ψ]] .

where the Heyting implication [[ϕ]]⇒ [[ψ]] in OX, is defined as in Example 1.5.14 as

[[ϕ]]⇒ [[ψ]] =
⋃{

U ∈ OX
∣∣ U ∩ [[ϕ]] ⊆ [[ψ]]

}
.

Joyal’s representation theorem 1.5.22 then easily implies that IPC is sound and complete
with respect to topological semantics.

Corollary 1.5.27. A formula ϕ is provable in IPC if, and only if, it holds in every topo-
logical interpretation [[−]] into a space X, briefly:

IPC ⊢ ϕ iff [[ϕ]] = X for all spaces X .

Proof. Put the Alexandroff topology on the downsets of prime filters in the Heyting alge-
bra IPC.

Exercise 1.5.28. Give a topological countermodel to show that the Law of Double Nega-
tion ¬¬ϕ⇒ ϕ is not provable in IPC.

[DRAFT: January 21, 2025]

28 Introduction

1.6 Outline

Here is a preliminary outline of the course:

1. Introduction (week 1)

(a) Logic and type theory

(b) Proof relevance, Curry-Howard, categorification

(c) Soundness and completeness via embedding and representation theorems

2. Simply Typed Lambda-Calculus (weeks 2-5)

(a) Lambda theories and their models in CCCs

(b) Classifying category and functorial semantics

(c) Completeness in CCCs

(d) Poset and Kripke semantics

(e) Further topics:

i. Topological models, spaces and local homeomorphisms.

ii. H-Sets, sheaves, realizability

iii. Domains

iv. NNOs

v. The untyped lambda-calculus

vi. Modalities and monads

vii. Monoidal closed categories and linear type theory

viii. Normalization

3. Dependent Type Theory (weeks 6-9)

(a) Dependent types

i. Sigma, Pi, and Equality types

ii. Beck-Chavalley

iii. Hyperdoctrines

(b) Locally cartesian closed categories

i. The slice lemma

ii. H-sets

iii. Presheaves

iv. Local homeomorphisms

(c) Completeness in LCCCs

i. Kripke semantics

[DRAFT: January 21, 2025]

1.6 Outline 29

ii. Topological semantics

iii. Kripke-Joyal forcing

(d) W-types

i. Polynomial endofunctors

ii. Initial algebras

(e) Coherence:

i. CwFs, natural models

ii. Universes and the Beck-Chevalley

(f) Further topics:

i. Equilogical spaces

ii. Final coalgebras and coinduction

iii. Impredicativity, realizability models

iv. CwA’s, comprehension categories

v. Setoids and quotient types

vi. Normalization and decidability of equality

4. Homotopy Type Theory (weeks 10-13)

(a) Identity types

i. UIP

ii. function extensionality

(b) Fibrations

(c) Hofmann-Streicher universes

(d) Univalence

(e) The H-levels: Prop, Set, Gpd, ...

(f) Further topics:

i. The groupoid model

ii. Algebraic weak factorization systems

iii. Homotopy-initial algebras

iv. Synthetic homotopy theory: π1(S
1)

5. Student Presentations (week 14)

(a) 2 talks / class meeting = 4 presentations

[DRAFT: January 21, 2025]

30 Introduction

[DRAFT: January 21, 2025]

Appendix A

Category Theory

A.1 Categories

Definition A.1.1. A category C consists of classes

C0 of objects A, B, C, . . .
C1 of morphisms f , g, h, . . .

such that:

• Each morphism f has uniquely determined domain dom f and codomain cod f , which
are objects. This is written:

f : dom f → cod f

• For any morphisms f : A → B and g : B → C there exists a uniquely determined
composition g ◦ f : A→ C. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

where domains are codomains are as follows:

A
f // B

g // C
h // D

• For every object A there exists the identity morphism 1A : A → A which is a unit
for composition,

1A ◦ f = f , g ◦ 1A = g ,

where f : B → A and g : A→ C.

Morphisms are also called arrows or maps. Note that morphisms do not actually have
to be functions, and objects need not be sets or spaces of any sort. We often write C
instead of C0.

[DRAFT: January 21, 2025]

32 Category Theory

Definition A.1.2. A category C is small when the objects C0 and the morphisms C1
are sets (as opposed to proper classes). A category is locally small when for all objects
A,B ∈ C0 the class of morphisms with domain A and codomain B, written Hom(A,B) or
C0(A,B), is a set.

We normally restrict attention to locally small categories, so unless we specify otherwise
all categories are taken to be locally small. Next we consider several examples of categories.

A.1.1 Examples

The empty category 0 The empty category has no objects and no arrows.

The unit category 1 The unit category, also called the terminal category, has one object
⋆ and one arrow 1⋆:

⋆ 1⋆ee

Other finite categories There are other finite categories, for example the category with
two objects and one (non-identity) arrow, and the category with two parallel arrows:

⋆ // • ⋆ 88
&& •

Groups as categories Every group (G, ·), is a category with a single object ⋆ and each
element of G as a morphism:

⋆

b

�� a
pp

c

NN a, b, c, . . . ∈ G

The composition of arrows is given by the group operation:

a ◦ b = a · b

The identity arrow is the group unit e. This is indeed a category because the group
operation is associative and the group unit is the unit for the composition. In order to get
a category, we do not actually need to know that every element in G has an inverse. It
suffices to take a monoid, also known as semigroup, which is an algebraic structure with
an associative operation and a unit.

We can turn things around and define a monoid to be a category with a single object.
A group is then a category with a single object in which every arrow is an isomorphism
(in the sense of definition A.1.5 below).

[DRAFT: January 21, 2025]

A.1 Categories 33

Posets as categories Recall that a partially ordered set, or poset (P,≤), is a set with a
reflexive, transitive, and antisymmetric relation:

x ≤ x (reflexive)

x ≤ y & y ≤ z ⇒ x ≤ z (transitive)

x ≤ y & y ≤ x ⇒ x = y (antisymmetric)

Each poset is a category whose objects are the elements of P , and there is a single arrow
p → q between p, q ∈ P if, and only if, p ≤ q. Composition of p → q and q → r is the
unique arrow p → r, which exists by transitivity of ≤. The identity arrow on p is the
unique arrow p→ p, which exists by reflexivity of ≤.

Antisymmetry tells us that any two isomorphic objects in P are equal.1 We do not
need antisymmetry in order to obtain a category, i.e., a preorder would suffice.

Again, we may define a preorder to be a category in which there is at most one arrow
between any two objects. A poset is a skeletal preorder, i.e. one in which the only isomor-
phisms are the identity arrows. We allow for the possibility that a preorder or a poset is
a proper class rather than a set.

A particularly important example of a poset category is the poset of open sets OX of
a topological space X, ordered by inclusion.

Sets as categories Any set S is a category whose objects are the elements of S and
whose only arrows are identity arrows. Such a category, in which the only arrows are the
identity arrows, is called a discrete category.

A.1.2 Categories of structures

In general, structures like groups, topological spaces, posets, etc., determine categories in
which the maps are structure-preserving functions, composition is composition of functions,
and identity morphisms are identity functions:

• Group is the category whose objects are groups and whose morphisms are group
homomorphisms.

• Top is the category whose objects are topological spaces and whose morphisms are
continuous maps.

• Set is the category whose objects are sets and whose morphisms are functions.2

• Graph is the category of (directed) graphs an graph homomorphisms.

• Poset is the category of posets and monotone maps.

1A category in which isomorphic object are equal is a skeletal category.
2A function between sets A and B is a relation f ⊆ A × B such that for every x ∈ A there exists a

unique y ∈ B for which ⟨x, y⟩ ∈ f . A morphism in Set is a triple ⟨A, f,B⟩ such that f ⊆ A × B is a
function.

[DRAFT: January 21, 2025]

34 Category Theory

Such categories of structures are generally large, but locally small. Note that it is not
necessary to check the associative and unit laws for such categories of functions (why?),
unlike the following example.

Exercise A.1.3. The category of relations Rel has as objects all sets A,B,C, . . . and as
arrows A → B the relations R ⊆ A × B. The composite of R ⊆ A × B and S ⊆ B × C,
and the identity arrow on A, are defined by:

S ◦R =
{
⟨x, z⟩ ∈ A× C

∣∣ ∃ y ∈ B . xRy & ySz
}
,

1A =
{
⟨x, x⟩

∣∣ x ∈ A} .
Show that this is indeed a category!

A.1.3 Basic notions

We recall some further basic notions from category theory.

Definition A.1.4. A subcategory C ′ of a category C is given by a subclass of objects
C ′0 ⊆ C0 and a subclass of morphisms C ′1 ⊆ C1 such that f ∈ C ′1 implies dom f, cod f ∈ C ′0,
1A ∈ C ′1 for every A ∈ C ′0, and g ◦ f ∈ C ′1 whenever f, g ∈ C ′1 are composable.

A subcategory C ′ of C is full if for all A,B ∈ C ′0, we have C ′(A,B) = C(A,B), i.e. every
f : A→ B in C1 is also in C ′1.

Definition A.1.5. An inverse of a morphism f : A → B is a morphism f−1 : B → A
such that

f ◦ f−1 = 1B and f−1 ◦ f = 1A .

A morphism that has an inverse is an isomorphism, or iso. If there exists a pair of mutually
inverse morphisms f : A → B and f−1 : B → A we say that the objects A and B are
isomorphic, written A ∼= B.

The notation f−1 is justified because an inverse, if it exists, is unique. A left inverse is
a morphism g : B → A such that g ◦ f = 1A, and a right inverse is a morphism g : B → A
such that f ◦ g = 1B. A left inverse is also called a retraction, whereas a right inverse is
called a section.

Definition A.1.6. A monomorphism, or mono, is a morphism f : A → B that can be
cancelled on the left: for all g : C → A, h : C → A,

f ◦ g = f ◦ h⇒ g = h .

An epimorphism, or epi, is a morphism f : A→ B that can be cancelled on the right: for
all g : B → C, h : B → A,

g ◦ f = h ◦ f ⇒ g = h .

[DRAFT: January 21, 2025]

A.2 Functors 35

In Set monomorphisms are the injective functions and epimorphisms are the surjective
functions. Isomorphisms in Set are the bijective functions. Thus, in Set a morphism is iso
if, and only if, it is both mono and epi. However, this example is misleading! In general,
a morphism can be mono and epi without being an iso. For example, the non-identity
morphism in the category consisting of two objects and one morphism between them is
both epi and mono, but it has no inverse. A more interesting example of morphisms that
are both epi and mono but are not iso occurs in the category Top of topological spaces and
continuous maps, where not every continuous bijection is a homeomorphism.

A diagram of objects and morphisms is a directed graph whose vertices are objects of
a category and edges are morphisms between them, for example:

A
f //

g

��

B h // C

j
��

D
k

//

m

??

E

Such a diagram is said to commute when the composition of morphisms along any two
paths with the same beginning and end gives equal morphisms. Commutativity of the
above diagram is equivalent to the following two equations:

f = m ◦ g , k = j ◦ h ◦m .

From these we can derive k ◦ g = j ◦ h ◦ f by a diagram chase.

A.2 Functors

Definition A.2.1. A functor F : C → D from a category C to a category D consists of
functions

F0 : C0 → D0 and F1 : C1 → D1

such that, for all f : A→ B and g : B → C in C:

F1f : F0A→ F0B ,

F1(g ◦ f) = (F1g) ◦ (F1f) ,

F1(1A) = 1F0A .

We usually write F for both F0 and F1.

A functor is thus a homomorphism of the category structure; note that it maps com-
mutative diagrams to commutative diagrams because it preserves composition.

We may form the “category of categories” Cat whose objects are small categories and
whose morphisms are functors. Composition of functors is composition of the corresponding
functions, and the identity functor is one that is identity on objects and on morphisms.
The category Cat is large but locally small.

[DRAFT: January 21, 2025]

36 Category Theory

Definition A.2.2. A functor F : C → D is faithful when it is “locally injective on mor-
phisms”, in the sense that for all f, g : A→ B, if Ff = Fg then f = g.

A functor F : C → D is full when it is “locally surjective on morphisms”: for every
g : FA→ FB there exists f : A→ B such that g = Ff .

