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Chapter 2

Simple Type Theory

2.1 The λ-calculus

The λ-calculus is an abstract theory of functions, much like group theory is an abstract
theory of symmetries. There are two basic operations that can be performed with functions.
The first one is the application of a function to an argument: if f is a function and a is an
argument, then fa is the application of f to a, also called the value of f at a. The second
operation is abstraction: if x is a variable and t is an expression in which x may appear,
then there is a function f defined by the equation

fx = t .

Here we gave the name f to the newly formed function, which takes an argument x to the
value t. But we could have expressed the same function without giving it a name; this is
sometimes written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation, which is more
convenient when such abstractions are nested within more complex expressions, namely

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the function that
maps an argument a to the function λy. (a+ y), which in turn maps an argument b to the
value a+ b. The variable x is said to be bound in the expression λx. t.

It may seem strange that in discussing the abstraction of a function, we switched
from talking about objects (functions, arguments, values) to talking about expressions :
variables, names, equations. This “syntactic” point of view seems to have been part of
the notion of a function from the start, in the theory of algebraic equations. It is the
reason that the λ-calculus is part of logic, unlike the theory of cartesian closed categories,
which remains thoroughly semantical (and “variable-free”). The relation between the two
different points of view occupies this chapter (and, indeed, the entire subject of logic!).
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6 Simple Type Theory

There are two kinds of λ-calculus: the typed and the untyped. In the untyped version
there are no restrictions on how application is formed, so that an expression such as

λx. (xx)

is allowed, whatever it may mean. We will concentrate here on the typed λ-calculus (but
see Example 2.1.7 below). In typed λ-calculus every expression has a type, and there are
rules for forming valid expressions and assigning types. For example, we can only form an
application fa when f has, say, type A→ B and a has type A, and then fa will necessarily
have type B. The basic judgement that an expression t has a type T is written as

t : T

and it is one of the primitive notions of type theory (meaning that it is not defined). To
computer scientists, the idea of expressions having types is familiar from programming
languages; whereas mathematicians can think of types as sets and read t : A as t ∈ A (at
least to get started).

Simply-typed λ-calculus. We now give a more formal definition of what constitutes a
simply-typed λ-calculus. First, we are given a collection of simple types, which are generated
from some basic types by formation of product and function types:

Basic types B ::= B0 | B1 | B2 · · ·
Simple types A ::= B ::= 1 | A1 × A2 | A1 → A2.

When convenient, we may adopt the convention that function types associate to the right,

A→ B → C = A→ (B → C) .

We assume there is a countable set of variables x, y, z, . . . at our disposal. We are also
given a set of basic constants. The set of terms is generated from variables and basic
constants by the following grammar:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. any variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if s and t are terms then ⟨s, t⟩ is a term, called a pair,
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2.1 The λ-calculus 7

5. if t is a term then fst t and snd t are terms,

6. if s and t are terms then s t is a term, called an application,

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term, called a
λ-abstraction.

The variable x is bound in λx : A . t. Application associates to the left, thus s t u = (s t)u.
The set of free variables FV(t) of a term t is determined as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(⟨u, t⟩) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

A term t is closed if all of its variables are bound, so that FV(t) = ∅. If x1, . . . , xn are
distinct variables and A1, . . . , An are types then the sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted by a dot · ,
and it is a valid context. We may identify contexts under reordering, regarding them as
sets rather than sequences. Contexts may be denoted by capital Greek letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition, the free variables of t
must occur in Γ, but Γ may contain other variables as well. We read the above judgment
as “in context Γ the term t has type A”. Next we describe the rules for deriving typing
judgments.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

Γ, xn : An | xn : An

[DRAFT: February 20, 2025]



8 Simple Type Theory

• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections are:

Γ | a : A Γ | b : B
Γ | ⟨a, b⟩ : A×B

Γ | t : A×B

Γ | fst t : A
Γ | c : A×B

Γ | snd t : B

• The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | a : A

Γ | t a : B

Γ, x : A | t : B
Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms: for terms of type A in context Γ,

Γ | s : A , Γ | t : A ,

the judgment that they are equal is written as

Γ | s = t : A .

Note that s and t necessarily have the same type; it does not make sense to compare terms
of different types. We have the following rules for equations, the effect of which is to make
equality between terms into an equivalence relation at each type, and a congruence with
respect to all of the operations, just as for algebraic theories:

• Equality is an equivalence relation:

Γ | t = t : A

Γ | s = t : A

Γ | t = s : A

Γ | s = t : A Γ | t = u : A

Γ | s = u : A

• The substitution rule:

Γ | s = t : A Γ, x : A | u = v : B

Γ | u[s/x] = v[t/x] : B

• The weakening rule:
Γ | s = t : A

Γ, x : B | s = t : A

• Unit type:

Γ | t = ∗ : 1

[DRAFT: February 20, 2025]



2.1 The λ-calculus 9

• Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | ⟨u, s⟩ = ⟨v, t⟩ : A×B

Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B

Γ | snd s = snd t : A

Γ | t = ⟨fst t, snd t⟩ : A×B

Γ | fst ⟨s, t⟩ = s : A Γ | snd ⟨s, t⟩ = t : A

• Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | t : A→ B

Γ | λx : A . (t x) = t : A→ B
(η-rule)

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

where the substitution t[u/x] is defined as usual (see the Appendix).

This completes the description of a simply-typed λ-calculus.

Simply-typed λ-theories. Apart from the above rules for equality, which are part of
the λ-calculus, we might want to impose additional equations between terms. In this case
we speak of a λ-theory. Thus, a λ-theory T is given by a set of basic types and a set of
basic constants, called the signature, and a set of equations of the form

Γ | s = t : A .

Note that we can always state the equations equivalently in closed form simply by λ-
abstracting all the variables in the context Γ.

We summarize the preceding definitions.

Definition 2.1.1. A (simply-typed) signature S is given by a set of basic types (Bi)i∈I
together with a set of basic (typed) constants (cj : Cj)j∈J ,

S =
(
(Bi)i∈I , (cj : Cj)j∈J

)
.

A simply-typed λ-theory T = (S,E) is a simply-typed signature S together with a set of
equations between closed terms,

E =
(
uk = vk : Ak

)
k∈K .
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10 Simple Type Theory

Example 2.1.2. The theory of a group is a simply-typed λ-theory. It has one basic type
G and three basic constants, the unit e, the inverse i, and the group operation m,

e : G , i : G → G , m : G× G → G ,

with the following familiar equations (which we need not give in closed form):

x : G | m⟨x, e⟩ = x : G

x : G | m⟨e, x⟩ = x : G

x : G | m⟨x, ix⟩ = e : G

x : G | m⟨ix, x⟩ = e : G

x : G, y : G, z : G | m⟨x, m⟨y, z⟩⟩ = m⟨m⟨x, y⟩, z⟩ : G

Example 2.1.3. More generally, any (Lawvere) algebraic theory A (as in Chapter ??)
determines a λ-theory Aλ. There is one basic type A and for each operation f of arity k
there is a basic constant f : Ak → A, where Ak is the k-fold product A × · · · × A. It is
understood that A0 = 1. The terms of A are translated to corresponding terms of Aλ in a
straightforward manner. For every axiom u = v of A there is a corresponding one in Aλ,

x1 : A, . . . , xn : A | u = v : A

where x1, . . . , xn are the variables occurring in u and v.

Example 2.1.4. The theory of a directed graph is a simply-typed theory with two basic
types, V for vertices and E for edges, and two basic constants, source src and target trg,

src : E → V , trg : E → V .

There are no equations.

Example 2.1.5. The theory of a simplicial set is a simply-typed theory with one basic
type Xn for each natural number n, and the following basic constants, also for each n, and
each 0 ≤ i ≤ n:

di : Xn+1 → Xn , si : Xn → Xn+1 .

The equations are the usual simplicial identities, which are as follows, for all natural
numbers i, j:

didj = dj−1di, if i < j,

sisj = sj+1si, if i ≤ j,

disj =


sj−1di, if i < j,

id, if i = j or i = j + 1,

sjdi−1, if i > j + 1.
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2.1 The λ-calculus 11

Example 2.1.6. An example of a λ-theory found in the theory of programming languages
is the mini-programming language PCF. It is a theory in simply-typed λ-calculus with a
basic type nat for natural numbers, and a basic type bool of Boolean values,

Basic types B ::= nat type | bool type.

There are basic constants zero 0, successor succ, the Boolean constants true and false,
comparison with zero iszero, and for each type A the conditional condA and the fixpoint
operator fixA. They have the following types:

0 : nat

succ : nat → nat

true : bool

false : bool

iszero : nat → bool

condA : bool → A→ A

fixA : (A→ A) → A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 2.1.7 (D.S. Scott). Another example of a λ-theory is the theory of a reflexive
type. This theory has one basic type D and two constants

r : D → D → D s : (D → D) → D

satisfying the equation
f : D → D | r (s f) = f : D → D (2.1)

which says that s is a section and r is a retraction, so that the function type D → D is a
subspace (even a retract) of D. A type with this property is said to be reflexive. We may
additionally stipulate the axiom

x : D | s (rx) = x : D (2.2)

which implies that D is isomorphic to D → D.
A reflexive type can be used to interpret the untyped λ-calculus into the typed λ-

calculus.

[DRAFT: February 20, 2025]



12 Simple Type Theory

Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are generated by
the following grammar:

t ::= v | t! t2 | λx. t .
In words, a variable is a term, an application t t′ is a term, for any terms t and t′, and a
λ-abstraction λx. t is a term, for any term t. Variable x is bound in λx. t. A context is a
list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed in Γ. The
judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really necessary
but we include it because it is always good practice to list the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | t = t

Γ | λx. (t x) = t
(η-rule)

Γ | (λx. t)u = t[u/x]
(β-rule)

where again the substitution t[u/x] is defined as usual (see the Appendix).

The untyped λ-calculus can be translated into the theory of a reflexive type from Exam-
ple 2.1.7. An untyped context Γ is translated to a typed context Γ∗ by typing each variable
in Γ with the reflexive type D, i.e., a context x1, . . . , xk is translated to x1 : D, . . . , xk : D.
An untyped term t is translated to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .
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2.2 Cartesian closed categories 13

For example, the term λx. (x x) translates to s (λx : D . ((rx)x)). A judgment

Γ | u = t (2.3)

is translated to the judgment

Γ∗ | u∗ = t∗ : D . (2.4)

Exercise∗ 2.1.8. (counts as two!) Prove that if equation (2.3) is provable then equa-
tion (2.4) is provable as well. Identify precisely at which point in your proof you need to
use equations (2.1) and (2.2). Does provability of (2.4) imply provability of (2.3)?

2.2 Cartesian closed categories

We next review of the theory of cartesian closed categories, which will form the basis for
the semantics of simple type theory.

Exponentials

We begin with the notion of an exponential BA of two objects A,B in a category, motivated
by a couple of important examples. Consider first the category Pos of posets and monotone
functions. For posets P and Q the set Hom(P,Q) of all monotone functions between them
is again a poset, with the pointwise order:

f ≤ g ⇐⇒ fx ≤ gx for all x ∈ P . (f, g : P → Q)

Thus, when equipped with a suitable order, the set Hom(P,Q) becomes an object of Pos.
Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure on the set

Hom(K,M), defined pointwise by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

Thus the category Mon also admits such “internal Homs”. The same thing works in the
category Group of groups and group homomophisms, where the set Hom(G,H) of all ho-
momorphisms between groups G and H can be given a pointwise group structure.