We consider several examples of functors.

A.2.1 Functors between sets, monoids and posets

When sets, monoids, groups, and posets are regarded as categories, the functors turn out
to be the usual morphisms, for example:

• A functor between sets S and T is a function from S to T .

• A functor between groups G and H is a group homomorphism from G to H.

• A functor between posets P and Q is a monotone function from P to Q.

Exercise A.2.3. Verify that the above claims are correct.

A.2.2 Forgetful functors

For categories of structures Group, Top, Graph, Poset, . . . , there is a forgetful functor U
which maps an object to the underlying set and a morphism to the underlying function.
For example, the forgetful functor U : Group → Set maps a group (G, ·) to the set G and
a group homomorphism f : (G, ·)→ (H, ⋆) to the function f : G→ H.

There are also forgetful functors that forget only part of the structure, for example
the forgetful functor U : Ring→ Group which maps a ring (R,+,×) to the additive group
(R,+) and a ring homomorphism f : (R,+R, ·S)→ (S,+S, ·S) to the group homomorphism
f : (R,+R)→ (S,+S). Note that there is another forgetful functor U ′ : Ring→ Mon from
rings to monoids.

Exercise A.2.4. Show that taking the graph Γ(f) =
{
⟨x, f(x)⟩

∣∣ x ∈ A} of a function
f : A → B determines a functor Γ : Set → Rel, from sets and functions to sets and
relations, which is the identity on objects. Is this a forgetful functor?

A.3 Constructions of Categories and Functors

A.3.1 Product of categories

Given categories C and D, we form the product category C × D whose objects are pairs
of objects ⟨C,D⟩ with C ∈ C and D ∈ D, and whose morphisms are pairs of morphisms
⟨f, g⟩ : ⟨C,D⟩ → ⟨C ′, D′⟩ with f : C → C ′ in C and g : D → D′ in D. Composition is
given by ⟨f, g⟩ ◦ ⟨f ′, g′⟩ = ⟨f ◦ f ′, g ◦ g′⟩.

[DRAFT: January 21, 2025]

A.3 Constructions of Categories and Functors 37

There are evident projection functors

C × D
π0

}}

π1

""
C D

which act as indicated in the following diagrams:

⟨C,D⟩8
π0

||

� π1

##
C D

⟨f, g⟩;
π0

}}

� π1

!!
f g

Exercise A.3.1. Show that, for any categories A, B, C, there are distinguished isos:

1× C ∼= C
B× C ∼= C× B

A× (B× C) ∼= (A× B)× C

Does this make Cat a (commutative) monoid?

A.3.2 Slice categories

Given a category C and an object A ∈ C, the slice category C/A has as objects, morphisms
into A,

B

f
��
A

(A.1)

and as morphisms, commutative diagrams over A:

B

f ��

g // B′

f ′~~
A

(A.2)

That is, a morphism from f : B → A to f ′ : B′ → A is a morphism g : B → B′ such that
f = f ′ ◦ g. Composition of morphisms in C/A is composition of morphisms in C.

There is a forgetful functor UA : C/A→ C which maps an object (A.1) to its domain B,
and a morphism (A.2) to the morphism g : B → B′.

Furthermore, for each morphism h : A→ A′ in C there is a functor “composition by h”,

C/h : C/A→ C/A′

[DRAFT: January 21, 2025]

38 Category Theory

which maps an object (A.1) to the object h ◦ f : B → A′ and a morphisms (A.2) to the
morphism

B

h ◦ f

g // B′

h ◦ f ′~~
A′

The construction of slice categories is itself a functor

C/− : C → Cat

provided that C is small. This functor maps each A ∈ C to the category C/A and each
morphism h : A→ A′ to the composition functor C/h : C/A→ C/A′.

Since Cat is itself a category, we may form the slice category Cat/C for any small
category C. The slice functor C/− then factors through the forgetful functor UC : Cat/C →
Cat via a functor C : C → Cat/C,

C C //

C/−
!!

Cat/C

UC

��
Cat

where for A ∈ C, the object part CA is

C/A

UA

��
C

and for h : A→ A′ in C, the morphism part Ch is

C/A

UA

C/h
// C/A′

UA′}}
C

A.3.3 Arrow categories

Similar to the slice categories, an arrow category has arrows as objects, but without a fixed
codomain. Given a category C, the arrow category C→ has as objects the morphisms of C,

A

f
��
B

(A.3)

[DRAFT: January 21, 2025]

A.3 Constructions of Categories and Functors 39

and as morphisms f → f ′ the commutative squares,

A

f
��

g // A′

f ′
��

B
g′
// B′.

(A.4)

That is, a morphism from f : A → B to f ′ : A′ → B′ is a pair of morphisms g : A → A′

and g′ : B → B′ such that g′ ◦ f = f ′ ◦ g. Composition of morphisms in C→ is just
componentwise composition of morphisms in C.

There are two evident forgetful functors U1, U2 : C→ → C, given by the domain and
codomain operations. (Can you find a common section for these?)

A.3.4 Opposite categories

For a category C the opposite category Cop has the same objects as C, but all the morphisms
are turned around, that is, a morphism f : A → B in Cop is a morphism f : B → A in C.
The identity arrows in Cop are the same as in C, but the order of composition is reversed.
The opposite of the opposite of a category is clearly the original category.

A functor F : Cop → D is sometimes called a contravariant functor (from C to D), and
a functor F : C → D is a covariant functor.

For example, the opposite category of a preorder (P,≤) is the preorder P turned upside
down, (P,≥).

Exercise A.3.2. Given a functor F : C → D, can you define a functor F op : Cop → Dop in
such a way that −op itself becomes a functor? On what category is it a functor?

A.3.5 Representable functors

Let C be a locally small category. Then for each pair of objects A,B ∈ C the collection of
all morphisms A→ B forms a set, written HomC(A,B), Hom(A,B) or C(A,B). For every
A ∈ C there is a functor

C(A,−) : C → Set

defined by

C(A,B) =
{
f ∈ C1

∣∣ f : A→ B
}

C(A, g) : f 7→ g ◦ f

where B ∈ C and g : B → C. In words, C(A, g) is composition by g. This is indeed a
functor because, for any morphisms

A
f // B

g // C h // D (A.5)

[DRAFT: January 21, 2025]

40 Category Theory

we have
C(A, h ◦ g)f = (h ◦ g) ◦ f = h ◦ (g ◦ f) = C(A, h)(C(A, g)f) ,

and C(A, 1B)f = 1A ◦ f = f = 1C(A,B)f .
We may also ask whether C(−, B) is a functor. If we define its action on morphisms to

be precomposition,
C(f,B) : g 7→ g ◦ f ,

it becomes a contravariant functor,

C(−, B) : Cop → Set .

The contravariance is a consequence of precomposition; for morphisms (A.5) we have

C(g ◦ f,D)h = h ◦ (g ◦ f) = (h ◦ g) ◦ f = C(f,D)(C(g,D)h) .

A functor of the form C(A,−) is a (covariant) representable functor, and a functor of the
form C(−, B) is a (contravariant) representable functor.

It follows that the hom-set is a functor

C(−,−) : Cop × C → Set

which maps a pair of objects A,B ∈ C to the set C(A,B) of morphisms from A to B, and
it maps a pair of morphisms f : A′ → A, g : B → B′ in C to the function

C(f, g) : C(A,B)→ C(A′, B′)

defined by
C(f, g) : h 7→ g ◦ h ◦ f .

(Why does it follow that this is a functor?)

A.3.6 Group actions

A group (G, ·) is a category with one object ⋆ and elements of G as the morphisms. Thus,
a functor F : G→ Set is given by a set F⋆ = S and for each a ∈ G a function Fa : S → S
such that, for all x ∈ S, a, b ∈ G,

(Fe)x = x , (F (a · b))x = (Fa)((Fb)x) .

Here e is the unit element of G. If we write a ·x instead of (Fa)x, the above two equations
become the familiar laws for a left group action on the set S:

e · x = x , (a · b) · x = a · (b · x) .

Exercise A.3.3. A right group action by a group (G, ·) on a set S is an operation · :
S ×G→ S that satisfies, for all x ∈ S, a, b ∈ G,

x · e = x , x · (a · b) = (x · a) · b .

Exhibit right group actions as functors.

[DRAFT: January 21, 2025]

A.4 Natural Transformations and Functor Categories 41

A.4 Natural Transformations and Functor Categories

Definition A.4.1. Let F : C → D and G : C → D be functors. A natural transformation
η : F =⇒ G from F to G is a map η : C0 → D1 which assigns to every object A ∈ C a
morphism ηA : FA→ GA, called the component of η at A, such that for every f : A→ B
in C we have ηB ◦ Ff = Gf ◦ ηA, i.e., the following diagram in D commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB ηB

// GB

A simple example is given by the “twist” isomorphism t : A × B → B × A (in Set).
Given any maps f : A→ A′ and g : B → B′, there is a commutative square:

A×B
tA,B //

f × g
��

B × A

g × f
��

A′ ×B′
tA′,B′

// B′ × A′

Thus naturality means that the two functors F (X, Y) = X × Y and G(X, Y) = Y × X
are related to each other (by t : F → G), and not simply their individual values A × B
and B × A. As a further example of a natural transformation, consider groups G and H
as categories and two homomorphisms f, g : G→ H as functors between them. A natural
transformation η : f =⇒ g is given by a single element η⋆ = b ∈ H such that, for every
a ∈ G, the following diagram commutes:

⋆
b //

fa
��

⋆

ga
��

⋆
b
// ⋆

This means that b · fa = (ga) · b, that is ga = b · (fa) · b−1. In other words, a natural
transformation f =⇒ g is a conjugation operation b−1 · − · b which transforms f into g.

For every functor F : C → D there exists the identity transformation 1F : F =⇒ F
defined by (1F)A = 1A. If η : F =⇒ G and θ : G =⇒ H are natural transformations, then
their composition θ ◦ η : F =⇒ H, defined by (θ ◦ η)A = θA ◦ ηA is also a natural transfor-
mation. Composition of natural transformations is associative because it is composition in
the codomain category D. This leads to the definition of functor categories.

[DRAFT: January 21, 2025]

42 Category Theory

Definition A.4.2. Let C and D be categories. The functor category DC is the category
whose objects are functors from C to D and whose morphisms are natural transformations
between them.

A functor category may be quite large, too large in fact. In order to avoid problems
with size we normally require C to be a locally small category. The “hom-class” of all
natural transformations F =⇒ G is usually written as

Nat(F,G)

instead of the more awkward HomDC(F,G).
Suppose we have functors F , G, and H with a natural transformation θ : G =⇒ H, as

in the following diagram:

C F // D
G

''

H
77�� θ E

Then we can form a natural transformation θ ◦ F : G ◦ F =⇒ H ◦ F whose component at
A ∈ C is (θ ◦ F)A = θFA.

Similarly, if we have functors and a natural transformation

C
G

((

H
66�� θ D F // E

we can form a natural transformation (F ◦θ) : F ◦G =⇒ F ◦H whose component at A ∈ C
is (F ◦ θ)A = FθA. These operations are known as whiskering.

A natural isomorphism is an isomorphism in a functor category. Thus, if F : C → D
and G : C → D are two functors, a natural isomorphism between them is a natural
transformation η : F =⇒ G whose components are isomorphisms. In this case, the inverse
natural transformation η−1 : G =⇒ F is given by (η−1)A = (ηA)

−1. We write F ∼= G
when F and G are naturally isomorphic.

The definition of natural transformations is motivated in part by the fact that, for any
small categories A, B, C, we have

Cat(A× B,C) ∼= Cat(A,CB) . (A.6)

The isomorphism takes a functor F : A × B → C to the functor F̃ : A → CB defined on
objects A ∈ A, B ∈ B by

(F̃A)B = F ⟨A,B⟩

and on a morphism f : A→ A′ by

(F̃ f)B = F ⟨f, 1B⟩ .

The functor F̃ is called the transpose of F .

[DRAFT: January 21, 2025]

A.4 Natural Transformations and Functor Categories 43

The inverse isomorphism takes a functor G : A → CB to the functor G̃ : A × B → C,
defined on objects by

G̃⟨A,B⟩ = (GA)B

and on a morphism ⟨f, g⟩ : A×B → A′ ×B′ by

G̃⟨f, g⟩ = (Gf)B′ ◦ (GA)g = (GA′)g ◦ (Gf)B ,

where the last equation holds by naturality of Gf :

(GA)B
(Gf)B //

(GA)g

��

(GA′)B

(GA′)g

��
(GA)B′

(Gf)B′

// (GA′)B′

A.4.1 Directed graphs as a functor category

Recall that a directed graph G is given by a set of vertices GV and a set of edges GE. Each
edge e ∈ GE has a uniquely determined source srcG e ∈ GV and target trgG e ∈ GV . We
write e : a → b when a is the source and b is the target of e. A graph homomorphism
ϕ : G → H is a pair of functions ϕ0 : GV → HV and ϕ1 : GE → HE, where we usually
write ϕ for both ϕ0 and ϕ1, such that whenever e : a → b then ϕ1e : ϕ0a → ϕ0b. The
category of directed graphs and graph homomorphisms is denoted by Graph.

Now let ·⇒ · be the category with two objects and two parallel morphisms, depicted
by the following “sketch”:

E

t

77

s
''
V

An object of the functor category Set·⇒· is a functor G : (·⇒ ·) → Set, which consists
of two sets GE and GV and two functions Gs : GE → GV and Gt : GE → GV . But
this is precisely a directed graph whose vertices are GV , the edges are GE, the source of
e ∈ GE is (Gs)e and the target is (Gt)e. Conversely, any directed graph G is a functor
G : (·⇒ ·)→ Set, defined by

GE = GE , GV = GV , Gs = srcG , Gt = trgG .

Now category theory begins to show its worth, for the morphisms in Set·⇒· are precisely
the graph homomorphisms. Indeed, a natural transformation ϕ : G =⇒ H between graphs
is a pair of functions,

ϕE : GE → HE and ϕV : GV → HV

[DRAFT: January 21, 2025]

44 Category Theory

whose naturality is expressed by the commutativity of the following two diagrams:

GE

ϕE //

srcG

��

HE

srcH

��
GV

ϕV

// HV

GE

ϕE //

trgG

��

HE

trgH

��
GV

ϕV

// HV

This is precisely the requirement that e : a → b implies ϕEe : ϕV a → ϕV b. Thus, in sum,
we have,

Graph = Set·⇒·.

Exercise A.4.3. Exhibit the arrow category C→ and the category of group actions Set(G)
as functor categories.

A.4.2 The Yoneda embedding

The example Graph = Set·⇒· leads one to wonder which categories C can be represented as
functor categories SetD for a suitably chosen D or, when that is not possible, at least as
full subcategories of SetD.

For a locally small category C, there is the hom-functor

C(−,−) : Cop × C → Set .

By transposing as in (A.6) we obtain the functor

y : C → SetC
op

which maps an object A ∈ C to the representable functor

yA = C(−, A) : B 7→ C(B,A)

and a morphism f : A → A′ in C to the natural transformation yf : yA =⇒ yA′ whose
component at B is

(yf)B = C(B, f) : g 7→ f ◦ g .

This functor y is called the Yoneda embedding.

Exercise A.4.4. Show that this is a functor.

Theorem A.4.5 (Yoneda embedding). For any locally small category C the Yoneda em-
bedding

y : C → SetC
op

is full and faithful and injective on objects. Therefore, C is a full subcategory of SetC
op

.

[DRAFT: January 21, 2025]

A.4 Natural Transformations and Functor Categories 45

The proof of the theorem uses the famous Yoneda Lemma.

Lemma A.4.6 (Yoneda). Every functor F : Cop → Set is naturally isomorphic to the
functor Nat(y−, F). That is, for every A ∈ C,

Nat(yA,F) ∼= FA ,

and this isomorphism is natural in A.

Indeed, the displayed isomorphism is also natural in F .

Proof. The desired natural isomorphism θA maps a natural transformation η ∈ Nat(yA,F)
to ηA1A. The inverse θA

−1 maps an element x ∈ FA to the natural transformation (θA
−1x)

whose component at B maps f ∈ C(B,A) to (Ff)x. To summarize, for η : C(−, A) =⇒ F ,
x ∈ FA and f ∈ C(B,A), we have

θA : Nat(yA,F)→ FA , θA
−1 : FA→ Nat(yA,F) ,

θAη = ηA1A , (θA
−1x)Bf = (Ff)x .

To see that θA and θA
−1 really are inverses of each other, observe that

θA(θA
−1x) = (θA

−1x)A1A = (F1A)x = 1FAx = x ,

and also

(θA
−1(θAη))Bf = (Ff)(θAη) = (Ff)(ηA1A) = ηB(1A ◦ f) = ηBf ,

where the third equality holds by the following naturality square for η:

C(A,A)
ηA //

C(f, A)
��

FA

Ff

��
C(B,A) ηB

// FB

It remains to check that θ is natural, which amounts to establishing the commutativity of
the following diagram, with g : A→ A′:

Nat(yA,F)
θA // FA

Nat(yA′, F)
θA′

//

Nat(yg, F)

OO

FA′

Fg

OO

[DRAFT: January 21, 2025]

46 Category Theory

The diagram is commutative because, for any η : yA′ =⇒ F ,

(Fg)(θA′η) = (Fg)(ηA′1A′) = ηA(1A′ ◦ g) =
ηA(g ◦ 1A) = (Nat(yg, F)η)A1A = θA(Nat(yg, F)η) ,

where the second equality is justified by naturality of η.

Proof of Theorem A.4.5. That the Yoneda embedding is full and faithful means that for
all A,B ∈ C the map

y : C(A,B)→ Nat(yA, yB)

which maps f : A→ B to yf : yA =⇒ yB is an isomorphism. But this is just the Yoneda
Lemma applied to the case F = yB. Indeed, with notation as in the proof of the Yoneda
Lemma and g : C → A, we see that the isomorphism

θ−1
A : C(A,B) = (yB)A→ Nat(yA, yB)

is in fact y:
(θA

−1f)Cg = ((yA)g)f = f ◦ g = (yf)Cg .

Furthermore, if yA = yB then 1A ∈ C(A,A) = (yA)A = (yB)A = C(B,A) which can only
happen if A = B. Therefore, y is injective on objects.

The following corollary is often useful.

Corollary A.4.7. For A,B ∈ C, A ∼= B if, and only if, yA ∼= yB in SetC
op

.

Proof. Every functor preserves isomorphisms, and a full and faithful one also reflects them.
(A functor F : C → D is said to reflect isomorphisms when Ff : FA → FB being an
isomorphisms implies that f : A→ B is an isomorphism.)

Exercise A.4.8. Prove that a full and faithful functor reflects isomorphisms.

Functor categories SetC
op

are important enough to deserve a name. They are called
presheaf categories, and a functor F : Cop → Set is called a presheaf on C. We also use the
notation Ĉ = SetC

op

.

A.4.3 Equivalence of categories

An isomorphism of categories C and D in Cat consists of functors

C
F

** D
G

jj

such that G◦F = 1C and F ◦G = 1D. This is often too restrictive a notion. A more general
notion which replaces the above identities with natural isomorphisms is more useful.

[DRAFT: January 21, 2025]

A.4 Natural Transformations and Functor Categories 47

Definition A.4.9. An equivalence of categories is a pair of functors

C
F

** D
G

jj

such that there are natural isomorphisms

G ◦ F ∼= 1C and F ◦G ∼= 1D .

We say that C and D are equivalent categories and write C ≃ D.
A functor F : C → D is called an equivalence functor if there exists G : D → C such

that F and G form an equivalence.

The point of equivalence of categories is that it preserves almost all categorical prop-
erties, but ignores those concepts that are not of interest from a categorical point of view,
such as identity of objects.

The following proposition requires the Axiom of Choice as stated. However, in many
specific cases a canonical choice can be made without appeal to that axiom.

Proposition A.4.10. A functor F : C → D is an equivalence functor if, and only if, F is
full and faithful, and essentially surjective on objects, meaning that for every B ∈ D there
exists A ∈ C such that FA ∼= B.

Proof. It is easily seen that the conditions are necessary, so we only show they are sufficient.
Suppose F : C → D is full and faithful, and essentially surjective on objects. For each
B ∈ D, choose an object GB ∈ C and an isomorphism ηB : F (GB)→ B. If f : B → C is
a morphism in D, let Gf : GB → GC be the unique morphism in C for which

F (Gf) = ηC
−1 ◦ f ◦ ηB . (A.7)

Such a unique morphism exists because F is full and faithful. This defines a functor G :
D → C, as can be easily checked. In addition, (A.7) ensures that η is a natural isomorphism
F ◦G =⇒ 1D.

It remains to show that G ◦ F ∼= 1C. For A ∈ C, let θA : G(FA) → A be the unique
morphism such that FθA = ηFA. Naturality of θA follows from functoriality of F and
naturality of η. Because F reflects isomorphisms, θA is an isomorphism for every A.

Example A.4.11. As an example of equivalence of categories we consider the category of
sets and partial functions and the category of pointed sets.

A partial function f : A ⇀ B is a function defined on a subset supp f ⊆ A, called the
support3 of f , and taking values in B. Composition of partial functions f : A ⇀ B and
g : B ⇀ C is the partial function g ◦ f : A ⇀ C defined by

supp (g ◦ f) =
{
x ∈ A

∣∣ x ∈ supp f ∧ fx ∈ supp g
}

(g ◦ f)x = g(fx) for x ∈ supp (g ◦ f)
3The support of a partial function f : A ⇀ B is usually called its domain, but this terminology conflicts

with A being the domain of f as a morphism.

[DRAFT: January 21, 2025]

48 Category Theory

Composition of partial functions is associative. This way we obtain a category Par of sets
and partial functions.

A pointed set (A, a) is a set A together with an element a ∈ A. A pointed function
f : (A, a) → (B, b) between pointed sets is a function f : A → B such that fa = b. The
category Set• consists of pointed sets and pointed functions.

The categories Par and Set• are equivalent. The equivalence functor F : Set• → Par
maps a pointed set (A, a) to the set F (A, a) = A\{a}, and a pointed function f : (A, a)→
(B, b) to the partial function Ff : F (A, a)⇀ F (B, b) defined by

supp (Ff) =
{
x ∈ A

∣∣ fx ̸= b
}
, (Ff)x = fx .

The inverse equivalence functor G : Par → Set• maps a set A ∈ Par to the pointed set
GA = (A + {⊥A} ,⊥A), where ⊥A is an element that does not belong to A. A partial
function f : A ⇀ B is mapped to the pointed function Gf : GA→ GB defined by

(Gf)x =

{
fx if x ∈ supp f

⊥B otherwise .

A good way to think about the “bottom” point ⊥A is as a special “undefined value”. Let
us look at the composition of F and G on objects:

G(F (A, a)) = G(A \ {a}) = ((A \ {a}) +⊥A,⊥A) ∼= (A, a) .

F (GA) = F (A+ {⊥A} ,⊥A) = (A+ {⊥A}) \ {⊥A} = A .

The isomorphism G(F (A, a)) ∼= (A, a) is easily seen to be natural.

Example A.4.12. Another example of an equivalence of categories arises when we take
the poset reflection of a preorder. Let (P,≤) be a preorder, If we think of P as a category,
then a, b ∈ P are isomorphic, when a ≤ b and b ≤ a. Isomorphism ∼= is an equivalence
relation, therefore we may form the quotient set P/∼=. The set P/∼= is a poset for the order
relation ⊑ defined by

[a] ⊑ [b] ⇐⇒ a ≤ b .

Here [a] denotes the equivalence class of a. We call (P/∼=,⊑) the poset reflection of P .
The quotient map q : P → P/∼= is a functor when P and P/∼= are viewed as categories.
By Proposition A.4.10, q is an equivalence functor. Trivially, it is faithful and surjective
on objects. It is also full because qa ⊑ qb in P/∼= implies a ≤ b in P .

A.5 Adjoint Functors

The notion of adjunction is perhaps the most important concept revealed by category
theory. It is a fundamental logical and mathematical concept that occurs everywhere and
often marks an important and interesting connection between two constructions of interest.
In logic, adjoint functors are pervasive, although this is only recognizable through the lens
of category theory.