These examples suggest a general notion of an “internal Hom” in a category: an “object
of morphisms A→ B” which corresponds to the hom-set Hom(A,B). The other ingredient
needed for cartesian closure is an “evaluation” operation eval : BA×A→ B which evaluates
a morphism f ∈ BA at an argument a ∈ A to give a value eval ◦ ⟨f, a⟩ = f(a) ∈ B. This
is always going to be present as an operation on underlying sets, if we’re starting from
a set of functions Hom(A,B) between structured sets A and B, but even in that case it
also needs to be an actual morphism in the category. Finally, we need an operation of
“transposition”, taking a morphism f : C ×A→ B to one f̃ : C → AB. We shall see that
this in fact separates the previous two examples.
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14 Simple Type Theory

Definition 2.2.1. In a category C with binary products, an exponential (BA, ϵ) of objectsA
and B is an object BA together with a morphism ϵ : BA × A → B, called the evaluation
morphism, such that for every f : C×A→ B there exists a unique morphism f̃ : C → BA,
called the transpose1 of f , for which the following diagram commutes.

BA BA × A ϵ // B

C

f̃

OO

C × A

f̃ × 1A

OO

f

<<

Commutativity of the diagram of course means that ϵ ◦ (f̃ × 1A) = f .

Definition 2.2.1 is called the universal property of the exponential. It is just the category-
theoretic way of saying that a function f : C ×A→ B of two variables can be viewed as a
function f̃ : C → BA of one variable that maps z ∈ C to a function f̃ z = f⟨z,−⟩ : A→ B

that maps x ∈ A to f⟨z, x⟩. The relationship between f and f̃ is then the expected one:

(f̃ z)x = f⟨z, x⟩ .

That is all there is to it, except that by making the evaluation explicit, variables and
elements never need to be mentioned! The benefit of this is that the definition makes sense
also in categories whose objects are not sets, and whose morphisms are not functions—even
though some of the basic examples are of that sort.

In Pos the exponential QP of posets P and Q is the set of all monotone maps P → Q,
ordered pointwise, as above. The evaluation map ϵ : QP × P → Q is just the usual
evaluation of a function at an argument, which is easily seen to be monotone. The transpose
of a monotone map f : R × P → Q is the map f̃ : R → QP , defined by, (f̃ z)x = f⟨z, x⟩,
i.e. the transposed function, which is also easily seen to be monotone. We say that the
category Pos has all exponentials.

Definition 2.2.2. Suppose C has all finite products. An object A ∈ C is exponentiable
when the exponential BA exists for every B ∈ C (including an associated evaluation map
ϵ : BA × A → B). We say that C has exponentials if every object is exponentiable. A
cartesian closed category (ccc) is a category that has all finite products and exponentials.

Example 2.2.3. Consider again the example of the set Hom(M,N) of homomorphisms
between two monoids M,N , equipped with the pointwise monoid structure. Let 1 = {u}
be the terminal monoid, having only a unit element u. To be a monoid homomorphism,
the transpose h̃ : 1 → Hom(M,N) of a homomorphism h : 1 ×M → N would have to
take the unit element u ∈ 1 to the unit homomorphism u :M → N , which is the constant
function at the unit u ∈ N . Since 1×M ∼= M , that would mean that all homomorphisms
h : M → N would have the same transpose, namely h̃ = u : 1 → Hom(M,N). So Mon
cannot be cartesian closed. The same argument works in the category Group, and in many
related ones.

1Also, f is called the transpose of f̃ , so that f and f̃ are each other’s transpose.
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2.2 Cartesian closed categories 15

Exercise 2.2.4. Recall that monoids and groups can be regarded as (1-object) categories,
and then their homomorphisms are just functors. Thus we have full subcategories,

Group ↪→ Mon ↪→ Cat .

Is the category Cat of all (small) categories and functors cartesian closed? What about the
subcategory of all groupoids,

Grpd ↪→ Cat ,

defined as those categories in which every arrow is an iso?

Two characterizations of CCCs

Proposition 2.2.5. In a category C with binary products an object A is exponentiable if,
and only if, the functor

−× A : C → C
has a right adjoint

−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is (BA, ϵB), where
ϵB : BA × A → A is the counit of the adjunction at B. Indeed, the universal property of
the exponential is just the universal property of the counit ϵ : (−)A ⇒ 1C .

Conversely, suppose for every B there is an exponential (BA, ϵB). As the object part
of the right adjoint we then take BA. For the morphism part, given g : B → C, we can
define gA : BA → CA to be the transpose of g ◦ ϵB,

gA = (g ◦ ϵB)∼

as indicated below.

BA × A
ϵB //

gA × 1A
��

B

g

��
CA × A ϵC

// C

(2.5)

The counit ϵ : −A × A → 1C at B is then ϵB itself, and the naturality square for ϵ is then
exactly (2.5), i.e. the defining property of (f ◦ ϵB)∼:

ϵC ◦ (gA × 1A) = ϵC ◦ ((g ◦ ϵB)∼ × 1A) = g ◦ ϵB .

The universal property of the counit ϵ is precisely the universal property of the exponential
(BA, ϵB)

Note that because exponentials can be expressed as adjoints, they are determined
uniquely up to isomorphism. Moreover, the definition of a cartesian closed category can
then be phrased entirely in terms of adjoint functors: we just need to require the existence
of the terminal object, binary products, and exponentials.
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16 Simple Type Theory

Proposition 2.2.6. A category C is cartesian closed if, and only if, the following functors
all have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,
(−× A) : C → C . (A ∈ C)

Here !C is the unique functor from C to the terminal category 1 and ∆ is the diagonal
functor ∆A = ⟨A,A⟩, and the right adjoint of −× A is exponentiation by A.

Exercise 2.2.7. Show that being cartesian closed is a categorical property, in the sense
that it respects equivalence of categories: if C is cartesian closed and C ≃ D then D is also
cartesian closed.

Another consequence of the adjoint formulation is that it implies the possibility of a
purely equational specification (adjoint structure on a category is “algebraic”, in a sense
that can be made precise; see [?]). It follows that there is a equational formulation of the
definition of a cartesian closed category.

Proposition 2.2.8 (Equational version of CCC). A category C is cartesian closed if, and
only if, it has the following structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A × B for all A,B ∈ C together with morphisms π1 : A × B → A and
π2 : A × B → B, and for every pair of morphisms f : C → A, g : C → B a
morphism ⟨f, g⟩ : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism ϵ : BA × A → B, and a
morphism f̃ : C → BA for every morphism f : C × A→ B.

These new objects and morphisms are required to satisfy the following equations:

1. For every f : A→ 1,
f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π1 ◦ ⟨f, g⟩ = f , π2 ◦ ⟨f, g⟩ = g , ⟨π1 ◦ h, π2 ◦ h⟩ = h .

3. For all f : C × A→ B, g : C → BA,

ϵ ◦ (f̃ × 1A) = f , (ϵ ◦ (g × 1A))
∼ = g .

where for e : E → E ′ and f : F → F ′ we define

e× f := ⟨eπ1, fπ2⟩ : E × F → E ′ × F ′.

[DRAFT: February 20, 2025]



2.2 Cartesian closed categories 17

These equations ensure that certain diagrams commute and that the morphisms that are
required to exist are unique. For example, let us prove that (A × B, π1, π2) is the product
of A and B. For f : C → A and g : C → B we have the morphism ⟨f, g⟩ : C → A × B.
The equations

π1 ◦ ⟨f, g⟩ = f and π2 ◦ ⟨f, g⟩ = g

enforce the commutativity of the two triangles in the following diagram:

C

A A×B B

fg ⟨f,g⟩

π1 π2

Suppose h : C → A × B is another morphism such that f = π1 ◦ h and g = π2 ◦ h. Then
by the third equation for products we get

h = ⟨π1 ◦ h, π2 ◦ h⟩ = ⟨f, g⟩ ,

and so ⟨f, g⟩ is unique.

Exercise 2.2.9. Use the equational characterization of CCCs, Proposition 2.2.8, to show
that the category Pos of posets and monotone functions is cartesian closed, as claimed.
Also verify that that Mon is not. Which parts of the definition fail in Mon?

Exercise 2.2.10. Use the equational characterization of CCCs, Proposition 2.2.8, to show
that the product category Πi∈I Ci of any (set-indexed) family (Ci)i∈I of cartesian closed
categories Ci is cartesian closed. Is the same true for an arbitrary limit in Cat?

Some proper CCCs

As we have seen ??, a cartesian closed poset is a ∧-semilattice with exponentials p⇒ q, such
as a Heyting algebra, or a syntactic category arising from a positive propositional calculus.
We next review some important examples of non-poset cartesian closed categories, most
of which should be familiar.

Example 2.2.11. The first example is the category Set. We already know that the ter-
minal object is a singleton set and that binary products are cartesian products. The
exponential of X and Y in Set is just the set of all functions from X to Y ,

Y X =
{
f ⊆ X × Y

∣∣ ∀x : X . ∃! y : Y . ⟨x, y⟩ ∈ f
}
.

The evaluation morphism eval : Y X ×X → Y is the usual evaluation of a function at an
argument, i.e., eval⟨f, x⟩ is the unique y ∈ Y for which ⟨x, y⟩ ∈ f .
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18 Simple Type Theory

Example 2.2.12. The category Cat of all small categories is cartesian closed. The expo-
nential of small categories C and D is the category DC of functors, with natural transfor-
mations as arrows (see ??). Note that if D is a groupoid (all arrows are isos), then so is DC.
It follows that the category of groupoids is full (even as a 2-category) in Cat. Since limits
of groupoids in Cat are also groupoids, the inclusion of the full subcategory Grpd ↪→ Cat
preserves limits. It also preserves the CCC structure.

Example 2.2.13. The same reasoning as in the previous example shows that the full
subcategory Pos ↪→ Cat of all small posets and monotone maps is also cartesian closed,
and the (limit preserving) inclusion Pos ↪→ Cat also preserves exponentials. Note that the
(non-full) forgetful functor U : Pos → Set does not, and that U(QP ) ⊆ (UQ)UP is in
general a proper subset.

Exercise 2.2.14. Show that there is a full and faithful functor D : Set → Poset that
preserves finite limits as well as exponentials. Note the similarity to the example Grpd ↪→
Cat.

The foregoing examples are instances of the following general situation.

Proposition 2.2.15. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a left adjoint reflection L : E → S preserving finite products. Suppose moreover that for
any two objects A,B in S, the exponential iBiA is again in S. Then S has all exponentials,
and these are preserved by i.

Proof. By assumption, we have L ⊣ i with isomorphic counit LiS ∼= S for all S ∈ S.
Let us identify S with the subcategory of E that is its image under i : S ↪→ E . The
assumption that BA is again in S for all A,B ∈ S, along with the fullness of S in E , gives
the exponentials, and the closure of S under finite products in E ensures that the required
transposes will also be in S.

Alternately, for any A,B ∈ S set BA = L(iBiA). Then for any C ∈ S, we have natural
isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= E

(
iC, iL(iBiA)

)
∼= S

(
C,L(iBiA)

)
∼= S

(
C,BA

)
where in the fifth line we used the assumption that iBiA is again in S, in the form iBiA ∼= iE
for some E ∈ S, which is then necessarily L(iBiA) = LiE ∼= E.

A related general situation that covers some (but not all) of the above examples is this:
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2.2 Cartesian closed categories 19

Proposition 2.2.16. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a right adjoint reflection R : E → S. If i preserves finite products, then S also has all
exponentials, and these are computed first in E, and then reflected by R into S.

Proof. For any A,B ∈ S set BA = R(iBiA) as described. Now for any C ∈ S, we have
natural isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= S

(
C,R(iBiA)

)
∼= S

(
C,BA

)
.

An example of the foregoing is the inclusion of the opens into the powerset of points of
a space X,

OX ↪→ PX
This frame homomorphism is the inverse image of the one associated to the map |X| → X
of locales (or in this case, spaces), from the discrete space on the set of points of X.

Exercise 2.2.17. Which of the foregoing examples follows from which of the previous two
propositions?

Example 2.2.18. For any set X, the slice category Set/X is cartesian closed. The product
of f : A → X and g : B → X is the pullback A×X B → X, which can be constructed as
the set of pairs

A×X B → X = {⟨a, b⟩ | fa = gb} .
The exponential, however, is not simply the set

{h : A→ B | f = g ◦ h} ,

(what would the projection to X be?), but rather the set of all pairs

{⟨x, h : Ax → Bx⟩ | x ∈ X, f = g ◦ h} ,

where Ax = f−1{x} and Bx = g−1{x}, with the evident projection to X.

Exercise 2.2.19. Prove that Set/X is always cartesian closed. (Hint: Use the fact that
Set/X ≃ SetX , and the category of CCCs is closed under products of the underlying
categories.)

Lest it be thought that the foregoing example is typical, and every slice of a CCC is
again a CCC, one can consider the counterexample of Pos. By an argument like that in
[Pal03] for the catesian closed category Grpd of groupoids, the slice categories of Pos need
not be cartesian closed.
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Exercise 2.2.20. Check that the example given in [Pal03] also works (mutatis mutandis)
for Pos to show that Pos/X is not always cartesian closed.

Example 2.2.21. A presheaf category Ĉ is cartesian closed, provided the index category
C is small. To see what the exponential of presheaves P and Q ought to be, we can use
the Yoneda lemma. If QP exists, then by Yoneda and the adjunction (−× P ) ⊣ (−P ), we
would have, for all c ∈ C,

QP (c) ∼= Nat(yc,QP ) ∼= Nat(yc× P,Q) .

Because C is small Nat(yc× P,Q) is a set, so we can define QP to be the presheaf

QP (c) = Nat(yc× P,Q) .

(This is indeed contravariant in c !) The evaluation morphism E : QP × P → Q is the
natural transformation whose component at c is

Ec : Nat(yc× P,Q)× Pc→ Qc ,

Ec : ⟨η, x⟩ 7→ ηc⟨1c, x⟩ .
The transpose of a natural transformation ϕ : R × P → Q is the natural transformation
ϕ̃ : R → QP whose component at c is the function that maps z ∈ Rc to the natural
transformation ϕ̃cz : yc× P → Q, whose component at b ∈ C is

(ϕ̃cz)b : C(b, c)× Pb→ Qb ,

(ϕ̃cz)b : ⟨f, y⟩ 7→ ϕb⟨(Rf)z, y⟩ .
Exercise 2.2.22. Verify that the above definition of QP really gives an exponential of
presheaves P and Q.

It follows immediately that the category of graphs Graph is cartesian closed, because it
is the presheaf category Set·⇒·. The same is of course true for the “category of functions”,
i.e. the arrow category Set→, as well as the category of simplicial sets Set∆

op

from topology.

Exercise 2.2.23. This exercise is for those with some background in linear algebra. Let
Vec be the category of real vector spaces and linear maps between them. Given vector
spaces X and Y , the linear maps L(X, Y ) between them form a vector space. So define
L(X,−) : Vec → Vec to be the functor which maps a vector space Y to the vector space
L(X, Y ), and it maps a linear map f : Y → Z to the linear map L(X, f) : L(X, Y ) →
L(X,Z) defined by h 7→ f ◦ h. Show that L(X,−) has a left adjoint −⊗X, but also show
that this adjoint is not the binary product in Vec.

Later in this chapter, we will meet some further examples of CCCs with a more topo-
logical flavor:

• Etale spaces over a base space X. This category can be described as consisting of
local homeomorphisms f : Y → X and commutative triangles over X between such
maps. It is equivalent to the category Sh(X) of sheaves on X (Section 2.8).

• Sheaves for the “+-topology” on a small category C with (stable) sums A+B.

• Dana Scott’s category Equ of equilogical spaces (Section 2.8).
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2.3 Interpretation of the λ-calculus in a CCC 21

2.3 Interpretation of the λ-calculus in a CCC

We now consider semantic aspects of the λ-calculus and λ-theories. Suppose T is a λ-
theory and C is a cartesian closed category. An interpretation [[−]] of T in C is given by
the following data:

• For every basic type B in T an object [[B]] ∈ C. The interpretation is extended to all
types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

(For this purpose, we assume that a CCC structure on C has been chosen.)

• For every basic constant c of type C, a morphism [[c]] : 1 → [[C]].

The interpretation is then extended to all terms in context as follows.

• A context Γ = x1 : A1, · · · , xn : An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object,

[[·]] = 1 .

• A typing judgment
Γ | t : A

will be interpreted as a morphism

[[Γ | t : A]] : [[Γ]] → [[A]] .

The interpretation is defined inductively by the following rules:

• The i-th variable is interpreted as the i-th projection,

[[x0 : A0, . . . , xn : An | xi : Ai]] = πi : [[Γ]] → [[Ai]] .

• A basic constant c : C in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

• The interpretation of projections and pairs is as follows:

[[Γ | ⟨t, u⟩ : A×B]] = ⟨[[Γ | t : A]], [[Γ | u : B]]⟩ : [[Γ]] → [[A]]× [[B]]

[[Γ | fst t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]] → [[A]]

[[Γ | snd t : A]] = π2 ◦ [[Γ | t : A×B]] : [[Γ]] → [[B]] .
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• The interpretation of application and λ-abstraction is as follows:

[[Γ | t u : B]] = ϵ ◦ ⟨[[Γ | t : A→ B]], [[Γ | u : A]]⟩ : [[Γ]] → [[B]]

[[Γ | λx : A . t : A→ B]] = ([[Γ, x : A | t : B]])∼ : [[Γ]] → [[B]][[A]]

where ϵ : [[A→ B]]× [[A]] → [[B]] is the evaluation morphism for [[B]][[A]] and

([[Γ, x : A | t : B]])∼

is the transpose of the morphism

[[Γ, x : A | t : B]] : [[Γ]]× [[A]] → [[B]] .

Definition 2.3.1. An interpretation of a λ-theory T is a model of T if it satisfies all the
axioms of T, in the sense that for every axiom Γ | u = v : A of T, the interpretations of u
and v coincide as arrows in C,

[[Γ | u : A]] = [[Γ | v : A]] : [[Γ]] −→ [[A]].

It follows that all equations that are provable in T are also satisfied in any model, by
the following basic fact.

Proposition 2.3.2 (Soundness). If T is a λ-theory and [[−]] is a model of T in a cartesian
closed category C, then for every equation in context Γ | s = t : C that is provable from the
axioms of T, we have

[[Γ | s : C]] = [[Γ | t : C]] : [[Γ]] −→ [[C]] .

Briefly, for all T-models [[−]],

T ⊢ (Γ | s = t : C) implies [[−]] |= (Γ | s = t : C) .

The proof is a straightforward induction, first on the typing judgements for the inter-
pretation, and then on the equational rules for the equations. If we stop after the first
step, we can consider just the following notion of inhabitation.

Remark 2.3.3 (Inhabitation). There is another notion of “provability” for the λ-calculus,
related to the Curry-Howard correspondence of section ??, relating λ-calculus to the proof
theory of propositional logic. If we regard types as “propositions” rather than generalized
algebraic structures, and terms as “proofs” rather than operations in such structures, then
it is more natural to ask whether there even is a term a : A of some type, than whether
two terms of the same type are equal s = t : A. Of course, this only makes sense when
A is considered in the empty context · ⊢ A, rather than Γ ⊢ A for non-empty Γ (consider
the case where Γ = x : A, . . . ). We say that a type A is inhabited (by a closed term) when
there is some ⊢ a : A, and regard an inhabited type A as one that is provable. There is
then a different notion of soundness related to this notion of provability.
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Proposition 2.3.4 (Inhabitation soundness). If T is a λ-theory and [[−]] a model of T in
a cartesian closed category C, then for every type A that is inhabited in T, there is a point
1 → [[A]] in C. Thus for all T-models [[−]],

⊢ a : A implies there is a point 1 → [[A]] .

This follows immediately from the fact that [[·]] = 1 for the empty context; for then the
interpretation of any ⊢ a : A is the point

[[a]] : 1 → [[A]] .

Example 2.3.5. 1. A model of an algebraic theory A (extended to a λ-theory Aλ as in
Example 2.1.3) when taken in a CCC C, is just a model of the algebraic theory A in
the underlying finite product category |C|× of C. An important difference, however,
is that in defining the category of models

ModFP(A, |C|×)

we can take all homomorphisms of models of A as arrows, while the arrows in the
category

Modλ(Aλ, C)
of λ-models are best taken to be isomorphisms, for which one has an obvious way to
deal with the contravariance of the function type [[A→ B]] = [[B]][[A]] (this is discussed
in more detail in the next section).

A point to note is that such a model is entirely determined by the interpretation of
the basic types and terms – i.e. the algebra – and the rest of the interpretation is
“standard” in the sense that [[A→ B]] = [[B]][[A]]. So in particular, our models are not
the “Henkin models” that one sometimes sees in the literature.

2. A model of the theory of a reflexive type, Example 2.1.7, in Set must be the one-
element set 1 = {⋆} (prove this!). Fortunately, the exponentials in categories of
presheaves are not computed pointwise; otherwise it would follow that this theory
has no non-trivial presheaf models at all! (And then, by Theorem 2.6.6, that the
theory itself is degenerate, in the sense that all equations are provable.) That there
are non-trivial models is an important fact in the semantics of programming languages
and the subject called domain theory (see [Sco80b]).

3. A (positive) propositional theory T may be regarded as a λ-theory, and a model in
a cartesian closed poset P is then the same thing as before: an interpretation of the
atomic propositions p1, p2, ... of T as elements [[p1]], [[p2]], ... ∈ P , such that the axioms
ϕ1, ϕ2, ... of T are all sent to 1 ∈ P by the extension of [[−]] to all formulas,

1 = [[ϕ1]] = [[ϕ2]] = · · · ∈ P .

Exercise 2.3.6. How are models of a (not necessarily propositional) λ-theory T in Carte-
sian closed posets related to models in arbitrary Cartesian closed categories? (Hint: Con-
sider the inclusion CCPos ↪→ CCC. Does it have any adjoints?)
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2.4 Functorial semantics

In Chapter ?? we saw how an algebraic theory gives rise to a category with finite products,
and its algebras, or models, then correspond to functors preserving finite products on
the theory-category. We then arranged the traditional relationship between syntax and
semantics into a framework that we called functorial semantics. In Chapter ??, we did the
same for propositional logic. As a common generalization of both, the same framework of
functorial semantics can be applied to λ-theories and their models in CCCs. The first step
is to build the classifying category CT from a λ-theory T. This is again constructed from
the theory itself as a “syntactic” category, as follows:

Definition 2.4.1. For any λ-theory T, the syntactic category CT is determined as follows.

• The objects of CT are the types of T.

• Arrows A→ B are terms in context (of length one):

[x : A | t : B] ,

where two such terms x : A | s : B and x : A | s′ : B are to represent the same
morphism when T proves x : A | s = s′ : B. Note that longer contexts are not
required, because we have product types A1 × · · · × An.

• Composition of the terms

[x : A | s : B] : A −→ B and [y : B | t : C] : B −→ C

is the term obtained by substituting s for y in t:

[x : A | t[s/y] : C] : A −→ C .

• The identity morphism on A is the term [x : A | x : A] (up to “α-renaming” of
variables).

Proposition 2.4.2. The syntactic category CT built from a λ-theory is cartesian closed.

Proof. We omit the equivalence classes brackets [x : A | t : B] and simply treat equivalent
terms as equal.

• The terminal object is the unit type 1. For any type A the unique morphism !A :
A→ 1 is the term

x : A | ∗ : 1 .

This morphism is indeed unique, because we always have the equation

Γ | t = ∗ : 1

is an axiom for the terms of unit type 1.
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• The product of objects A and B is the type A × B. The first and the second
projections are the terms

z : A×B | fst z : A , z : A×B | snd z : B .