[DRAFT: January 21, 2025]

A.5 Adjoint Functors 49

A.5.1 Adjoint maps between preorders

Let us begin with a simple situation. We have already seen that a preorder (P,≤) is
a category in which there is at most one morphism between any two objects. A functor
between preorders is a monotone map. Suppose we have preorders P and Q with monotone
maps back and forth,

P
f

++
Q .

g
jj

We say that f and g are adjoint, and write f ⊣ g, when for all x ∈ P , y ∈ Q,

fx ≤ y ⇐⇒ x ≤ gy . (A.8)

Note that adjointness is not a symmetric relation. The map f is the left adjoint and g is
the right adjoint (note their positions with respect to ≤).

Equivalence (A.8) is more conveniently displayed as

fx ≤ y

x ≤ gy

The double line indicates the fact that this is a two-way rule: the top line implies the
bottom line, and vice versa.

Let us consider two examples.

Conjunction is adjoint to implication Consider a propositional calculus with logical
operations of conjunction ∧ and implication ⇒ (perhaps among others). The formulas of
this calculus are built from variables x0, x1, x2, . . . , the truth values ⊥ and ⊤, and the
logical connectives ∧,⇒, The logical rules are given in natural deduction style:

⊤
⊥
A

A B

A ∧B
A ∧B
A

A ∧B
B

A⇒ B A

B

[u : A]

...

B

A⇒ B
u

For example, we read the inference rules for ⇒ as, respectively, “from A ⇒ B and A we
infer B” and “if from assumption A we infer B, then (without any assumptions) we infer
A⇒ B”. Discharged assumptions are indicated by enclosing them in brackets, along with
a label [u : A] for the assumption, which is recorded along with the rule that discharges it,
as above.

[DRAFT: January 21, 2025]

50 Category Theory

Logical entailment ⊢ between formulas of the propositional calculus is the relation A ⊢
B which holds if, and only if, from assuming A we can infer B (by using only the inference
rules of the calculus). It is trivially the case that A ⊢ A, and also

if A ⊢ B and B ⊢ C then A ⊢ C .

In other words, ⊢ is a reflexive and transitive relation on the set P of all propositional
formulas, so that (P,⊢) is a preorder.

Let A be a propositional formula. Define f : P→ P and g : P→ P to be the maps

fB = (A ∧B) , gB = (A⇒ B) .

To see that the maps f and g are functors we need to show they respect entailment. Indeed,
if B ⊢ B′ then A ∧B ⊢ A ∧B′ and A⇒ B ⊢ A⇒ B′ by the following two derivations.

A ∧B
A

A ∧B
B
...

B′

A ∧B′

A⇒ B [u : A]

B
...

B′

A⇒ B′ u

We claim that f ⊣ g. For this we need to prove that A∧B ⊢ C if, and only if, B ⊢ A⇒ C.
The following two derivations establish the required equivalence.

[u : A] B

A ∧B
...

C

A⇒ C
u

A ∧B
B
...

A⇒ C
A ∧B
A

C

Therefore, conjunction is left adjoint to implication.

Topological interior as an adjoint Recall that a topological space (X,OX) is a set X
together with a family OX ⊆ PX of subsets of X which contains ∅ and X, and is closed
under finite intersections and arbitrary unions. The elements of OX are called the open
sets.

The topological interior of a subset S ⊆ X is the largest open set contained in S,
namely,

intS =
⋃{

U ∈ OX
∣∣ U ⊆ S

}
.

Both OX and PX are posets ordered by subset inclusion. The inclusion i : OX → PX is
thus a monotone map, and so indeed is the interior int : PX → OX, as follows immediately
from its construction. So we have:

OX
i ,, PX
int

ll

[DRAFT: January 21, 2025]

A.5 Adjoint Functors 51

Moreover, for U ∈ OX and S ∈ PX we plainly also have

iU ⊆ S

U ⊆ intS

since intS is the largest open set contained in S. Thus topological interior is right adjoint
to the inclusion of OX into PX.

A.5.2 Adjoint functors

Let us now generalize the notion of adjoint monotone maps from posets to the situation

C
F

** D
G

jj

with arbitrary categories and functors. For monotone maps f ⊣ g, the adjunction condition
is a bijection

fx→ y

x→ gy

between morphisms of the form fx → y and morphisms of the form x → gy. This is
the notion that generalizes the special case; for any A ∈ C, B ∈ D we require a bijection
between the sets D(FA,B) and C(A,GB):

FA→ B

A→ GB

Definition A.5.1. An adjunction F ⊣ G between the functors

C
F

** D
G

jj

is a natural isomorphism θ between functors

D(F−,−) : Cop ×D → Set and C(−, G−) : Cop ×D → Set .

This means that for every A ∈ C and B ∈ D there is a bijection

θA,B : D(FA,B) ∼= C(A,GB) ,

and naturality of θ means that for f : A′ → A in C and g : B → B′ in D the following
diagram commutes:

D(FA,B)
θA,B //

D(Ff, g)
��

D(A,GB)

C(f,Gg)
��

D(FA′, B′)
θA′,B′

// C(A′, GB′)

[DRAFT: January 21, 2025]

52 Category Theory

Equivalently, for every h : FA→ B in D,

Gg ◦ (θA,Bh) ◦ f = θA′,B′(g ◦ h ◦ Ff) .

We say that F is the left adjoint and G is the right adjoint.

We have already seen examples of adjoint functors. For any category B we have functors
(−)× B and (−)B from Cat to Cat. Recall the isomorphism (A.6),

Cat(A× B,C) ∼= Cat(A,CB) .

This isomorphism is in fact natural in A and C, so that

(−)× B ⊣ (−)B .

Similarly, for any set B ∈ Set there are functors

(−)×B : Set→ Set , (−)B : Set→ Set ,

where A×B is the cartesian product of A and B, and CB is the set of all functions from B
to C. For morphisms, f × B = f × 1B and fB = f ◦ (−). We then indeed have a natural
isomorphism, for all A,C ∈ Set,

Set(A×B,C) ∼= Set(A,CB) ,

which maps a function f : A×B → C to the function (f̃x)y = f⟨x, y⟩. Therefore,

(−)×B ⊣ (−)B .

Exercise A.5.2. Verify that the definition (A.8) of adjoint monotone maps between pre-
orders is a special case of Definition A.5.1. What happened to the naturality condition?

For another example, consider the forgetful functor

U : Cat→ Graph ,

which maps a category to the underlying directed graph. It has a left adjoint P ⊣ U .
The functor P is the free construction of a category from a graph; it maps a graph G to
the category of paths P (G). The objects of P (G) are the vertices of G. The morphisms
of P (G) are the finite paths

v0
e1 // v1

e2 // · · · en // vn

of edges in G, composition is concatenation of paths, and the identity morphism on a
vertex v is the empty path starting and ending at v.

By using the Yoneda Lemma we can easily prove that adjoints are unique up to natural
isomorphism.

[DRAFT: January 21, 2025]

A.5 Adjoint Functors 53

Proposition A.5.3. Let F : C → D and G : D → C be adjoint functors, with F ⊣ G. If
also G′ : D → C with F ⊣ G′, then G ∼= G′.

Proof. Since the Yoneda embedding is full and faithful, we have GB ∼= G′B if, and only
if, C(−, GB) ∼= C(−, G′B). But this indeed holds, because, for any A ∈ C, we have

C(A,GB) ∼= D(FA,B) ∼= C(A,G′B) ,

naturally in A.

Left adjoints are of course also unique up to isomorphism, by duality.

A.5.3 The unit of an adjunction

Let F : C → D and G : D → C be adjoint functors, F ⊣ G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object A ∈ C
there is a distinguished morphism ηA = θA,FA1FA : A→ G(FA),

1FA : FA→ FA

ηA : A→ G(FA)

Since θ is natural in A, we have a natural transformation η : 1C =⇒ G ◦ F , which is
called the unit of the adjunction F ⊣ G. In fact, we can recover θ from η as follows. For
f : FA→ B, we have

θA,Bf = θA,B(f ◦ 1FA) = Gf ◦ θA,FA(1FA) = Gf ◦ ηA ,

where we used naturality of θ in the second step. Schematically, given any f : FA → B,
the following diagram commutes:

A
ηA //

θA,Bf
""

G(FA)

Gf

��
GB

Since θA,B is a bijection, it follows that every morphism g : A → GB has the form
g = Gf ◦ ηA for a unique f : FA → B. We say that ηA : A → G(FA) is a universal
morphism to G, or that η has the following universal mapping property : for every A ∈ C,
B ∈ D, and g : A→ GB, there exists a unique f : FA→ B such that g = Gf ◦ ηA:

A
ηA //

g
""

G(FA)

Gf

��

FA

f

��
GB B

[DRAFT: January 21, 2025]

54 Category Theory

This means that an adjunction can be given in terms of its unit. The isomorphism θ :
D(F−,−)→ C(−, G−) is then recovered by

θA,Bf = Gf ◦ ηA .

Proposition A.5.4. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

η : 1C =⇒ G ◦ F ,

called the unit of the adjunction, such that, for all A ∈ C and B ∈ D the map θA,B :
D(FA,B)→ C(A,GB), defined by

θA,Bf = Gf ◦ ηA ,

is an isomorphism.

Let us demonstrate how the universal mapping property of the unit of an adjunction
appears as a well known construction in algebra. Consider the forgetful functor from
monoids to sets,

U : Mon→ Set .

Does it have a left adjoint F : Set → Mon? In order to obtain one, we need a “most
economical” way of making a monoid FX from a given set X. Such a construction readily
suggests itself, namely the free monoid on X, consisting of finite sequences of elements
of X,

FX =
{
x1 . . . xn

∣∣ n ≥ 0 & x1, . . . , xn ∈ X
}
.

The monoid operation is concatenation of sequences

x1 . . . xm · y1 . . . yn = x1 . . . xmy1 . . . yn ,

and the empty sequence is the unit of the monoid. In order for F to be a functor, it should
also map morphisms to morphisms. If f : X → Y is a function, define Ff : FX → FY by

Ff : x1 . . . xn 7→ (fx1) . . . (fxn) .

There is an inclusion ηX : X → U(FX) which maps every element x ∈ X to the singleton
sequence x. This gives a natural transformation η : 1Set =⇒ U ◦ F .

The monoid FX is “free” in the sense that it “satisfies only the equations required
by the monoid laws”; we make this precise as follows. For every monoid M and function
f : X → UM there exists a unique monoid homomorphism f : FX → M such that the
following diagram commutes:

X
ηX //

f
""

U(FX)

Uf

��
UM

[DRAFT: January 21, 2025]

A.5 Adjoint Functors 55

This is precisely the condition required by Proposition A.5.4 for η to be the unit of the
adjunction F ⊣ U . In this case, the universal mapping property of η is just the usual
characterization of the free monoid FX generated by the setX: a homomorphism from FX
is uniquely determined by its values on the generators.

A.5.4 The counit of an adjunction

Let F : C → D and G : D → C be adjoint functors with F ⊣ G, and let θ : D(F−,−) →
C(−, G−) be the natural isomorphism witnessing the adjunction. For any object B ∈ D
we have a distinguished morphism εB = θ−1

GB,B1GB : F (GB)→ B by:

1GB : GB → GB

εB : F (GB)→ B

The natural transformation ε : F ◦G =⇒ 1D is called the counit of the adjunction F ⊣ G.
It is the dual notion to the unit of an adjunction. We state briefly the basic properties
of the counit, which are easily obtained by “turning around” all the morphisms in the
previous section and exchanging the roles of the left and right adjoints.

The bijection θ−1
A,B can be recovered from the counit. For g : A→ GB in C, we have

θ−1
A,Bg = θ−1

A,B(1GB ◦ g) = θ−1
A,B1GB ◦ Fg = εB ◦ Fg .

The universal mapping property of the counit is this: for every A ∈ C, B ∈ D, and
f : FA→ B, there exists a unique g : A→ GB such that f = εB ◦ Fg:

B F (GB)
εBoo GB

FA

Fg

OO

f

bb

A

g

OO

The following is the dual of Proposition A.5.4.