Given morphisms

z : C | a : A , z : C | b : B ,

the term
z : C | ⟨a, b⟩ : A×B

represents the unique morphism satisfying

z : C | fst ⟨a, b⟩ = a : A , z : C | snd ⟨a, b⟩ = b : B .

Indeed, if fst t = a and snd t = b for some t, then we have

t = ⟨fst t, snd t⟩ = ⟨a, b⟩ .

as required.

• The exponential of objects A and B is the type A→ B with the evaluation morphism

u : (A→ B)× A
∣∣ (fstu)(sndu) : B .

The transpose of a morphism w : C × A | t : B is the term

z : C | λx : A . (t[⟨z, x⟩/w]) : A→ B .

Showing that this is the transpose of t requires showing, in context w : C × A,

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t : B

Indeed, we have:

(λx : A . (t[⟨fstw, x⟩/w]))(sndw) = t[⟨fstw, sndw⟩/w] = t[w/w] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique, because
any morphism z : C | s : A→ B that satisfies

(s[fstw/z])(sndw) = t

is equal to λx : A . (t[⟨z, x⟩/w]), because then

t[⟨z, x⟩/w] = (s[fstw/z])(sndw)[⟨z, x⟩/w] =
(s[fst ⟨z, x⟩/z])(snd ⟨z, x⟩) = (s[z/z])x = s x .

Therefore,
λx : A . (t[⟨z, x⟩/w]) = λx : A . (s x) = s ,

as claimed.
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The syntactic category CT allows us to replace a T-model [[−]] in a CCC C with a functor
M : CT → C. More precisely, we have the following.

Lemma 2.4.3. A model [[−]] of a λ-theory T in a cartesian closed category C determines
a cartesian closed functor M : CT → C with

M(B) = [[B]], M(c) = [[c]] : 1 → [[C]] =M(C) , (2.6)

for all basic types B and basic constants c : C. Moreover, M is unique up to a unique
isomorphism of CCC functors, in the sense that given another model N satisfying (2.6),
there is a unique natural iso M ∼= N , determined inductively by the comparison maps
M(1) ∼= N(1),

M(A×B) ∼= MA×MB ∼= NA×NB ∼= N(A×B) ,

and similarly for M(BA).

Proof. Straightforward structural induction on types and terms with (2.6) as the base case,
and using soundness, Proposition 2.3.2, for well-definedness on equivalence classes. Note
that the uniqueness up to natural isomorphism uses the fact that all of the morphisms of
CT are given by terms.

We then also have the expected functorial semantics theorem:

Theorem 2.4.4. For any λ-theory T, the syntactic category CT classifies T-models, in the
sense that for any cartesian closed category C there is an equivalence of categories

Modλ
(
T, C

)
≃ CCC

(
CT , C

)
, (2.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of CCC functors.

Proof. The only thing remaining to show is that, given a model [[−]] in a CCC C and a
CCC functor f : C → D, there is an induced model [[−]]f in D, given by the interpretation
[[A]]f = f [[A]]. This is again straightforward, just as for algebraic theories.

Remark 2.4.5. As mentioned in Example 2.3.5(1) the categories involved in the equiva-
lence (2.7) are groupoids, in which every arrow is iso. The reason we have defined them as
such is that the contravariant argument A in the function type A → B prevents us from
specifying a non-iso homomorphism of models h :M → N by the obvious recursion on the
type structure.

In more detail, given hA : [[A]]M → [[A]]N and hB : [[B]]M → [[B]]N , there is no obvious
candidate for a map

hA→B : [[A→ B]]M −→ [[A→ B]]N ,
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when all we have are the following induced maps:

[[A→ B]]M = // ([[B]]M)[[A]]M
(hB)

[[A]]M

// ([[B]]N)[[A]]M

([[B]]M)[[A]]N

([[B]]M)hA

OO

(hB)
[[A]]N

// ([[B]]N)[[A]]N

([[B]]N)hA

OO

=
// [[A→ B]]N

One solution is therefore to take isos hA : [[A]]M ∼= [[A]]N and hB : [[B]]M ∼= [[B]]N and then
use the inverses h−1

A : [[A]]N → [[A]]M in the contravariant positions, in order to get things
to line up:

[[A→ B]]M = // ([[B]]M)[[A]]M

([[B]]M)h
−1
A ∼=
��

(hB)
[[A]]M

// ([[B]]N)[[A]]M

([[B]]N)h
−1
A∼=

��

([[B]]M)[[A]]N

(hB)
[[A]]N

// ([[B]]N)[[A]]N

=
// [[A→ B]]N

This suffices to at least get a category of models Modλ
(
T, C

)
, rather than just as set, which

is enough structure to determine the equivalence (2.7). Note that for an algebraic theory A,
this category of λ-models in Set, say, Modλ(Aλ) is still the (wide but non-full) subcategory
of isomorphisms of conventional (algebraic) A-models

Modλ(Aλ) ↣ Mod(A) .

We shall consider other solutions to the problem of contravariance below.

We can now proceed just as we did in the case of algebraic theories and prove that the
semantics of λ-theories in cartesian closed categories is complete, in virtue of the syntactic
construction of the classifying category CT. Specifically, a λ-theory T has a canonical
interpretation [−] in the syntactic category CT, which interprets a basic type A as itself, and
a basic constant c of type A as the morphism [x : 1 | c : A]. The canonical interpretation
is a model of T, also known as the syntactic model, in virtue of the definition of the
equivalence relation [−] on terms. In fact, it is a logically generic model of T, because by
the construction of CT, for any terms Γ | u : A and Γ | t : A, we have

T ⊢ (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]
⇐⇒ [−] |= Γ | u = t : A .

For the record, we therefore have now shown:
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Proposition 2.4.6. For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (2.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by CCC functors (Proposition 2.3.2).

Corollary 2.4.7 (Completeness). For any λ-theory T,

T ⊢ (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every CCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

2.5 The internal language of a CCC

In the case of algebraic theories, we were able to recover the syntactic category from the
semantics by taking certain Set-valued functors on the category of models in Set. This
then extended to a duality between the category of all algebraic theories and that of all
“algebraic categories”, which we defined as the categories of Set-valued models of some
algebraic theory (and also characterized abstractly). In the (classical) propositional case,
this syntax-semantics duality was seen to be exactly the classical Stone duality between the
categories of Boolean algebras and of Stone topological spaces. That sort of duality theory
seems to be more difficult to formulate for λ-theories, however, now that we have taken the
category of models to be just a groupoid (but see Remark ??). Nonetheless, there is still a
correspondence between λ-theories and CCCs, which we get by organizing the former into
a category, which is then equivalent to that of the latter. But note that this is analogous to
the equivalence between algebraic theories, regarded syntactically, and regarded as finite
product categories—rather than to the duality between syntax and semantics.

In order to define the equivalence in question, we first need a suitable notion of mor-
phism of theories. A translation τ : S → T of a λ-theory S into a λ-theory T is given by
the following data:

1. For each basic type A in S a type τA in T. The translation is then extended to all
types by the rules

τ1 = 1 , τ(A×B) = τA× τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type C in S a term τc of type τC in T. The translation
of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ⟨t, u⟩ = ⟨τt, τu⟩ , τ(λx : A . t) = λx : τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .
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A context Γ = x1 : A1, . . . , xn : An is translated by τ to the context

τΓ = x1 : τA1, . . . , xn : τAn .

Furthermore, a translation is required to preserve the axioms of S: if Γ | t = u : A is an
axiom of S then T proves τΓ | τt = τu : τA. It then follows that all equations proved by S
are translated to valid equations in T.

A moment’s consideration shows that a translation τ : S → T is the same thing as a
model of S in CT, despite being specified entirely syntactically. More precisely, λ-theories
and translations between them clearly form a category: translations compose as functions,
therefore composition is associative. The identity translation ιT : T → T translates every
type to itself and every constant to itself.

Definition 2.5.1. Let λThr be the category whose objects are λ-theories and morphisms
are translations between them.

In this way, we obtain an isomorphism of sets,

HomλThr(S,T) ∼= Modλ(S, CT) , (2.8)

which is not only natural in T, but also in the theory S, as can be seen by considering the
canonical interpretation of S in CS induced by the identity translation ιS : S → S. We can
enrich this to an isomorphism of groupoids by defining syntactic isomorphisms between
translations in HomλThr(S,T) in a fairly obvious way so that they correspond bijectively to
S-model homomorphisms inModλ(S, CT), which in turn correspond to natural isomorphisms
between CCC functors in HomCCC(CS, CT), by Theorem 2.4.4,

HomλThr(S,T) ∼= Modλ(S, CT) ≃ HomCCC(CS, CT) .

The equivalence HomλThr(S,T) ≃ HomCCC(CS, CT) suggests that the functor C(−) : λThr →
CCC participates in an equivalence of categories,

λThr ≃ CCC ,

between λ-theories and cartesian closed categories.
Indeed, let C be a small cartesian closed category. There is a λ-theory L(C) correspond-

ing to C, called the internal language of C, and defined as follows:

1. For every object A ∈ C there is a basic type ⌜A⌝.

2. For every morphism f : A → B there is a basic constant ⌜f⌝ whose type is ⌜A⌝ →
⌜B⌝.

3. For every A ∈ C there is an axiom

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝ .
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4. For all morphisms f : A→ B, g : B → C, and h : A→ C such that h = g ◦ f , there
is an axiom

x : ⌜A⌝ | ⌜h⌝x = ⌜g⌝ (⌜f⌝x) : ⌜C⌝ .

5. There is a constant
T : 1 → ⌜1⌝ ,

and for all A,B ∈ C there are constants

PA,B : ⌜A⌝× ⌜B⌝ → ⌜A×B⌝ , EA,B : (⌜A⌝ → ⌜B⌝) → ⌜BA⌝ .

They satisfy the following axioms:

u : ⌜1⌝ | T ∗ = u : ⌜1⌝

z : ⌜A×B⌝ | PA,B⟨⌜π1⌝z, ⌜π2⌝z⟩ = z : ⌜A×B⌝

w : ⌜A⌝× ⌜B⌝ | ⟨⌜π1⌝(PA,Bw), ⌜π2⌝(PA,Bw)⟩ = w : ⌜A⌝× ⌜B⌝

f : ⌜BA⌝ | EA,B(λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨f, x⟩))) = f : ⌜BA⌝

f : ⌜A⌝ → ⌜B⌝ | λx : ⌜A⌝ . (⌜evA,B⌝(PA,B⟨(EA,Bf), x⟩)) = f : ⌜A⌝ → ⌜B⌝

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure the
isomorphisms ⌜1⌝ ∼= 1, ⌜A×B⌝ ∼= ⌜A⌝× ⌜B⌝, and ⌜BA⌝ ∼= ⌜A⌝ → ⌜B⌝. Types A and B
are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that S proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories S and T is a pair of translations

S
τ

** T
σ

jj

such that, for any type A in S and any type B in T,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : CCC → λThr ,

where CCC is the category of small cartesian closed categories and functors between them
that preserve finite products and exponentials. Such functors are also called cartesian
closed functors or ccc functors. If F : C → D is a cartesian closed functor then L(F ) :
L(C) → L(D) is the translation given by:
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1. A basic type ⌜A⌝ is translated to ⌜FA⌝.

2. A basic constant ⌜f⌝ is translated to ⌜Ff⌝.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and EFA,FB, respec-
tively.

We now have a functor L : CCC → λThr. How about the other direction? We al-
ready have the construction of the syntactic category, which maps a λ-theory S to a small
cartesian closed category CS. This extends to a functor

C : λThr → CCC ,

because a translation τ : S → T induces a functor Cτ : CS → CT in an obvious way: a basic
type A ∈ CS is mapped to the object τA ∈ CT, and a basic constant x : 1 | c : A is mapped
to the morphism x : 1 | τc : A. The rest of Cτ is defined inductively on the structure of
types and terms.

Theorem 2.5.2. The functors L : CCC → λThr and C : λThr → CCC constitute an
equivalence of categories “up to equivalence” (a biequivalence of 2-categories). This means
that for any C ∈ CCC there is an equivalence of categories

C ≃ CL(C) ,

and for any S ∈ λThr there is an equivalence of theories

S ≃ L(CS) .

Proof. For a small cartesian closed category C, consider the functor ηC : C → CL(C), defined
for an object A ∈ C and f : A→ B in C by

ηCA = ⌜A⌝ , ηCf = (x : ⌜A⌝ | ⌜f⌝x : ⌜B⌝) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : ⌜A⌝ | ⌜1A⌝x = x : ⌜A⌝

and for all f : A→ B and g : B → C,

x : ⌜A⌝ | ⌜g ◦ f⌝x = ⌜g⌝(⌜f⌝x) : ⌜C⌝ .

To see that ηC is an equivalence of categories, it suffices to show that for every object
X ∈ CL(C) there exists an object θCX ∈ C such that ηC(θCX) ∼= X. The choice map θC is
defined inductively by

θC1 = 1 , θC⌜A⌝ = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)
θCY .
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We skip the verification that ηC(θCX) ∼= X. In fact, θC can be extended to a functor
θC : CL(C) → C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1CL(C) .

Given a λ-theory S, we define a translation τS : S → L(CS). For a basic type A let

τSA = ⌜A⌝ .

The translation τSc of a basic constant c of type A is

τSc = ⌜x : 1 | c : τSA⌝ .

In the other direction we define a translaton σS : L(CS) → S as follows. If ⌜A⌝ is a basic
type in L(CS) then

σS ⌜A⌝ = A ,

and if ⌜x : A | t : B⌝ is a basic constant of type ⌜A⌝ → ⌜B⌝ then

σS ⌜x : A | t : B⌝ = λx : A . t .

The basic constants T, PA,B and EA,B are translated by σS into

σS T = λx : 1 . x ,

σS PA,B = λp : A×B . p ,

σS EA,B = λf : A→ B . f .

If A is a type in S then σS(τSA) = A. For the other direction, we would like to show, for
any type X in L(CS), that τS(σSX) ∼= X. We prove this by induction on the structure of
type X:

1. If X = 1 then τS(σS1) = 1.

2. If X = ⌜A⌝ is a basic type then A is a type in S. We proceed by induction on the
structure of A:

(a) If A = 1 then τS(σS⌜1⌝) = 1. The types 1 and ⌜1⌝ are isomorphic via the
constant T : 1 → ⌜1⌝.

(b) If A is a basic type then τS(σS⌜A⌝) = ⌜A⌝.

(c) If A = B × C then τS(σS⌜B × C⌝) = ⌜B⌝ × ⌜C⌝. But we know ⌜B⌝ × ⌜C⌝ ∼=
⌜B × C⌝ via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τS(σS(Y × Z)) = τS(σSY ) × τS(σSZ). By induction hypothesis,
τS(σSY ) ∼= Y and τS(σSZ) ∼= Z, from which we easily obtain

τS(σSY )× τS(σSZ) ∼= Y × Z .

4. The case X = Y → Z is similar.
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Composing the isomorphism 2.8 with the equivalence 2.7 we can formulate the foregoing
Theorem 2.5.2 as an adjoint equivalence.

Corollary 2.5.3. There is a biequivalence between the categories λThr of λ-theories and
translations between them (and isos thereof), and the category CCC of cartesian closed
categories and CCC functors (and natural isos),

HomλThr

(
T,LC

) ∼= Modλ
(
T, C

)
,

≃ HomCCC

(
CT , C

)
.

This is mediated by an adjunction,

CCC
L ,,

λThr
C

ll

with C ⊣ L, between the syntactic category functor C and the internal language functor L.

Exercise 2.5.4. In the proof of Theorem 2.5.2 we defined, for each C ∈ CCC, a functor
ηC : C → CL(C). Verify that this determines a natural transformation η : 1CCC =⇒ C ◦ L
which is an equivalence of categories. What about the translation ϵT : T → L(CT)—is that
an isomorphism?

See the book [LS88] for another approach to the biequivalence of Corollary 2.5.3, which
turns it into an equivalence of categories by fixing the CCC structure and requiring it to
be preserved strictly.

Lawvere’s fixed point theorem

As an application of the internal language of a CCC, we can use the λ-calculus to give a
neat proof of a fixed point theorem for CCCs due to Lawvere [Law69]. Andrej Bauer has
called Lawvere’s theorem the “quintessential diagonal argument” [Baub].

Theorem 2.5.5 (Lawvere). In any cartesian closed category, if a map e : A → BA is a
pointwise surjection, then every map f : B → B has a fixed point.

By “pointwise surjection” we mean a map that induces a surjection from points 1 → A to
points 1 → BA by composition.

Proof. Given f : B → B, consider the map λx : A.f(ex)x : 1 → BA. Since e is pointwise
surjective, there is a point a : 1 → A such that ea = λx : A.f(ex)x. Thus

(ea)a = (λx : A.f(ex)x)a = f(ea)a ,

so (ea)a : 1 → B is a fixed point of f : B → B.
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Among the consequences of this theorem, as stated in [Law69], are: Cantor’s theorem
(Corollary 1.2); Gödel’s incompleteness theorem (Theorem 3.3); and Tarski’s indefinability
of truth (Theorem 3.2). These are all derived from the contrapositive form of Lawvere’s
fixed point theorem 2.5.5: if a certain object B has an endomap with no fixed points,
then for no A can there be a pointwise surjection A→ BA. To infer Cantor’s theorem, for
instance: in Set the contrapositive form of Theorem 2.5.5 implies that there is no pointwise
surjection from a set A to its powerset PA ∼= 2A, because the “negation” map ¬ : 2 → 2
has no fixed points. (The same argument works in any topos, see [Baua].)

Lawvere’s original version is a bit more general, but even in the present form it is clear
that Lawvere’s fixed point theorem is the essence of many familiar diagonal arguments.

2.6 Embedding theorems and completeness

We have considered the λ-calculus as a common generalization of both propositional logic,
modeled by poset CCCs such as Boolean and Heyting algebras, and equational logic,
modeled by finite product categories. Accordingly, there are then two different notions
of “provability”, as discussed in Remark 2.3.3; namely, the derivability of a closed term
⊢ a : A, and the derivability of an equation between two (not necessarily closed) terms of
the same type Γ ⊢ s = t : A. With respect to the semantics, there are then two different
corresponding notions of soundness and completeness: for “inhabitation” of types, and for
equality of terms. We consider special cases of these notions in more detail below.

Conservativity

With regard to the former notion, inhabitation, one can consider the question of how
it compares with simple provability in propositional logic: e.g. a positive propositional
formula ϕ in the variables p1, p2, ..., pn obviously determines a type Φ in the corresponding
λ-theory T(X1, X2, ..., Xn) over n basic type symbols. What is the relationship between
provability in positive propositional logic, PPL ⊢ ϕ, and inhabitation in the associated
λ-theory, T(X1, X2, ..., Xn) ⊢ t : Φ? Let us call this the question of conservativity of λ-
calculus over PPL. According to the basic idea of the Curry-Howard correspondence from
Section ??, the λ-calculus is essentially the “proof theory of PPL”. So one should expect
that starting from an inhabited type Φ, a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ
should result in a corresponding proof of ϕ in PPL just by “rubbing out the proof terms”.
Conversely, given a provable formula ⊢ ϕ, one should be able to annotate a proof of it in
PPL to obtain a derivation of a term T(X1, X2, ..., Xn) ⊢ t : Φ in the λ-calculus (although
perhaps not the same term that one started with, if the proof was obtained from rubbing
out a term).

We can make this idea precise semantically as follows. Write |C| for the poset reflection
of a category C, that is, the left adjoint to the inclusion i : Pos ↪→ Cat, and let η : C → |C|
be the unit of the adjunction.
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Lemma 2.6.1. If C is cartesian closed, then so is |C|, and η : C → |C| preserves the CCC
structure.

Proof. Exercise!

Exercise 2.6.2. Prove Lemma 2.6.1.

Corollary 2.6.3. The syntactic category PPC(p1, p2, ..., pn) of the positive propositional
calculus on n propositional variables is the poset reflection of the syntactic category CT(X1,X2,...,Xn)

of the λ-theory T(X1, X2, ..., Xn),

|CT(X1,X2,...,Xn)| ∼= PPC(p1, p2, ..., pn) .

Proof. We already know that CT(X1,X2,...,Xn) is the free cartesian closed category on n gener-
ating objects, and that PPC(p1, p2, ..., pn) is the free cartesian closed poset on n generating
elements. From the universal property of CT(X1,X2,...,Xn), we get a CCC map

CT(X1,X2,...,Xn) −→ PPC(p1, p2, ..., pn)

taking generators to generators, and it extends along the quotient map to |CT(X1,X2,...,Xn)|
by the universal property of the poset reflection. Thus it suffices to show that the quotient
map preserves, and indeed creates, the CCC structure on |CT(X1,X2,...,Xn)|. But that follows
from Lemma 2.6.1.

Remark 2.6.4. Corollary 2.6.3 can be extended to other systems of type theory and logic,
with further operations such as CCCs with sums 0, A+B (“bicartesian closed categories”),
and the full intuitionistic propositional calculus IPC with the logical operations ⊥ and p∨q.
We leave this as a topic for the interested student.

Completeness

As was the case for equational theories and propositional logic, the fact that there is
a generic model (Proposition 2.4.6) allows the general completeness theorem stated in
Corollary 2.4.7 to be specialized to various classes of special models, via embedding (or
“representation”) theorems, this time for CCCs, rather than for finite product categories or
Boolean/Heyting algebras. We shall consider three such cases: “variable” models, Kripke
models, and topological models. In each case, an “embedding theorem” of the form:

Every CCC embeds into one of the special form X .

gives rise to a completeness theorem of the form:

For all λ-theories T, if 1 → [[A]]M in all T-models M in all X , then T ⊢ a : A,

and if [[a]]M = [[b]]M : 1 → [[A]] in all T-models M in all X , then T ⊢ a = b : A.

This of course follows the same pattern that we saw for the simpler “proof relevant” case
of equational (i.e. finite product) theories, and the even simpler “proof irrelevant” case
of propositional logic, but now the proofs of some of the embedding theorems for CCCs
require more sophisticated methods.
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Variable models

By a variable model of the λ-calculus we mean one in a CCC of the form Ĉ = SetC
op

, i.e.
presheaves on a (small) “index category” C. We regard such a model as “varying over C”,
just as we saw earlier that a presheaf of groups on e.g. the simplex category ∆ may be seen
both as a simplicial group—a simplicial object in the category of groups—and as a group
object in the category Set∆

op

of simplicial sets.

The basic embedding theorem that we shall use in specializing Proposition 2.4.6 to
such variable models is the following, which is one of the fundamental facts of categorical
semantics.

Lemma 2.6.5. For any small cartesian closed category C, the Yoneda embedding

y : C ↪→ SetC
op

preserves the cartesian closed structure.

This is of course the “categorified” analogue of Lemma ??, which we used for the Kripke
completeness of the positive propositional calculus PPC.

Proof. We can just evaluate yA(X) = C(X,A). It is clear that y1(X) = C(X, 1) ∼= 1
naturally in X, and that y(A×B)(X) = C(X,A × B) ∼= C(X,A) × C(X,B) ∼= (yA ×
yB)(X) for all A,B,X, naturally in all three arguments. For BA ∈ C, we then have

y(BA)(X) = C(X,BA) ∼= C(X × A,B) ∼= Ĉ(y(X × A), yB) ∼= Ĉ(yX × yA, yB),

since y is full and faithful and, as we just showed, preserves ×. But now recall that the
exponential QP of presheaves P,Q is defined at X by the specification

QP (X) = Ĉ(yX × P,Q) .