Proposition A.5.5. A functor F : C → D is left adjoint to a functor G : D → C if, and
only if, there exists a natural transformation

ε : F ◦G =⇒ 1D ,

called the counit of the adjunction, such that, for all A ∈ C and B ∈ D the map θ−1
A,B :

C(A,GB)→ D(FA,B), defined by

θ−1
A,Bg = εB ◦ Fg ,

is an isomorphism.

[DRAFT: January 21, 2025]

56 Category Theory

Let us consider again the forgetful functor U : Mon → Set and its left adjoint F :
Set → Mon, the free monoid construction. For a monoid (M, ⋆) ∈ Mon, the counit of the
adjunction F ⊣ U is a monoid homomorphism εM : F (UM)→M , defined by

εM(x1x2 . . . xn) = x1 ⋆ x2 ⋆ · · · ⋆ xn .

It has the following universal mapping property: for X ∈ Set, (M, ⋆) ∈ Mon, and a
homomorphism f : FX → M there exists a unique function f : X → UM such that
f = εM ◦ Ff , namely

fx = fx ,

where in the above definition x ∈ X is viewed as an element of the set X on the left-hand
side, and as an element of the free monoid FX on the right-hand side. To summarize,
the universal mapping property of the counit ε is the familiar piece of wisdom that a
homomorphism f : FX → M from a free monoid is already determined by its values on
the generators.

A.6 Limits and Colimits

The following limits and colimits are all special cases of adjoint functors, as we shall see.

A.6.1 Binary products

In a category C, the (binary) product of objects A and B is an object A × B together
with projections π0 : A × B → A and π1 : A × B → B such that, for every object C ∈ C
and every pair of morphisms f : C → A, g : C → B there exists a unique morphism
h : C → A×B for which the following diagram commutes:

C

f

||

h

��

g

""
A A×Bπ0
oo

π1
// B

We normally refer to the product (A×B, π0, π1) just by its objectA×B, but you should keep
in mind that a product is given by an object and two projections. The arrow h : C → A×B
is denoted by ⟨f, g⟩. The property

for all C, for all f : C → A, for all g : C → B,

there is a unique h : C → A×B,

with π0 ◦ h = f & π1 ◦ h = g

is the universal mapping property of the product A×B. It characterizes the product of A
and B uniquely up to isomorphism in the sense that if (P, p0 : P → A, p1 : P → B) is

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 57

another product of A and B, then there is a unique isomorphism r : P
∼→ A×B such that

p0 = π0 ◦ r and p1 = π1 ◦ r.
If in a category C every two objects have a product, we can turn binary products into an

operation4 by choosing a product A×B for each pair of objects A,B ∈ C. In general this
requires the Axiom of Choice, but in many specific cases a particular choice of products can
be made without appeal to that axiom. When we view binary products as an operation,
we say that “C has chosen products”. The same holds for other instances of limits and
colimits.

For example, in Set the usual cartesian product of sets is a product. In categories of
structures, products are the usual construction: the product of topological spaces in Top
is their topological product, the product of directed graphs in Graph is their cartesian
product, the product of categories in Cat is their product category, and so on.

A.6.2 Terminal objects

A terminal object in a category C is an object 1 ∈ C such that for every A ∈ C there exists
a unique morphism !A : A→ 1.

For example, in Set an object is terminal if, and only if, it is a singleton. The terminal
object in Cat is the unit category 1 consisting of one object and one morphism.

Exercise A.6.1. Prove that if 1 and 1′ are terminal objects in a category then they are
isomorphic.

Exercise A.6.2. Let Field be the category whose objects are fields and morphisms are
field homomorphisms.5 Does Field have a terminal object? What about the category Ring
of rings?

A.6.3 Equalizers

Given objects and morphisms

E e // A
f //

g
// B

we say that e equalizes f and g when f ◦ e = g ◦ e.6 An equalizer of f and g is a universal
equalizing morphism; thus e : E → A is an equalizer of f and g when it equalizes them
and, for all k : K → A, if f ◦ k = g ◦ k then there exists a unique morphism m : K → E

4More precisely, binary product is a functor from C × C to C, cf. Section A.6.11.
5A field (F,+, ·,−1, 0, 1) is a ring with a unit in which all non-zero elements have inverses. We also

require that 0 ̸= 1. A homomorphism of fields preserves addition and multiplication, and consequently
also 0, 1 and inverses.

6Note that this does not mean the diagram involving f , g and e is commutative!

[DRAFT: January 21, 2025]

58 Category Theory

such that k = e ◦m:

E
e // A

f //

g
// B

K

m

OO

k

??

In Set the equalizer of parallel functions f : A→ B and g : A→ B is the set

E =
{
x ∈ A

∣∣ fx = gx
}

with e : E → A being the subset inclusion E ⊆ A, ex = x. In general, equalizers can be
thought of as those subobjects (subsets, subgroups, subspaces, . . .) that can be defined by
an equation.

Exercise A.6.3. Show that an equalizer is a monomorphism, i.e., if e : E → A is an
equalizer of f and g, then, for all r, s : C → E, e ◦ r = e ◦ s implies r = s.

Definition A.6.4. A morphism is a regular mono if it is an equalizer.

The difference between monos and regular monos is best illustrated in the category Top:
a continuous map f : X → Y is mono when it is injective, whereas it is a regular mono
when it is a topological embedding.7

A.6.4 Pullbacks

A pullback of f : A → C and g : B → C is an object P with morphisms p0 : P → A and
p1 : P → B such that f ◦ p0 = g ◦ p1, and whenever Q, q0 : Q → A, and q1 : Q → B are
such that f ◦ q0 = g ◦ q1, there then exists a unique h : Q → P such that q0 = p0 ◦ h and
q1 = p1 ◦ h:

Q
q1

!!

h

��

q0

��

P
p1 //

p0

��

B

g

��
A

f
// C

We indicate that P is a pullback by drawing a square corner next to it, as in the above
diagram. The pullback is sometimes written A ×C B, since it is indeed a product in the
slice category over C.

7A continuous map f : X → Y is a topological embedding when, for every U ∈ OX, the image f [U] is
an open subset of the image im(f); this means that there exists V ∈ OY such that f [U] = V ∩ im(f).

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 59

In Set, the pullback of f : A→ C and g : B → C is the set

P =
{
⟨x, y⟩ ∈ A×B

∣∣ fx = gy
}

and the functions p0 : P → A, p1 : P → B are the projections, p0⟨x, y⟩ = x, p1⟨x, y⟩ = y.

When we form the pullback of f : A → C and g : B → C we may also say that we
pull g back along f and draw the diagram

f ∗B //

f ∗g

��

B

g

��
A

f
// C

We think of f ∗g : f ∗B → A as the inverse image of B along f . This terminology is
explained by looking at the pullback of a subset inclusion u : U ↪→ C along a function
f : A→ C in the category Set:

f ∗U //

��

U� _

u

��
A

f
// C

In this case the pullback is
{
⟨x, y⟩ ∈ A× U

∣∣ fx = y
} ∼= {

x ∈ A
∣∣ fx ∈ U} = f ∗U , the

inverse image of U along f .

Exercise A.6.5. Prove that in a category C, a morphism f : A→ B is mono if, and only
if, the following diagram is a pullback:

A
1A //

1A
��

A

f

��
A

f
// B

A.6.5 Limits

Let us now define the general notion of a limit.

A diagram of shape I in a category C is a functor D : I → C, where the category I is
called the index category. We use letters i, j, k, . . . for objects of an index category I, call
them indices, and write Di, Dj, Dk, . . . instead of Di, Dj, Dk, . . .

[DRAFT: January 21, 2025]

60 Category Theory

For example, if I is the category with three objects and three morphisms

1

13

��

12

��
2

23
// 3

where 13 = 23 ◦ 12 then a diagram of shape I is a commutative diagram

D1

d13

��

d12

~~
D2

d23
// D3

(A.9)

For each object A ∈ C, the constant A-valued diagram of shape I is given by the constant
functor ∆A : I → C, which maps every object to A and every morphism to 1A.

Let D : I → C be a diagram of shape I. A cone on D from an object A ∈ C is a
natural transformation α : ∆A =⇒ D. This means that for every index i ∈ I there is a
morphism αi : A→ Di such that whenever u : i→ j in I then αj = Du ◦ αi.

For a given diagram D : I → C, we can collect all cones on D into a category Cone(D)
whose objects are cones on D. A morphism between cones f : (A,α) → (B, β) is a
morphism f : A → B in C such that αi = βi ◦ f for all i ∈ I. Morphisms in Cone(D) are
composed as morphisms in C. A morphism f : (A,α)→ (B, β) is also called a factorization
of the cone (A,α) through the cone (B, β).

A limit of a diagram D : I → C is a terminal object in Cone(D). Explicitly, a limit
of D is given by a cone (L, λ) such that for every other cone (A,α) there exists a unique
morphism f : A→ L such that αi = λi ◦ f for all i ∈ I. We denote (the object part of) a
limit of D by one of the following:

limD limi∈I Di lim←−
i∈I

Di .

Limits are also called projective limits. We say that a category has limits of shape I when
every diagram of shape I in C has a limit.

Products, terminal objects, equalizers, and pullbacks are all special cases of limits:

• a product A×B is the limit of the functor D : 2→ C where 2 is the discrete category
on two objects 0 and 1, and D0 = A, D1 = B.

• a terminal object 1 is the limit of the (unique) functor D : 0 → C from the empty
category.

• an equalizer of f, g : A → B is the limit of the functor D : (·⇒ ·) → C which maps
one morphism to f and the other one to g.

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 61

• the pullback of f : A → C and g : B → C is the limit of the functor D : I → C
where I is the category

•
2
��

•
1
// •

with D1 = f and D2 = g.

It is clear how to define the product of an arbitrary family of objects{
Ai ∈ C

∣∣ i ∈ I} .

Such a family is a diagram of shape I, where I is viewed as a discrete category. A product∏
i∈I Ai is then given by an object P ∈ C and morphisms πi : P → Ai such that, when-

ever we have a family of morphisms
{
fi : B → Ai

∣∣ i ∈ I} there exists a unique morphism
⟨fi⟩i∈I : B → P such that fi = πi ◦ f for all i ∈ I.

A finite product is a product of a finite family. As a special case we see that a terminal
object is the product of an empty family. It is not hard to show that a category has finite
products precisely when it has a terminal object and binary products.

A diagram D : I → C is small when I is a small category. A small limit is a limit of a
small diagram. A finite limit is a limit of a diagram whose index category is finite.

Exercise A.6.6. Prove that a limit, when it exists, is unique up to isomorphism.

The following proposition and its proof tell us how to compute arbitrary limits from
simpler ones. We omit detailed proofs as they can be found in any standard textbook on
category theory.

Proposition A.6.7. The following are equivalent for a category C:

1. C has a terminal object and all pullbacks.

2. C has equalizers and all finite products.

3. C has all finite limits.

Proof. We only show how to get binary products from pullbacks and a terminal object.
For objects A and B, let P be the pullback of !A and !B:

P
π1 //

π0

��

B

!B
��

A
!A

// 1

Then (P, π0, π1) is a product of A and B because, for all f : X → A and g : X → B, it is
trivially the case that !A ◦ f = !B ◦ g.

[DRAFT: January 21, 2025]

62 Category Theory

Proposition A.6.8. The following are equivalent for a category C:

1. C has equalizers and all small products.

2. C has all small limits.

Proof. We indicate how to construct an arbitrary limit from a product and an equalizer.
Let D : I → C be a small diagram of an arbitrary shape I. First form an I0-indexed
product P and an I1-indexed product Q

P =
∏
i∈I0

Di , Q =
∏
u∈I1

Dcodu .

By the universal property of products, there are unique morphisms f : P → Q and
g : P → Q such that, for all morphisms u ∈ I1,

πQ
u ◦ f = Du ◦ πP

domu , πQ
u ◦ g = πP

codu .

Let E be the equalizer of f and g,

E e // P
f //

g
// Q

For every i ∈ I there is a morphism εi : E → Di, namely εi = πP
i ◦ e. We claim that (E, ε)

is a limit of D. First, (E, ε) is a cone on D because, for all u : i→ j in I,

Du ◦ εi = Du ◦ πP
i ◦ e = πQ

u ◦ f ◦ e = πQ
u ◦ g ◦ e = πP

j ◦ e = εj .