So, continuing where we left off, Ĉ(yX × yA, yB) = yByA(X), and we’re done.

For an early version of the following theorem (and much more), see the nice paper
[Sco80b] by Dana Scott.

Theorem 2.6.6. For any λ-theory T, we have the following:

(i) A type A is inhabited,

T ⊢ a : A

if, and only if, for every a small category C, in every T-model [[−]] in presheaves Ĉ,
there is a point

1 → [[A]] .
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(ii) For any terms Γ | s, t : A,
T ⊢ (Γ | s = t : A)

if, and only if,

[[Γ ⊢ s : A]] = [[Γ ⊢ t : A]] : [[Γ]] −→ [[A]]

for every presheaf model.

Proof. We simply specialize the general completeness statement of Corollary 2.4.7 to CCCs
of the form Ĉ using Lemma 2.6.5, together with the fact that the Yoneda embedding is
full (and therefore reflects inhabitation) and faithful (and therefore reflects satisfaction of
equations).

Exercise 2.6.7. Show that not every presheaf topos SetC
op

admits a CCC embedding into
a category of the form Set/X for a set X (you may assume the fact that the theory of a
reflexive type (Example 2.1.7), is not trivial).

2.7 Kripke models

By a Kripke model of (a theory T in) the λ-calculus, we mean a model [[−]] in the sense of
Definition 2.3.1 in a presheaf CCC of the form SetK for a poset K, i.e. a variable model
in the sense of the previous section, where the domain of variation is just a poset, rather
than a proper category. As with Kirpke models of propositional logic, we can regard such
a model as varying through (branching) time, over a causally ordered state space, or some
other (partially-)ordered parameter space. Note that we use “covariant presheaves”, i.e.
functors K → Set, to model such variable sets, as is more customary in Kripke semantics.
By Theorem 2.4.4, such a model (K, [[−]]) is essentially the same thing as a CCC functor
M : CT → SetK , taking values in “variable sets”. Regarding the λ-calculus as the proof
theory of the propositional calculus via the Curry-Howard correspondence (Section ??), it is
perhaps not surprising that it should be (inhabitation) complete with respect to such Kripke
models, in light of Theorem ??. Completeness with respect to equations between terms is
entirely another matter, though; while true, the proof is far from a simple generalization of
other known results. It can be seen as a verification that the usual notion of βη-equivalence
is the “right” notion of equality for proofs.

Example 2.7.1 (Algebraic theories). Before considering such questions, however, let us
first spell out explicitly what such a Kripke model looks like for the simple example of a
theory T of an object with a distinguished element, and a commutative binary operation,

T =
(
B, u : B, ∗ : B× B → B, x ∗ y = y ∗ x

)
.

There is one basic type symbol B, a constant u : B, a binary operation symbol ∗ : B×B → B,
and a single equation x, y : B |x ∗ y = y ∗ x : B.
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Let K be a poset with ordering relation j ≤ k for j, k ∈ K. Unwinding the general
definition for this special case, a Kripke model M of T over K then consists, first, of a
family of sets (Mk)k∈K , equipped with functions

mj,k :Mj →Mk (for all j ≤ k ∈ K) ,

satisfying the “compatibility conditions”:

mk,k = 1Mk
, mj,k ◦mi,j = mi,k (for all j ≤ k ∈ K) .

This is of course exactly a functorM : K → Set, as the interpretationM = [[B]] of the basic
type symbol B. Such a variable setM may be thought of as a “set that is changing through
time”, in that its elements mj ∈ Mj develop and change at different stages j ≤ k ∈ K.
Note that, while new elements may appear at later stages, and distinct elements may
become equal, once present, an element never vanishes, nor do elements ever split apart,
because the functions mj,k :Mj →Mk are of course single-valued.

Next, for each k ∈ K we have an element

uk :Mk ,

and these should satisfy

mj,k(uj) = uk (for all i ≤ j ≤ k ∈ K) .

That is to say, we have an element or “point” u : 1 →M of M as a “variable set” in SetK .
Finally, for all k ∈ K we need functions

sk :Mk ×Mk →Mk

satisfying

mj,k

(
sj(x, y)

)
= sk

(
mj,k(x),mj,k(y)

)
(for all j ≤ k ∈ K and x, y ∈Mj) .

This is of course just a natural transformation s : M ×M → M , as the interpretation
s = [[∗]] of the operation symbol ∗ : B × B → B. The idea is that the ∗-product of two
elements changes along with those elements, which one sees more clearly by writing ∗ for
s:

mj,k(x∗jy) = mj,k(x)∗kmj,k(y) (for all j ≤ k ∈ K and x, y ∈Mj) .

In other word, it doesn’t matter “when” one takes the ∗-product.
Finally, the interpretation (M,u, s) = [[B, u, ∗]] should satisfy the equation x, y : B |x ∗

y = y ∗ x : B, meaning that

sk(x, y) = sk(y, x) (for all k ∈ K) .

This is because two natural transformations are equal just if all of their components are
equal. Thus, in sum, a Kripke model of this theory T is just a model of the underlying
algebraic theory in the functor category SetK , which is of course the same thing as a functor
from K to the usual category of T-models in Set,

ModT(Set
K) = ModT(Set)

K .
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Example 2.7.2 (Higher-order theories). A theory involving a “higher-order” operation,
such as the section s : (D → D) → D in (the theory of) a reflexive type (Example 2.1.7)
is no more “non-standard” than an algebraic one, once we recall how function types are
interpreted, namely not pointwise. Let D = [[D]] be the interpretation of the basic type D,
so that [[D → D]] = DD : K → Set is a presheaf exponential. At each k ∈ K, we then have,

(DD)k = SetK
(
D ×K(k,−), D

)
.

Now observe that this set is trivial except on the upset ↑k, because K(k, j) is empty unless
k ≤ j, so that SetK

(
D×K(k, j), D

)
= 1 except when j ∈↑k. On ↑k, it consists of natural

transformations
Set ↑k

(
D ↑k,D ↑k

)
,

where D ↑k : ↑k → Set is D restricted to the upset ↑k ⊆ K, i.e. the composite

↑k ↪→ K
D−→ Set .

Given any such natural transformation ϑ : D ↑k −→ D ↑k, and any k ≤ j, the action of
the functor,

(DD)k → (DD)j

on ϑ is simply to restrict it further to ↑j ⊆↑k, thus taking ϑ to

ϑ ↑j : D ↑j −→ D ↑j .

This is just the same function as ϑ, but with the restricted domain of definition ↑j ⊆↑k.
Note that the effect of this restriction may be to identify elements ϑ, and that not every
element defined at j need be the restriction of one defined at k for j ≤ k, so the transition
maps need be neither injective nor surjective.

The section s : (D → D) → D therefore takes, at each k ∈ K, such a ϑ : D ↑k −→ D ↑k
to an element sk(ϑ) ∈ Dk, respecting the restrictions ↑j ⊆↑k in the sense that

dk,jsk(ϑ) = sj(ϑ ↑j) ∈ Dj ,

where dk,j : Dk → Dj is the action of the functor D : K → Set.
In this way, the presheaf exponential DD : K → Set is entirely determined by the “base-

case” D : K → Set, and is still a “full function space” at each k ∈ K, but the functorial
action in k requires it to not be just DDk

k (which for a reflexive type would then be trivial
at all k ∈ K). Rather, it must take the entire segment ↑ k into account—much in the
way that k ⊩ φ ⇒ ψ was determined for Kripke models of the intuitionistic propositional
calculus IPC by considering all j ≥ k. (Indeed, one can explicitly formulate the Kripke
semantics for simple type theory in the usual Kripke-forcing style k ⊩ a : A, cf. [AGH21]
and Section ?? below.)

The proof of the following completeness theorem relies on a deep result from topos
theory (for the proof of which, see [Joh03, §xy]). We state it in the following form:

[DRAFT: February 20, 2025]



40 Simple Type Theory

Theorem 2.7.3 (Joyal-Tierney, [JT84]). For every Grothendieck topos E there is a localic
topos Sh(L) and a connected, locally connected geometric morphism c : Sh(L) → E.

This theorem implies in particular that, for every small CCC C there is a poset K and
a fully faithful CCC functor C ↪→ SetK . From this, the completeness of Kripke semantics
then follows easily:

Theorem 2.7.4 (Kripke completeness for λ-calculus). For any λ-theory T:

(i) A type A is inhabited just if it has a point 1 → [[A]] in every Kripke model (K, [[−]]).

(ii) Two terms are provably equal, T ⊢ (Γ | s = t : A), just if they are equal in every
Kripke model (K, [[−]]),

[[s]] = [[t]] : [[Γ]] −→ [[A]] .

In the following chapter, we shall see that this result holds as well for dependent type
theory with the Σ, Π, and Eq type-formers. For the proof, see [AR11], as well as [AGH21].

Remark 2.7.5 (For readers familiar with topos theory). Let us see how to get from
Theorem 2.7.3 to the fact used here, that for every small CCC C there is a poset K and a
fully faithful, CCC functor φ : C ↪→ SetK . First, compose the Yoneda embedding y : C ↪→ Ĉ
with the inverse image c∗ : Ĉ ↪→ Sh(L) of the Joyal-Tierney cover, which is also fully faithful
and CCC. Then compose further with the inclusion i∗ : Sh(L) ↪→ SetL

op

of sheaves into
presheaves, which is also fully faithful and CCC. So we can take K = Lop to get the desired
CCC embedding φ = i∗ ◦ c∗ ◦ y : C ↪→ SetK . See [Awo00, AR11] for more details.

2.8 Topological models

From presheaves to posets to spaces to sheaves.

Posets

Since the category Pos is cartesian closed, we can take models of λ-theories there. Are
such poset models sufficient to test for provability? The answer depends in general on the
kinds of theories: Plotkin [Plo73] shows that for theories with one basic type, no basic
terms, and no equations, the models in the category Set with the base type interpreted as
a finite set are already sufficient. And Friedman [Fri75] showed that the single model with
one countably infinite base type is also sufficient. For theories with basic terms (but still
no equations), other results are known for the category Pos; see [Sim95] for a summary.

We shall show here that for arbitrary theories, with basic types, basic terms, and equa-
tions, there are enough models in the category dopFib of posets and discrete opfibrations,
provided these are taken relative to an arbitrary base poset K.

Definition 2.8.1. A discrete opfibration of posets is a monotone map π : P → K with the
property that, for every p ∈ P and πp ≤ k ∈ K, there is a unique p ≤ q ∈ P with πq = k.

[DRAFT: February 20, 2025]



2.8 Topological models 41

This “lifting property” can be equivalently reformulated as saying that every commu-
tative square as follows has a unique diagonal filler, where 2 = (0 ≤ 1).

1 //

0

��

P

π

��
2 //

??

K

(2.9)

Lemma 2.8.2. The (full!) subcategory of all such maps

dopFib/K ↪→ Pos/K

is equivalent to SetK. In particular, this category is therefore cartesian closed.

For the proof, one can consider the universal discrete opfibration (with small fibers)
u : Set• → Set in CAT, the category of large categories. A covariant presheaf P : K → Set
then fits into a pullback diagram ∫

P //

π

��

Set•

u

��
K

P
// Set

with the category of elements π :
∫
K
P → K on the left, and indeed, every discrete opfi-

bration p : D → K arises in this way from an essentially unique P : K → Set, namely the
one with P (k) = p−1(k). Moreover, every pullback of a discrete fibration (such as u is a
discrete fibration, as is easily seen by considering lifting (2.9).

Exercise 2.8.3. Fill in the details of the proof just sketched that SetK ≃ dopFib/K .