If (A,α) is any cone on D there exists a unique t : A → P such that αi = πP
i ◦ t for all

i ∈ I. For every u : i→ j in I we have

πQ
u ◦ g ◦ t = πP

j ◦ t = tj = Du ◦ ti = Du ◦ πP
i ◦ t = πQ

u ◦ f ◦ t ,

therefore g ◦ t = f ◦ t. This implies that there is a unique factorization k : A → E such
that t = e ◦ k. Now for every i ∈ I

εi ◦ k = πP
i ◦ e ◦ k = πP

i ◦ t = αi

so that k : A→ E is the required factorization of the cone (A,α) through the cone (E, ε).
To see that k is unique, suppose m : A→ E is another factorization such that αi = εi ◦m
for all i ∈ I. Since e is mono it suffices to show that e ◦m = e ◦ k, which is equivalent to
proving πP

i ◦ e ◦m = πP
i ◦ e ◦ k for all i ∈ I. This last equality holds because

πP
i ◦ e ◦ k = πP

i ◦ t = αi = εi ◦m = πP
i ◦ e ◦m .

A category is (small) complete when it has all small limits, and it is finitely complete
(or left exact, briefly lex) when it has finite limits.

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 63

Limits of presheaves Let C be a locally small category. Then the presheaf category
Ĉ = SetC

op

has all small limits and they are computed pointwise, e.g., (P×Q)A = PA×QA
for P,Q ∈ Ĉ, A ∈ C. To see that this is really so, let I be a small index category and
D : I → Ĉ a diagram of presheaves. Then for every A ∈ C the diagram D can be
instantiated at A to give a diagram DA : I → Set, (DA)i = DiA. Because Set is small
complete, we can define a presheaf L by computing the limit of DA:

LA = limDA = lim←−
i∈I

DiA .

We should keep in mind that limDA is actually given by an object (limDA) and a natural
transformation δA : ∆(limDA) =⇒ DA. The value of LA is supposed to be just the object
part of limDA. From a morphism f : A → B we obtain for each i ∈ I a function
Dif ◦ (δA)i : LA → DiB, and thus a cone (LA,Df ◦ δA) on DB. Presheaf L maps the
morphism f : A→ B to the unique factorization Lf : LA =⇒ LB of the cone (LA,Df◦δA)
on DB through the limit cone LB on DB.

For every i ∈ I, there is a function Λi = (δA)i : LA → DiA. The family {Λi}i∈I is a
natural transformation from ∆LA to DA. This gives us a cone (L,Λ) on D, which is in
fact a limit cone. Indeed, if (S,Σ) is another cone on D then for every A ∈ C there exists
a unique function ϕA : SA → LA because SA is a cone on DA and LA is a limit cone
on DA. The family {ϕA}A∈C is the unique natural transformation ϕ : S =⇒ L for which
Σ = ϕ ◦ Λ.

A.6.6 Colimits

Colimits are the dual notion of limits. Thus, a colimit of a diagram D : I → C is a limit
of the dual diagram Dop : Iop → Cop in the dual (i.e., opposite) category Cop:

colim(D : I → C) = lim(Dop : Iop → Cop) .

Explicitly, the colimit of a diagram D : I → C is the initial object in the category of
cocones Cocone(D) on D. A cocone (A,α) on D is a natural transformation α : D =⇒ ∆A.
It is given by an object A ∈ C and, for each i ∈ I, a morphism αi : Di → A, such that
αi = αj ◦Du whenever u : i → j in I. A morphism between cocones f : (A,α) → (B, β)
is a morphism f : A→ B in C such that βi = f ◦ αi for all i ∈ I.

A colimit of D : I → C is then given by a cocone (C, ζ) on D such that, for every
cocone (A,α) on D there exists a unique morphism f : C → A such that αi = f ◦ ζi for all
i ∈ D. We denote a colimit of D by one of the following:

colimD colimi∈I Di lim−→
i∈I

Di .

Colimits are also called inductive limits.

Exercise A.6.9. Formulate the dual of Proposition A.6.7 and Proposition A.6.8 for col-
imits (coequalizers are defined in Section A.6.9).

[DRAFT: January 21, 2025]

64 Category Theory

A.6.7 Binary coproducts

In a category C, the (binary) coproduct of objects A and B is an object A + B together
with injections ι0 : A→ A+B and ι1 : B → A+B such that, for every object C ∈ C and
all morphisms f : A → C, g : B → C there exists a unique morphism h : A + B → C for
which the following diagram commutes:

A
ι0 //

f
""

A+B

h

��

B
ι1oo

g
||

C

The arrow h : A+B → C is denoted by [f, g].
The coproduct A+ B is the colimit of the diagram D : 2→ C, where I is the discrete

category on two objects 0 and 1, and D0 = A, D1 = B.
In Set the coproduct is the disjoint union, defined by

X + Y =
{
⟨0, x⟩

∣∣ x ∈ X}
∪
{
⟨1, y⟩

∣∣ x ∈ Y }
,

where 0 and 1 are distinct sets, for example ∅ and {∅}. Given functions f : X → Z and
g : Y → Z, the unique function [f, g] : X + Y → Z is the usual definition by cases :

[f, g]u =

{
fx if u = ⟨0, x⟩
gx if u = ⟨1, x⟩ .

Exercise A.6.10. Show that the categories of posets and of topological spaces both have
coproducts.

A.6.8 Initial objects

An initial object in a category C is an object 0 ∈ C such that for every A ∈ C there exists
a unique morphism oA : 0→ A.

An initial object is the colimit of the empty diagram.
In Set, the initial object is the empty set.

Exercise A.6.11. What is the initial and what is the terminal object in the category of
groups?

A zero object is an object that is both initial and terminal.

Exercise A.6.12. Show that in the category of Abelian8 groups finite products and co-
products agree, that is 0 ∼= 1 and A×B ∼= A+B.

Exercise A.6.13. Suppose A and B are Abelian groups. Is there a difference between their
coproduct in the category Group of groups, and their coproduct in the category AbGroup
of Abelian groups?

8An Abelian group is one that satisfies the commutative law x · y = y · x.

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 65

A.6.9 Coequalizers

Given objects and morphisms

A
f //

g
// B

q // Q

we say that q coequalizes f and g when e◦f = e◦g. A coequalizer of f and g is a universal
coequalizing morphism; thus q : B → Q is a coequalizer of f and g when it coequalizes
them and, for all s : B → S, if s◦f = s◦ g then there exists a unique morphism r : Q→ S
such that s = r ◦ q:

A
f //

g
// B

q //

s
��

Q

r

��
S

In Set the coequalizer of parallel functions f : A → B and g : A → B is the quotient
set Q = B/∼ where ∼ is the least equivalence relation on B satisfying

fx = gy ⇒ x ∼ y .

The function q : B → Q is the canonical quotient map which assigns to each element x ∈ B
its equivalence class [x] ∈ B/∼. In general, a coequalizer can be thought of as the quotient
by the equivalence relation generated by the corresponding equation.

Exercise A.6.14. Show that a coequalizer is an epimorphism, i.e., if q : B → Q is a
coequalizer of f and g, then, for all u, v : Q → T , u ◦ q = v ◦ q implies u = v. [Hint: use
the duality between limits and colimits and Exercise A.6.3.]

Definition A.6.15. A morphism is a regular epi if it is a coequalizer.

The difference between epis and regular epis is also illustrated in the category Top: a
continuous map f : X → Y is epi when it is surjective, whereas it is a regular epi when it
is a topological quotient map.9

A.6.10 Pushouts

A pushout of f : A → B and g : A → C is an object Q with morphisms q0 : B → Q and
q1 : C → Q such that q0 ◦ f = q1 ◦ g, and whenever r0 : B → R, r1 : C → R are such that

9A continuous map f : X → Y is a topological quotient map when it is surjective and, for every U ⊆ Y ,
U is open if, and only if, f∗U is open.

[DRAFT: January 21, 2025]

66 Category Theory

r0 ◦ f = r1 ◦ g, then there exists a unique s : Q→ R such that r0 = s ◦ q0 and r1 = s ◦ q1:

A
g //

f

��

C

q1

�� r1

��

B q0
//

r0
,,

Q

s

��
R

We indicate that Q is a pushout by drawing a square corner next to it, as in the above
diagram. The above pushout Q is sometimes denoted by B +A C.

A pushout as above is a colimit of the diagram D : I → C where the index category I is

• 2 //

1
��

•

•

and D1 = f , D2 = g.
In Set, the pushout of f : A→ C and g : B → C is the quotient set

Q = (B + C)/∼

where B + C is the disjoint union of B and C, and ∼ is the least equivalence relation
on B + C such that, for all x ∈ A,

fx ∼ gx .

The functions q0 : B → Q, q1 : C → Q are the injections, q0x = [x], q1y = [y], where [x] is
the equivalence class of x.

A.6.11 Limits as adjoints

Limits and colimits can be defined as adjoints to certain very simple functors.
First, observe that an object A ∈ C can be viewed as a functor from the terminal

category 1 to C, namely the functor which maps the only object ⋆ of 1 to A. Since 1 is the
terminal object in Cat, there exists a unique functor !C : C → 1, which maps every object
of C to ⋆.

Now we can ask whether this simple functor !C : C → 1 has any adjoints. Indeed,
it has a right adjoint just if C has a terminal object 1C, for the corresponding functor
1C : 1 → C has the property that, for every A ∈ C we have a (trivially natural) bijective
correspondence:

!A : A→ 1C

1⋆ : !CA→ ⋆

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 67

Similarly, an initial object is a left adjoint to !C:

0C ⊣ !C ⊣ 1C .

Now consider the diagonal functor,

∆ : C → C × C,

defined by ∆A = ⟨A,A⟩, ∆f = ⟨f, f⟩. When does this have adjoints?
If C has all binary products, then they determine a functor

−×− : C × C → C

which maps ⟨A,B⟩ to A × B and a pair of morphisms ⟨f : A → A′, g : B → B′⟩ to
the unique morphism f × g : A × B → A′ × B′ for which π0 ◦ (f × g) = f ◦ π0 and
π1 ◦ (f × g) = g ◦ π1,

A

f

��

A×Bπ0oo π1 //

f × g
��

B

g

��
A′ A′ ×B′

π0
oo

π1
// B′

The product functor × is right adjoint to the diagonal functor ∆. Indeed, there is a natural
bijective correspondence:

⟨f, g⟩ : ⟨A,A⟩ → ⟨B,C⟩
f × g : A→ B × C

Similarly, binary coproducts are easily seen to be left adjoint to the diagonal functor,

+ ⊣ ∆ ⊣ × .

Now in general, consider limits of shape I in a category C. There is the constant
diagram functor

∆ : C → CI

that maps A ∈ C to the constant diagram ∆A : I → C. The limit construction is a functor

lim←− : CI → C

that maps each diagram D ∈ CI to its limit lim←−D. These two are adjoint, ∆ ⊣ lim←−, because
there is a natural bijective correspondence between cones α : ∆A =⇒ D on D, and their
factorizations through the limit of D,

α : ∆A =⇒ D

A→ lim←−D

An analogous correspondence holds for colimits, so that we obtain a pair of adjunctions,

lim−→ ⊣ ∆ ⊣ lim←− ,

which, of course, subsume all the previously mentioned cases.

[DRAFT: January 21, 2025]

68 Category Theory

Exercise A.6.16. How are the functors ∆ : C → CI , lim−→ : CI → C, and lim←− : CI → C
defined on morphisms?

A.6.12 Preservation of limits

We say that a functor F : C → D preserves products when, given a product

A A×Bπ0oo π1 // B

its image in D,

FA F (A×B)
Fπ0oo Fπ1 // FB

is a product of FA and FB. If D has chosen binary products, F preserves binary products
if, and only if, the unique morphism f : F (A×B)→ FA×FB which makes the following
diagram commutative is an isomorphism: 10

F (A×B)

f

��

Fπ0

zz

Fπ1

$$
FA FA× FBπ0

oo
π1

// FB

In general, a functor F : C → D is said to preserve limits of shape I when it maps
limit cones to limit cones: if (L, λ) is a limit of D : I → C then (FL, F ◦ λ) is a limit of
F ◦D : I → D.