Exercise 2.8.4. Show that the inclusion dopFib/K ↪→ Pos/K is always full, as claimed in
Lemma 2.8.2.

This provides another useful perspective on the functor category SetK . Indeed, one
can reformulate the Kripke semantics for simple type theory entirely in terms of discrete
opfibrations π : P → K in place of (covariant) presheaves P : K → Set. This will be
particularly useful when we consider the semantics of dependent type theory in the next
chapter.

Corollary 2.8.5. The categories dopFib/K are sufficient for λ-theories: if an equation
Γ | s = t : A is not provable in T, then there is a T-model in discrete opfibrations over a
poset K in which the equation fails.
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The analogous statement regarding inhabitation of course also holds. The “fibrational”
point of view is pursued in [AR11], which also includes details of the dependently typed
case.

Exercise 2.8.6. Show that the category Set is not sufficient for arbitrary λ-theories, with
basic types, terms and equations. Is Pos? (Hint: Give a Kripke counter-model of triviality
for reflexive domains.)

Sheaves

The category Pos of posets may be cartesian closed, but its slices Pos/P are in general
not so (by an argument similar to the one given in [Pal03]). By contrast, the (wide but
not full) subcategory dopFib of posets and discrete opfibrations is not cartesian closed
(proof!), whereas its slices dopFib/K ≃ SetK always are so. Something similar happens
with topological spaces: the category Top of all spaces and continuous maps is itself not
even cartesian closed (unlike Pos), nor are its slices, but there is a (wide but not full)
subcategory LocHom ↪→ Top the slices of which are always cartesian closed, even though
the total category LocHom itself is not. As in the case of dopFib, this is most easily seen
by showing that each slice LocHom/X is actually equivalent to a functor category known
to be cartesian closed, namely the category Sh(X) of sheaves on the space X.

A little topos theory: sheaves and local homeomorphisms.

Definition 2.8.7. A sheaf on a space X is a presheaf F : O(X)op → Set that satisfies the
following “patching” condition: for every open cover U =

⋃
i∈I Ui the canonical map

FU →
∏

i FUi ⇒
∏

i,j F (Ui ∩ Uj)

is an equalizer.

In words, given a family of elements fi : yUi → F that “match” on the overlaps,

fi|Uj
= fj|Ui

: y(Ui ∩ Uj) → F,

there is a unique “amalgamation” f : yU → F that restricts to the given family on the
cover, f |Ui

= fi : yUi → F . For example, in the case of two open sets U, V , this condition
says exactly that the following pushout diagram in O(X)

U ∩ V //

��

V

��
U // U ∪ V

(2.10)
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is taken by F to a pullback in Set:

F (U ∩ V ) FVoo

FU

OO

F (U ∪ V )oo

OO (2.11)

A basic example of a sheaf is the presheaf Top(−, Z) : O(X)op → Set of continuous
functions into a fixed space Z, where the open sets U ⊆ X are regarded as subspaces and
therefore objects in Top. Indeed, given a family of continuous functions fi : Ui → Z that
match on the intersections Ui ∩ Uj, we can define an amalgamation f : U → Z by setting
f(x) = fi(x) for some i with x ∈ Ui (which exists since U =

⋃
i∈I Ui) and the specification

will be unique by the matching condition.
It is not difficult to prove the following fact directly from the elementary definition

2.8.7.

Proposition 2.8.8. The full subcategory Sh(X) ↪→ SetO(X)op is cartesian closed, with the
structure inherited from presheaves.

Exercise 2.8.9. Prove this by showing that ZY is a sheaf as soon as Z is a sheaf, by
analyzing the exponential as ZY (U) ∼= Hom(yU × Y, Z).

There is an equivalent perspective on sheaves over X that is often useful, namely as
certain spaces over X via certain “generalized covering spaces” p : Y → X called local
homeomorphisms.

Definition 2.8.10. A continuous function p : Y → X is a local homeomorphism if for
every y ∈ Y there is an open set y ∈ U ⊆ Y such that (i) the image p(U) ⊆ X is open,
and (ii) the restriction p|U : U → p(U) is a homeomorphism.

Let LocHom ↪→ Top be the subcategory of spaces and local homeomorphisms, and
LocHom/X the slice category. Thus a map f : (Y, p) → (Z, q) of local homeomorphisms over
X is a commutative triangle in Top with p : Y → X and q : Z → X local homeomorphisms.

Y
f //

p
  

Z

q
��

X

One can show that in fact every merely continuous map f : Y → Z making a commutative
triangle q◦f = p is also a local homeomorphism (exercise!), so that this definition is indeed
the slice category LocHom/X , the inclusion of which is full in Top/X .
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Given any space “over X” via a continuous map pY : Y → X, we can define the presheaf
of local sections Γ(Y ) by

Γ(Y )(U) = Top/X(U, Y ) for U ↪→ X .

That is, we regard the open set U ⊆ X as a space over X via its inclusion U ↪→ X, and
consider all “local sections of Y over U”, i.e. continuous maps over X from U ↪→ X to
pY : Y → X. The presheaf Γ(Y ) is now easily seen to be a sheaf (much like the example
Top(−, Z) above). In this way we have a functor

Γ : Top/X −→ SetO(X)op

which in fact factors through the full subcategory of sheaves Sh(X) ↪→ SetO(X)op . There is
also a functor coming back

Λ : SetO(X)op −→ Top/X ,

(called the bundle of germs), which factors through the full subcategory of local home-
omorphisms LocHom/X ↪→ Top/X . The local homeomorphism Λ(P ) → X has the total
space

Λ(P ) =
∐
x∈X

germx(P ),

where the “stalk of germs at x” germx(P ) is defined by

germx(P ) = colim
U∋x

PU ,

the colimit being taken over the filter of all open sets U with x ∈ U . The space Λ(P ) is
topologized by declaring as basic opens the images of all partial sections s : U → Λ(P )
over X (for U ⊆ X open).

The situation is summarized in the following proposition, for a detailed proof of which,
see [MM92, Ch. II].

Proposition 2.8.11. The bundle of germs functor Λ, which takes a presheaf P on the
space X to the local homeomorphism Λ(P ) → X, is left adjoint to the presheaf of sections
functor Γ. The images of these functors are the full subcategories of sheaves Sh(X), for Γ,
and local homeomorphisms LocHom/X , for Λ. The inclusions have adjoints: a left adjoint
a ⊣ i for Sh(X) and a right adjoint j ⊣ b for LocHom/X .

SetO(X)op

a

��

Λ
// Top/X

b

��

Γoo

Sh(X)
Λ

//

?�

i

OO

LocHom/X∼
Γoo ?�

j

OO
(2.12)
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Thus there is an equivalence of categories Sh(X) ≃ LocHom/X .

One immediate consequence is that every slice LocHom/X is cartesian closed, by Propo-
sition 2.8.8. Another application is an explicit description of the left adjoint sheafification
functor a = Γ ◦ Λ, which is seen to preserve finite limits, since each of its factors does so.
Another application that will be of use in the semantics of the λ-calculus with sums in the
next section is the description of the coproduct of two local homeomorphisms A→ X and
B → X as A+B → X, constructed in Top/X in the obvious way.

Corollary 2.8.12. The sheafified Yoneda embedding ay : O(X) → Sh(X) is still full and
faithful and still preserves all limits and exponentials. It now also preserves joins,

ayU ∪ ayV ∼= ay(U ∪ V ) in SubSh(X)(1) ,

and similarly for all joins U =
⋃

i∈I Ui in O(X). Indeed, the factorization

ay : O(X) → SubSh(X)(1)

is an isomorphism of complete Heyting algebras.

Proof. To give a sketch: chasing around the diagram (2.12), we can regard the sheafified
Yoneda embedding ay as being given by Λ ◦ y : O(X) → LocHom/X , which is just the
functor

(U ⊆ X) 7−→ (U ↪→ X) ,

taking an open subset U of X to the inclusion of the open subspace U ↪→ X, which
is obviously a local homeomorphism. The join of a family Ui ↪→ X of subobjects of 1
in LocHom/X is computed there by first taking the coproduct in Top/X to give a local
homoeomorphism

∐
i Ui → X with a disjoint sum of spaces as its domain, and then the

image factorization
∐

i Ui ↠
⋃

i Ui ↣ X to give the open set inclusion
⋃

i Ui ↪→ X, which
is the inclusion of the join of the Ui in O(X).

Exercise 2.8.13. Show that every representable functor y(U) is a sheaf. Conclude that
the “sheafified” Yoneda embedding a ◦ y : OX → Sh(X) is fully faithful and injective on
objects.

Let us consider a simple example of the preservation of joins by comparing the presheaf
join yU ∪yV with the sheaf y(U ∪ V ), in the case where neither U ⊆ V nor V ⊆ U . We can
evaluate the presheaf yU ∪ yV at the pushout diagram (2.10) to get the following diagram
of sets,

(yU ∪ yV )(U ∩ V ) (yU ∪ yV )(V )oo

(yU ∪ yV )(U)

OO

(yU ∪ yV )(U ∪ V )oo

OO
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which evaluates to the following,
1 1oo

1

OO

0oo

OO

since (U ∪V ) is “in” neither yU nor yV , and so not in their join yU ∪ yV (where being “in
the presheaf” means that the presheaf is not empty at that argument). This diagram is
clearly not a pullback, as required for yU ∪yV to be a sheaf. On the other hand, evaluating
y(U ∪ V ) instead results in the evident pullback:

y(U ∪ V )(U ∩ V ) y(U ∪ V )(V )oo

y(U ∪ V )(U)

OO

y(U ∪ V )(U ∪ V )oo

OO

which has 1 = {∗} at all four corners.

Remark 2.8.14. An application of Corollary 2.8.12 is a completeness theorem for full
intuitionistic propositional logic with respect to categories of sheaves Sh(X), using the
sheafified Yoneda embedding in place of Joyal’s representation theorem, which we used for
completeness with respect to presheaves. We leave it to the reader to fill in the details.

Exercise 2.8.15. Fill in the details. (Hint : The downset embedding of a Heyting algebra
H into the complete Heyting algebra of its ideals Idl(H) is an injective Heyting homomor-
phism, and there is an isomorphism of complete Heyting algebras Idl(H) ∼= OSpec(H),
where the space Spec(H) is the prime spectrum of H, a generalization of the Stone space
of a Boolean algebra.)

As a further corollary of Proposition 2.8.11 we have a completeness theorem analogous
to Corollary 2.8.5 for models of the λ-calculus in categories of the form Sh(X) ≃ LocHom/X ,
by first deriving completeness for categories of sheaves Sh(X) from the same covering
theorem 2.7.3 that was used for Kripke completeness of the λ-calculus; see Remark 2.7.5.
(The completeness theorem with respect to spaces rather than posets is proved using
a refinement of the Joyal-Tierney covering theorem 2.7.3 due to Moerdijk [?], also see
[Awo00, ?].) We will state this specialization where it is needed below for the semantics
of λ-calculus with sums. While it is of interest to know that semantics in spaces and local
homeomorphisms is sufficient for theories in the λ-calculus, it is also of practical use simply
to know that the λ-calculus can be used as an internal language to reason about sheaves
over a space—a setting with many applications in everyday mathematics.

Equilogical spaces

See [?].
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2.9 Extensions of the λ-calculus

We conclude our study of simple type theory by considering a few extensions of the basic
λ-calculus:

1. λ-Calculus with sums.

2. Natural numbers objects.

3. Higher-order logic.

4. Modal operators.

The first three of these are discussed in much more detail in the book [LS88]. These
extensions are not λ-theories as previously defined, but instead involve further operations
on types, which may be regarded as (proof-relevant versions of) general rules of inference.
Their categorical semantics require additional structures on a CCC.

2.9.1 λ-Calculus with sums

We can extend the Curry-Howard correspondence between positive propositional calculi
and CCCs by adding “sums” to the CCCs to obtain a categorified version of Heyting
algebras, or intuitionistic propositional calculi, which we shall call BiCartesian Closed
Categories (BiCCCs),

BiCCC

CCC
=

IPC

PPC
.

The internal language of such categories will be a simple type theory given by adding
“stable sums” 0 and A + B to the λ-calculus. Following [LS88, ADHS01, FDCB02], the
additional rules required are the following.

1. The types are extended by adding the type constructors 0 and A + B, so we now
have:

Simple types A ::= B | 1 | A1 × A2 | A1 → A2 | 0 | A1 + A2

with the expected formation rules.

2. For the terms we now have

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t | ! t | inl t | inr t | [x.t1, x.t2]u

The copairs [x.t1, x.t2]u are sometimes called “cases”, and the variable x is bound.
Their typing rules, and those for the injections ! t, inl t, and inr t, are:

Γ | u : 0

Γ | !u : C

Γ | a : A

Γ | inl a : A+B

Γ | b : B
Γ | inr b : A+B

Γ, x : A | s : C Γ, y : B | t : C Γ | u : A+B

Γ | [x.s, y.t]u : C
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3. The equations for these terms are as follows.

z : C | z = !u : C [x.a, y.b](inl s) = a[s/x] : C [x.a, y.b](inr t) = b[t/y] : C

u = [x.inlx, y.inr y]u : A+B

v
(
[x.s, y.t]u

)
= [x.vs, y.vt]u : D

The last equation is a “distributivity” law, in which v : C → D and x, y /∈ FV(v).

4. For an example of a theory in the λ-calculus with sums, consider the notion of an
infinite object I. According to R. Dedekind [Ded88], an object is infinite if it admits
an injective mapping to a proper subobject. This condition can be captured in a
BiCCC by requiring an isomorphism 1 + I ∼= I. Specifically, we require maps and
equations as follows:

I i //

=

!!

1 + I

j

��

=

##
I

i
// 1 + I

For then j = [j ◦ inl, j ◦ inr] : 1 + I → I for unique maps j1 = j ◦ inl : 1 → I and
j2 = j ◦ inr : I → I, whence j2 : I → I is injective (as a composite of injections), and
there is at least one element j1 : 1 → I that is not in its image, by the disjointness
of coproducts,

0 //

��

I

inr

��

j2

!!
1 inl //

j1

661 + I
∼= // I .

Exercise 2.9.1. Write down the theory of infinite objects in the λ-calculus with sums
and prove that every model in a BiCCC is indeed Dedekind infinite. Also formulate the
theory of a “successor algebra” as an object X equipped with a point x : 1 → X and an
endomorphism s : X → X. Prove that the natural numbers are initial among all successor
algebras in Set (with the evident definition of algebraic homomorphisms). Show from this
that the natural numbers are Dedekind infinite.

We now have the expected extension of the foregoing results for λ-calculi and CCCs to
the case of λ-calculi with sums and BiCCCs, namely:
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Proposition 2.9.2. For any theory T in λ-calculi with sums, there is a (syntactic) BiCCC
BT that classifies T-models in arbitrary BiCCCs B,

BiCCC(BT,B) ≃ Mod(T,B) .

In particular, the λ-calculus with sums is complete (in the sense of Corollary 2.4.7) with
respect to models in bicartesian closed categories.

The proof is analogous to the previous case, although some care is required with the
initial object, the disjointness of sums, and their stability under products with a fixed
object (see [LS88, FDCB02]). There is also an internal language correspondence as in
Section 2.5 that we need not spell out. An interesting question considered in [FDCB02]
is that of type isomorphisms, as a generalization of elementary algebraic equations. For
example ...

Remark 2.9.3 (Variable set completeness). Completeness of λ-calculus with respect to
arbitrary presheaf categories SetC

op

is apparently more difficult to generalize to λ-calculus
with sums than was the general categorical completeness theorem, Proposition 2.9.2. This
is because, although such categories SetC

op

have very well-behaved (indeed, freely added)
coproducts, the Yoneda embedding does not preserve the coproducts that may exist in the
index category C. In the “proof-irrelevant” propositional case, we solved this problem using
a more sophisticated embedding theorem due to Joyal, Theorem ??. One may conjecture
that something similar could hold in the present case: we can embed a BiCCC B into
the category of presheaves on all “biCartesian” functors M : B → Set (playing the role
of the prime filters in a Heyting algebra); however, we would still need to show that this
analogous “evaluation embedding” also preserves all exponentials; whether this holds is an
open question.

We leave the question of completeness with respect to variable sets aside for now, and
briefly consider a different approach to the semantics of BiCCCs using sheaves, for which
one can show completeness using well-known results (e.g. [FS99]).

Definition 2.9.4. Let B be a BiCCC. A presheaf F : Bop → Set is called a sheaf (for the
+-topology) if it preserves finite products. Explicitly, a sheaf F is a contravariant functor
that takes the finite coproducts in B to products in Set (via the canonical maps),

F (0) ∼= 1 ,

F (A+B) ∼= FA× FB .

A morphism of sheaves f : G→ F is just a natural transformation.

Lemma 2.9.5. By definition, the category of sheaves is a full subcategory. The inclusion
i : Sh(B) ↪→ B̂ has a left adjoint,

a : B̂ −→ Sh(B),

called sheafification, which, moreover, preserves all finite limits.
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Proof. Since finite products commute with limits, it is easy to see that the FP -functors
are closed under all limits. So by the adjoint functor theorem, we see that the full sub-
category of FP-functors is reflective in the category of all Set-valued functors, as we have
already shown in Section ??. That the reflector a preserves finite limits can be shown by
analyzing the sheafification functor a in terms of the so-called Grothedieck +-construction;
see [MM92, III.5].

Proposition 2.9.6. We require the following facts about the subcategory category

Sh(B) ↪→ B̂

of +-sheaves on a BiCCC B.

1. The representable functors yB : Bop → Set are all sheaves; in particular, the terminal
object 1 = y1 is a sheaf.

2. The sheafified Yoneda embedding ay : B → Sh(B) is fully faithful, and preserves finite
coproducts.

3. If F,G are sheaves, so is their product F ×G, and if G is a sheaf and F a presheaf,
then the presheaf exponential GF is a sheaf.

Thus in particular, the fully faithful functor ay : B ↪→ Sh(B) preserves the BiCCC structure.

Proof. 1. For any object B ∈ B we have:

yB(0) = hom(0, B) = 1 ,

yB(A1 + A2) = hom(A1 + A2, B) ∼= hom(A1, B)× hom(A2, B)

= yB(A1)× yB(A2) .

2. To see that ay : B → Sh(B) is fully faithful, note that by (1) we have y ∼= i ◦ (ay) :
B → B̂, which is fully faithful, and i : Sh(B) → B̂ is so as well.

B
y //

ay
''

B̂

a

��
Sh(B)

i

OO

To see that ay preserves sums, for any sheaf F , we have:

Sh(B)(ay(0), F ) ∼= B̂(y(0), iF ) ∼= iF (0) ∼= 1 ,

Sh(B)(ay(A+B), F ) ∼= B̂(y(A+B), iF ) ∼= iF (A+B) ∼= iF (A)× iF (B) .
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3. If F,G are sheaves then F ×G is one as well, since, as presheaves,

(F ×G)(0) ∼= F0×G0 ∼= 1× 1 ∼= 1 ,

(F ×G)(A+B) ∼= F (A+B)×G(A+B) ∼= (FA× FB)× (GA×GB)
∼= (F ×G)(A)× (F ×G)(B) .

If G is a sheaf and F a presheaf, then as presheaves,

(iGF )(0) ∼= B̂
(
y(0)× F, iG

) ∼= Sh(B)
(
a(y(0)× F ), G

)
∼= Sh(B)

(
ay(0)× aF,G

) ∼= Sh(B)
(
a0, G

) ∼= 1 .

(iGF )(A+B) ∼= B̂
(
y(A+B)× F, iG

) ∼= B̂
(
ay(A+B)× F,G

)
∼= B̂

(
(ay(A) + ay(B))× F,G

)
∼= B̂

(
(ay(A)× F ) + (ay(B)× F ), G

)
∼= B̂

(
ay(A)× F,G

)
× B̂

(
ay(B)× F,G

)
∼= B̂

(
y(A)× F, iG

)
× B̂

(
y(B)× F, iG

)
∼= iGF (A)× iGF (B) .

As a result of the forgoing embedding theorem, the completeness of the basic λ-calculus
with respect to presheaves can be extended to completeness of the λ-calculus with sums
with respect to categories of sheaves (although we have not yet defined these except in
the special cases of topological spaces and + sheaves on a category with stable, finite
coproducts). To that end, we define a model in a category Sh(C,+) of sheaves (for the
+ topology) on a small category C with stable finite coproducts to be a BiCCC functor
from BT, the classifying BiCCC of a theory T, into Sh(C,+). We then have the following
completeness theorem.

Proposition 2.9.7 (Completeness of λ-Calculus with Sums). For a theory T in the λ-
calculus with sums,

1. a type A is inhabited in every model in a category of sheaves Sh(C,+) iff there is a
closed term a : A,

2. an equation Γ | s = t : A holds in every model in a category of sheaves Sh(C,+) iff
there is a proof of it from the equations of T.

There is a more general notion of a sheaf for a “Grothendieck topology” on a small
category C, of which the +-topology on a category with sums is a special case, and the
foregoing proposition then generalizes to that case, but we shall not pursue this further
here.

Exercise 2.9.8. Fill in the details of the proof of Proposition 2.9.7.
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Finally, we can again apply the Joyal-Tierney covering theorem 2.7.3 to obtain com-
pleteness of the λ-calculus with sums with respect to categories Sh(X) of sheaves on a
space:

Corollary 2.9.9 (Topological Completeness of λ-Calculus with Sums). For a theory T in
the λ-calculus with sums,

1. a type A is inhabited in every model in a category of sheaves on a space Sh(X) iff
there is a closed term a : A,

2. an equation Γ | s = t : A holds in every model in a category of sheaves on a space
Sh(X) iff there is a proof of it from the equations of T.

Of course, the result can also be formulated equivalently in terms of BiCCCs of the form
LocHom/X rather than Sh(X), where the coproducts of local homeomorphisms A → X
and B → X are more easily constructed naively as A+B → X in the underlying category
Top/X (by Proposition 2.8.11).

Remark 2.9.10. It may also be asked whether there is a single space X such that Sh(X) is
sufficient for all theories in the λ-calculus with sums, as has been shown e.g. for intuitionistic
first-order logic IFOL with respect to just sheaves on the real line R [].

2.9.2 Natural numbers objects

Using sums we can describe infinite objects X + 1 ∼= X, but we cannot describe the free
such objects, such as the initial one, without having a general induction principle with
respect to other such objects. Such inductive type are more conveniently formulated in
dependent type theory, as we shall do in the next chapter, but we can also formulate them
in simple type theory by adding new recursion operations, see Lambek-Scott [LS88]. . This
leads to the important notion of a natural numbers object : an initial infinite object.

2.9.3 Higher-order logic

This example presumes familiarity with the results of Chapter ??, or at least with the
basic categorical approach to first-order logic as presented in [MM92, ?].

The approach to IHOL presented here is closely tied to topos theory, which is to be
treated in greater depth in Chapter ??. Also see Lambek-Scott [LS88].

Remark 2.9.11.

2.9.4 Modalities

Recall first the propositional modal logics IS4, IS5 with adjoints, natural deduction using
Bierman-dePaiva, Kavvos.
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Example of a CCC with a “modal operator”: pointed sets for partial functions and the
lifting monad.

Summarize Moggi’s modal λ-calculus. Also see Shulman.

See [Sco80b, Sco80a] for more on the λ-calculus

Still ToDo: Normalization use Lambek-Scott, NbE use Altenkirch
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