Analogously, a functor F : C → D is said to preserve colimits of shape I when it maps
colimit cocones to colimit cocones: if (C, ζ) is a colimit of D : I → C then (FC, F ◦ ζ) is
a colimit of F ◦D : I → D.

Proposition A.6.17. (a) A functor preserves finite (small) limits if, and only if, it pre-
serves equalizers and finite (small) products. (b) A functor preserves finite (small) colimits
if, and only if, it preserves coequalizers and finite (small) coproducts.

Proof. This follows from the fact that limits are constructed from equalizers and products,
cf. Proposition A.6.8, and that colimits are constructed from coequalizers and coproducts,
cf. Exercise A.6.9.

Proposition A.6.18. For a locally small category C, the Yoneda embedding y : C → Ĉ
preserves all limits that exist in C.

10Products are determined up to isomorphism only, so it would be too restrictive to require F (A×B) =
FA× FB. When that is the case, however, we say that the functor F strictly preserves products.

[DRAFT: January 21, 2025]

A.6 Limits and Colimits 69

Proof. Suppose (L, λ) is a limit of D : I → C. The Yoneda embedding maps D to the

diagram y ◦D : I → Ĉ, defined by

(y ◦D)i = yDi = C(−, Di) .

and it maps the limit cone (L, λ) to the cone (yL, y ◦ λ) on y ◦D, defined by

(y ◦ λ)i = yλi = C(−, λi) .

To see that (yL, y ◦ λ) is a limit cone on y ◦ D, consider a cone (M,µ) on y ◦ D. Then
µ : ∆M =⇒ D consists of a family of functions, one for each i ∈ I and A ∈ C,

(µi)A :MA→ C(A,Di) .

For every A ∈ C and m ∈MA we get a cone on D consisting of morphisms

(µi)Am : A→ Di . (i ∈ I)

There exists a unique morphism ϕAm : A→ L such that (µi)Am = λi ◦ ϕAm. The family
of functions

ϕA :MA→ C(A,L) = (y ◦ L)A (A ∈ C)

forms a factorization ϕ : M =⇒ yL of the cone (M,µ) through the cone (L, λ). This
factorization is unique because each ϕAm is unique.

In effect we showed that a covariant representable functor C(A,−) : C → Set preserves
existing limits,

C(A, lim←−
i∈I

Di) ∼= lim←−
i∈I
C(A,Di) .

By duality, the contravariant representable functor C(−, A) : Cop → Set maps existing
colimits to limits,

C(lim−→
i∈I

Di, A) ∼= lim←−
i∈I
C(Di, A) .

Exercise A.6.19. Prove the above claim that a contravariant representable functor C(−, A) :
Cop → Set maps existing colimits to limits. Use duality between limits and colimits. Does
it also follow by a simple duality argument that a contravariant representable functor
C(−, A) maps existing limits to colimits? How about a covariant representable functor
C(A,−) mapping existing colimits to limits?

Exercise A.6.20. Prove that a functor F : C → D preserves monos if it preserves limits.
In particular, the Yoneda embedding preserves monos. Hint: Exercise A.6.5.

Proposition A.6.21. Right adjoints preserve limits, and left adjoints preserve colimits.

[DRAFT: January 21, 2025]

70 Category Theory

Proof. Suppose we have adjoint functors

C
F

((
⊥ D
G

gg

and a diagram D : I → D whose limit exists in D. We would like to use the following slick
application of Yoneda Lemma to show that G preserves limits: for every A ∈ C,

C(A,G(lim←−D)) ∼= D(FA, lim←−D) ∼= lim←−
i∈I
D(FA,Di)

∼= lim←−
i∈I
C(A,GDi) ∼= C(A, lim←−(G ◦D)) .

Therefore G(limD) ∼= lim(G ◦D). However, this argument only works if we already know
that the limit of G ◦D exists.

We can also prove the stronger claim that whenever the limit of D : I → D exists then
the limit of G ◦D exists in C and its limit is G(limD). So suppose (L, λ) is a limit cone
of D. Then (GL,G ◦ λ) is a cone on G ◦D. If (A,α) is another cone on G ◦D, we have
by adjunction a cone (FA, γ) on D,

αi : A→ GDi

γi : FA→ Di

There exists a unique factorization f : FA → L of this cone through (L, λ). Again by
adjunction, we obtain a unique factorization g : A → GL of the cone (A,α) through the
cone (GL,G ◦ λ):

f : FA→ L

g : A→ GL

The factorization g is unique because γ is uniquely determined from α, f uniquely from α,
and g uniquely from f .

By a dual argument, a left adjoint preserves colimits.

[DRAFT: January 21, 2025]

Appendix B

Logic

B.1 Concrete and abstract syntax

By syntax we generally mean manipulation of finite strings of symbols according to given
grammatical rules. For instance, the strings “7)6 + /(8” and “(6 + 8)/7” both consist of
the same symbols but you will recognize one as junk and the other as well formed because
you have (implicitly) applied the grammatical rules for arithmetical expressions.

Grammatical rules are usually quite complicated, as they need to prescribe associativity
of operators (does “5 + 6 + 7” mean “(5 + 6) + 7” or “5 + (6 + 7)”?) and their precedence
(does “6 + 8/7” mean “(6 + 8)/7” or “6 + (8/7)”?), the role of white space (empty space
between symbols and line breaks), rules for nesting and balancing parentheses, etc. It is
not our intention to dwell on such details, but rather to focus on the mathematical nature
of well-formed expressions, namely that they represent inductively generated finite trees.1

Under this view the string “(6+8)/7” is just a concrete representation of the tree depicted
in Figure B.1.

+ 7

86

/

Figure B.1: The tree represented by (6 + 8)/7

Concrete representation of expressions as finite strings of symbols is called concrete
syntax, while in abstract syntax we view expressions as finite trees. The passage from the

1We are limiting attention to the so-called context-free grammar, which are sufficient for our purposes.
More complicated grammars are rarely used to describe formal languages in logic and computer science.

[DRAFT: January 21, 2025]

72 Logic

former to the latter is called parsing and is beyond the scope of this book. We will always
specify only abstract syntax and assume that the corresponding concrete syntax follows
the customary rules for parentheses, associativity and precedence of operators.

As an illustration we give rules for the (abstract) syntax of propositional calculus in
Backus-Naur form:

Propositional variable p ::= p1 | p2 | p3 | · · ·
Propositional formula ϕ ::= p | ⊥ | ⊤ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ¬ϕ

The vertical bars should be read as “or”. The first rule says that a propositional variable
is the constant p1, or the constant p2, or the constant p3, etc.

2 The second rule tells us
that there are seven inductive rules for building a propositional formula:

• a propositional variable is a formula,

• the constants ⊥ and ⊤ are formulas,

• if ϕ1, ϕ2, and ϕ are formulas, then so are ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 ⇒ ϕ2, and ¬ϕ.

Even though abstract syntax rules say nothing about parentheses or operator associativity
and precedence, we shall rely on established conventions for mathematical notation and
write down concrete representations of propositional formulas, e.g., p4∧(p1∨¬p1)∧p4∨p2.

A word of warning: operator associativity in syntax is not to be confused with the usual
notion of associativity in mathematics. We say that an operator ⋆ is left associative when
an expression x ⋆ y ⋆ z represents the left-hand tree in Figure B.2, and right associative
when it represents the right-hand tree. Thus the usual operation of subtraction − is left

* z

yx

*x

y z

* *

Figure B.2: Left and right associativity of x ⋆ y ⋆ z

associative, but is not associative in the usual mathematical sense.

2In an actual computer implementation we would allow arbitrary finite strings of letters as propositional
variables. In logic we only care about the fact that we can never run out of fresh variables, i.e., that there
are countably infinitely many of them.

[DRAFT: January 21, 2025]

B.2 Free and bound variables 73

B.2 Free and bound variables

Variables appearing in an expression may be free or bound. For example, in expressions∫ 1

0

sin(a · x) dx, x 7→ ax2 + bx+ c, ∀x . (x < a ∨ b < x)

the variables a, b and c are free, while x is bound by the integral operator
∫
, the function

formation 7→, and the universal quantifier ∀, respectively. To be quite precise, it is an oc-
currence of a variable that is free or bound. For example, in expression ϕ(x)∨∃x .Aψ(x, x)
the first occurrence of x is free and the remaining ones are bound.

In this book the following operators bind variables:

• quantifiers ∃ and ∀, cf. ??,

• λ-abstraction, cf. ??,

• search for others ??.

When a variable is bound we may always rename it, provided the renaming does not
confuse it with another variable. In the integral above we could rename x to y, but not to
a because the binding operation would capture the free variable a to produce the unintended∫ 1

0
sin(a2) da. Renaming of bound variables is called α-renaming.
We consider two expressions equal if they only differ in the names of bound variables,

i.e., if one can be obtained from the other by α-renaming. Furthermore, we adhere to
Barendregt’s variable convention [?, p. 2], which says that bound variables are always
chosen so as to differ from free variables. Thus we would never write ϕ(x) ∨ ∃x .Aψ(x, x)
but rather ϕ(x)∨∃ y .Aψ(y, y). By doing so we need not worry about capturing or otherwise
confusing free and bound variables.

In logic we need to be more careful about variables than is customary in traditional
mathematics. Specifically, we always specify which free variables may appear in an expres-
sion.3 We write

x1 : A1, . . . , xn : An | t

to indicate that expression t may contain only free variables x1, . . . , xn of types A1, . . . , An.
The list

x1 : A1, . . . , xn : An

is called a context in which t appears. To see why this is important consider the different
meaning that the expression x2 + y2 ≤ 1 recevieves in different contexts:

• x : Z, y : Z | x2 + y2 ≤ 1 denotes the set of tuples {(−1, 0), (0, 1), (1, 0), (0,−1)},

• x : R, y : R | x2 + y2 ≤ 1 denotes the closed unit disc in the plane, and

3This is akin to one of the guiding principles of good programming language design, namely, that all
variables should be declared before they are used.

[DRAFT: January 21, 2025]

74 Logic

• x : R, y : R, z : R | x2 + y2 ≤ 1 denotes the infinite cylinder in space whose base is
the closed unit disc.

In single-sorted theories there is only one type or sort A. In this case we abbreviate a
context by listing just the variables, x1, . . . , xn.

B.3 Substitution

Substitution is a basic syntactic operation which replaces (free occurrences of) distinct
variables x1, . . . , xn in an expression t with expressions t1, . . . , tn, which is written as

t[t1/x1, . . . , tn/xn].

We sometimes abbreviate this as t[⃗t/x⃗] where x⃗ = (x1, . . . , xn) and t⃗ = (t1, . . . , tn). Here
are several examples:

(x2 + x+ y)[(2 + 3)/x] = (2 + 3)2 + (2 + 3) + y

(x2 + y)[y/x, x/y] = y2 + x(
∀x .

(
x2 < y + x3

))
[x+ y/y] = ∀ z .

(
z2 < (x+ y) + z3

)
.

Notice that in the third example we first renamed the bound variable x to z in order to
avoid a capture by ∀.

Substitution is simple to explain in terms of trees. Assuming Barendregt’s convention,
the substitution t[u/x] means that in the tree t we replace the leaves labeled x by copies
of the tree u. Thus a substitution never changes the structure of the tree–it only “grows”
new subtrees in places where the substituted variables occur as leaves.

Substitution satisfies the distributive law

(t[u/x])[v/y] = (t[v/y])[u[v/y]/x],

provided x and y are distinct variables. There is also a corresponding multivariate version
which is written the same way with a slight abuse of vector notation:

(t[u⃗/x⃗])[v⃗/y⃗] = (t[v⃗/y⃗])[u⃗[v⃗/y⃗]/x⃗].

B.4 Judgments and deductive systems

A formal system, such as first-order logic or type theory, concerns itself with judgments.
There are many kinds of judgments, such as:

• The most common judgments are equations and other logical statements. We distin-
guish a formula ϕ and the judgment “ϕ holds” by writing the latter as

⊢ ϕ .

The symbol ⊢ is generally used to indicate judgments.

[DRAFT: January 21, 2025]

B.4 Judgments and deductive systems 75

• Typing judgments
⊢ t : A

expressing the fact that a term t has type A. This is not to be confused with the
set-theoretic statement t ∈ u which says that individuals t and u (of type “set”) are
in relation “element of” ∈.

• Judgments expressing the fact that a certain entity is well formed. A typical example
is a judgment

⊢ x1 : A1, . . . , xn : An ctx

which states that x1 : A1, . . . , xn : An is a well-formed context. This means that
x1, . . . , xn are distinct variables and that A1, . . . , An are well-formed types. This
kind of judgement is often omitted and it is tacitly assumed that whatever entities
we deal with are in fact well-formed.

A hypothetical judgement has the form

H1, . . . , Hn ⊢ C

and means that hypotheses H1, . . . , Hn entail consequence C (with respect to a given
decuctive system). We may also add a typing context to get a general form of judgment

x1 : A1, . . . , xn : An | H1, . . . , Hm ⊢ C.

This should be read as: “if x1, . . . , xn are variables of types A1, . . . , An, respectively, then
hypotheses H1, . . . , Hm entail conclusion C.” For our purposes such contexts will suffice,
but you should not be surprised to see other kinds of judgments in logic.

A deductive system is a set of inference rules for deriving judgments. A typical inference
rule has the form

J1 J2 · · · Jn
J

C

This means that we can infer judgment J if we have already derived judgments J1, . . . , Jn,
provided that the optional side-condition C is satisfied. An axiom is an inference rule of
the form

J

A two-way rule
J1 J2 · · · Jn

K1 K2 · · · Km

is a combination of n+m inference rules stating that we may infer each Ki from J1, . . . , Jn
and each Ji from K1, . . . , Km.

A derivation of a judgment J is a finite tree whose root is J , the nodes are inference
rules, and the leaves are axioms. An example is presented in the next subsection.

The set of all judgments that hold in a given deductive system is generated inductively
by starting with the axioms and applying inference rules.

[DRAFT: January 21, 2025]

76 Logic

B.5 Example: Equational reasoning

Equational reasoning is so straightforward that one almost doesn’t notice it, consisting
mainly, as it does, of “substituting equals for equals”. The only judgements are equations
between terms, s = t, which consist of function symbols, constants, and variables. The
inference rules are just the usual ones making s = t a congruence relation on the terms.
More formally, we have the following specification of what may be called the equational
calculus.

Variable v ::= x | y | z | · · ·
Constant symbol c ::= c1 | c2 | · · ·
Function symbol fk ::= fk11 | fk22 | · · ·

Term t ::= v | c | fk(t1, . . . , tk)

The superscript on the function symbol fk indicates the arity.

The equational calculus has just one form of judgement

x1, . . . , xn | t1 = t2

where x1, . . . , xn is a context consisting of distinct variables, and the variables in the equa-
tion must occur among the ones listed in the context.

There are four inference rules for the equational calculus. They may be assumed to
leave the contexts unchanged, which may therefore be omitted.

t = t

t1 = t2
t2 = t1

t1 = t2, t2 = t3
t1 = t3

t1 = t2, t3 = t4
t1[t3/x] = t2[t4/x]

An equational theory T consists of a set of constant and function symbols (with arities),
and a set of equations, called axioms. We write

T ⊢ t1 = t2

to mean that the equation t1 = t2 has a derivation from the axioms of T using the equational
calculus.

B.6 Example: Predicate calculus

We spell out the details of single-sorted predicate calculus and first-order theories. This is
the most common deductive system taught in classical courses on logic.

[DRAFT: January 21, 2025]

B.6 Example: Predicate calculus 77

The predicate calculus has the following syntax:

Variable v ::= x | y | z | · · ·
Constant symbol c ::= c1 | c2 | · · ·

Function symbol4 fk ::= fk11 | fk22 | · · ·
Term t ::= v | c | fk(t1, . . . , tk)

Relation symbol Rm ::= Rm1
1 | Rm2

2 | · · ·
Formula ϕ ::=⊥ | ⊤ | Rm(t1, . . . , tm) | t1 = t2 |

ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ¬ϕ | ∀x . ϕ | ∃x . ϕ.
The variable x is bound in ∀x . ϕ and ∃x . ϕ.

The predicate calculus has one form of judgement

x1, . . . , xn | ϕ1, . . . , ϕm ⊢ ϕ

where x1, . . . , xn is a context consisting of distinct variables, ϕ1, . . . , ϕm are hypotheses
and ϕ is the conclusion. The free variables in the hypotheses and the conclusion must
occur among the ones listed in the context. We abbreviate the context with Γ and Φ with
hypotheses. Because most rules leave the context unchanged, we omit the context unless
something interesting happens with it.

The following inference rules are given in the form of adjunctions. See Appendix ?? for
the more usual formulation in terms of introduction an elimination rules.

ϕ1, . . . , ϕm ⊢ ϕi Φ ⊢ ⊤ Φ,⊥ ⊢ ϕ

Φ ⊢ ϕ1 Φ ⊢ ϕ2

Φ ⊢ ϕ1 ∧ ϕ2

Φ, ϕ1 ⊢ ψ Φ, ϕ2 ⊢ ψ
Φ, ϕ1 ∨ ϕ2 ⊢ ψ

Φ, ϕ1 ⊢ ϕ2

Φ ⊢ ϕ1 ⇒ ϕ2

Γ, x, y | Φ, x = y ⊢ ϕ
Γ, x | Φ ⊢ ϕ[x/y]

Γ, x | Φ, ϕ ⊢ ψ
Γ | Φ,∃x . ϕ ⊢ ψ

Γ, x | Φ ⊢ ϕ
Γ | Φ ⊢ ∀x . ϕ

The equality rule implicitly requires that y does not appear in Φ, and the quantifier rules
implicitly require that x does not occur freely in Φ and ψ because the judgments below
the lines are supposed to be well formed.

Negation ¬ϕ is defined to be ϕ⇒ ⊥. To obtain classical logic we also need the law of
excluded middle,

Φ ⊢ ϕ ∨ ¬ϕ
Comment on the fact that contraction and weakening are admissible.
Give an example of a derivation.
A first-order theory T consists of a set of constant, function and relation symbols with

corresponding arities, and a set of formulas, called axioms.
Give examples of a first-order theories.

[DRAFT: January 21, 2025]

Bibliography

[AGH21] S. Awodey, N. Gambino, and S. Hazratpour. Kripke-Joyal forcing for type theory
and uniform fibrations, October 2021. Preprint available as https://arxiv.org/
abs/2110.14576.

[AR11] S. Awodey and F. Rabe. Kripke semantics for Martin-Löf’s extensional type
theory. Logical Methods in Computer Science, 7(3):1–25, 2011.

[Awo] Steve Awodey. Introduction to categorical logic. Fall 2024, https://awodey.
github.io/catlog/notes/catlogdraft.pdf.

[Awo00] Steve Awodey. Topological representation of the λ-calculus. Mathematical Struc-
tures in Computer Science, 10:81–96, 2000.

[Awo21] Steve Awodey. Sheaf representations and duality in logic. In C. Casadio and
P.J. Scott, editors, Joachim Lambek: The Interplay of Mathematics, Logic, and
Linguistics. Springer, 2021. arXiv:2001.09195.

[Baua] A. Bauer. On a proof of cantor’s theorem. Blogpost at https://math.andrej.
com/2007/04/08/on-a-proof-of-cantors-theorem.

[Baub] A. Bauer. On fixed-point theorems in synthetic computabil-
ity. Blogpost at https://math.andrej.com/2019/11/07/

on-fixed-point-theorems-in-synthetic-computability.

[Coq] Thierry Coquand. Type theory. The Stanford Encyclopedia of Philoso-
phy, Fall 2022 Edition, https://plato.stanford.edu/archives/fall2022/

entries/type-theory.

[Fri75] H. Friedman. Equality between functionals. In R. Parikh, editor, Logic Collo-
quium. Springer-Verlag, New York, 1975.

[FS99] Marcelo Fiore and Alex Simpson. Lambda definability with sums via
Grothendieck logical relations. In Jean-Yves Girard, editor, Typed Lambda Cal-
culi and Applications, pages 147–161, Berlin, Heidelberg, 1999. Springer.

[Joh82] P.T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in advanced
mathematics. Cambridge University Press, 1982.

[DRAFT: January 21, 2025]

https://arxiv.org/abs/2110.14576
https://arxiv.org/abs/2110.14576
https://awodey.github.io/catlog/notes/catlogdraft.pdf
https://awodey.github.io/catlog/notes/catlogdraft.pdf
https://math.andrej.com/2007/04/08/on-a-proof-of-cantors-theorem
https://math.andrej.com/2007/04/08/on-a-proof-of-cantors-theorem
https://math.andrej.com/2019/11/07/on-fixed-point-theorems-in-synthetic-computability
https://math.andrej.com/2019/11/07/on-fixed-point-theorems-in-synthetic-computability
https://plato.stanford.edu/archives/fall2022/entries/type-theory
https://plato.stanford.edu/archives/fall2022/entries/type-theory

80 BIBLIOGRAPHY

[Joh03] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, 2 vol.s.
Number 43 in Oxford Logic Guides. Oxford University Press, 2003.

[JT84] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck.
Memoirs of the AMS. American Mathematical Society, 1984.

[Law69] F.W. Lawvere. Diagonal arguments and cartesian closed categories. In Category
Theory, Homology Theory and their Applications II, volume 92 of Lecture Notes
in Mathematics. Springer, Berlin, 1969. Reprinted with author commentary in
Theory and Applications of Categories (15): 1–13, (2006).

[LS88] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic. Cam-
bridge, 1988.

[MH92] Michael Makkai and Victor Harnik. Lambek’s categorical proof theory and
Läuchli’s abstract realizability. Journal of Symbolic Logic, 57(1):200–230, 1992.

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984.

[MR95] Michael Makkai and Gonzalo Reyes. Completeness results for intuitionistic and
modal logic in a categorical setting. Annals of Pure and Applied Logic, 72:25–101,
1995.

[Plo73] G. D. Plotkin. Lambda-definability in the full type hierarchy. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Academic Press, New York, 1973.

[Sco70] Dana S. Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, volume
125, pages 237–275. Springer-Verlag, 1970.

[Sco80a] Dana S. Scott. The lambda calculus: Some models, some philosophy. In The
Kleene Symposium, pages 223–265. North-Holland, 1980.

[Sco80b] Dana S. Scott. Relating theories of the lambda calculus. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 403–450.
Academic Press, 1980.

[Sim95] A. Simpson. Categorical completeness results for the simply-typed lambda-
calculus. In M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi
and Applications, Lecture Notes in Computer Science, pages 414–427. Springer,
1995.

[Tai68] William W. Tait. Constructive reasoning. In Logic, Methodology and Philos. Sci.
III (Proc. Third Internat. Congr., Amsterdam, 1967), pages 185–199. North-
Holland, Amsterdam, 1968.

[DRAFT: January 21, 2025]

	Introduction
	A little history
	Proof relevance
	The Curry-Howard correspondence
	Categorification
	Completeness via representation theorems
	Positive propositional calculus
	Heyting algebras

	Outline

	Category Theory
	Categories
	Examples
	Categories of structures
	Basic notions

	Functors
	Functors between sets, monoids and posets
	Forgetful functors

	Constructions of Categories and Functors
	Product of categories
	Slice categories
	Arrow categories
	Opposite categories
	Representable functors
	Group actions

	Natural Transformations and Functor Categories
	Directed graphs as a functor category
	The Yoneda embedding
	Equivalence of categories

	Adjoint Functors
	Adjoint maps between preorders
	Adjoint functors
	The unit of an adjunction
	The counit of an adjunction

	Limits and Colimits
	Binary products
	Terminal objects
	Equalizers
	Pullbacks
	Limits
	Colimits
	Binary coproducts
	Initial objects
	Coequalizers
	Pushouts
	Limits as adjoints
	Preservation of limits

	Logic
	Concrete and abstract syntax
	Free and bound variables
	Substitution
	Judgments and deductive systems
	Example: Equational reasoning
	Example: Predicate calculus

	Bibliography

