
Notes on Type Theory
[DRAFT: February 4, 2025]

Steve Awodey

with contributions from Andrej Bauer

Contents

2 Simple Type Theory 5
2.1 The λ-calculus . 5
2.2 Cartesian closed categories . 13
2.3 Interpretation of the λ-calculus in a CCC 21
2.4 Functorial semantics . 24
2.5 The internal language of a CCC . 28

Bibliography 35

[DRAFT: February 4, 2025]

4 CONTENTS

[DRAFT: February 4, 2025]

Chapter 2

Simple Type Theory

2.1 The λ-calculus

The λ-calculus is an abstract theory of functions, much like group theory is an abstract
theory of symmetries. There are two basic operations that can be performed with functions.
The first one is the application of a function to an argument: if f is a function and a is an
argument, then fa is the application of f to a, also called the value of f at a. The second
operation is abstraction: if x is a variable and t is an expression in which x may appear,
then there is a function f defined by the equation

fx = t .

Here we gave the name f to the newly formed function, which takes an argument x to the
value t. But we could have expressed the same function without giving it a name; this is
sometimes written as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation, which is more
convenient when such abstractions are nested within more complex expressions, namely

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the function that
maps an argument a to the function λy. (a+ y), which in turn maps an argument b to the
value a+ b. The variable x is said to be bound in the expression λx. t.

It may seem strange that in discussing the abstraction of a function, we switched
from talking about objects (functions, arguments, values) to talking about expressions :
variables, names, equations. This “syntactic” point of view seems to have been part of
the notion of a function from the start, in the theory of algebraic equations. It is the
reason that the λ-calculus is part of logic, unlike the theory of cartesian closed categories,
which remains thoroughly semantical (and “variable-free”). The relation between the two
different points of view occupies this chapter (and, indeed, the entire subject of logic!).

[DRAFT: February 4, 2025]

6 Simple Type Theory

There are two kinds of λ-calculus: the typed and the untyped. In the untyped version
there are no restrictions on how application is formed, so that an expression such as

λx. (xx)

is allowed, whatever it may mean. We will concentrate here on the typed λ-calculus (but
see Example 2.1.7 below). In typed λ-calculus every expression has a type, and there are
rules for forming valid expressions and assigning types. For example, we can only form an
application fa when f has, say, type A→ B and a has type A, and then fa will necessarily
have type B. The basic judgement that an expression t has a type T is written as

t : T

and it is one of the primitive notions of type theory (meaning that it is not defined). To
computer scientists, the idea of expressions having types is familiar from programming
languages; whereas mathematicians can think of types as sets and read t : A as t ∈ A (at
least to get started).

Simply-typed λ-calculus. We now give a more formal definition of what constitutes a
simply-typed λ-calculus. First, we are given a collection of simple types, which are generated
from some basic types by formation of product and function types:

Basic types B ::= B0 | B1 | B2 · · ·
Simple types A ::= B | A1 × A2 | A1 → A2.

When convenient, we may adopt the convention that function types associate to the right,

A→ B → C = A→ (B → C) .

We assume there is a countable set of variables x, y, z, . . . at our disposal. We are also
given a set of basic constants. The set of terms is generated from variables and basic
constants by the following grammar:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | 〈t1, t2〉 | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. any variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if s and t are terms then 〈s, t〉 is a term, called a pair,

[DRAFT: February 4, 2025]

2.1 The λ-calculus 7

5. if t is a term then fst t and snd t are terms,

6. if s and t are terms then s t is a term, called an application,

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term, called a
λ-abstraction.

The variable x is bound in λx : A . t. Application associates to the left, thus s t u = (s t)u.
The set of free variables FV(t) of a term t is determined as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(〈u, t〉) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

A term t is closed if all of its variables are bound, so that FV(t) = ∅. If x1, . . . , xn are
distinct variables and A1, . . . , An are types then the sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted by a dot · ,
and it is a valid context. We may identify contexts under reordering, regarding them as
sets rather than sequences. Contexts may be denoted by capital Greek letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition, the free variables of t
must occur in Γ, but Γ may contain other variables as well. We read the above judgment
as “in context Γ the term t has type A”. Next we describe the rules for deriving typing
judgments.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

Γ | ci : Ci

• The type of a variable is determined by the context:

Γ, xn : An | xn : An

[DRAFT: February 4, 2025]

8 Simple Type Theory

• The constant ∗ has type 1:

Γ | ∗ : 1

• The typing rules for pairs and projections are:

Γ | a : A Γ | b : B

Γ | 〈a, b〉 : A×B
Γ | t : A×B
Γ | fst t : A

Γ | c : A×B
Γ | snd t : B

• The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | a : A

Γ | t a : B

Γ, x : A | t : B

Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms: for terms of type A in context Γ,

Γ | s : A , Γ | t : A ,

the judgment that they are equal is written as

Γ | s = t : A .

Note that s and t necessarily have the same type; it does not make sense to compare terms
of different types. We have the following rules for equations, the effect of which is to make
equality between terms into an equivalence relation at each type, and a congruence with
respect to all of the operations, just as for algebraic theories:

• Equality is an equivalence relation:

Γ | t = t : A

Γ | s = t : A

Γ | t = s : A

Γ | s = t : A Γ | t = u : A

Γ | s = u : A

• The substitution rule:

Γ | s = t : A Γ, x : A | u = v : B

Γ | u[s/x] = v[t/x] : B

• The weakening rule:
Γ | s = t : A

Γ, x : B | s = t : A

• Unit type:

Γ | t = ∗ : 1

[DRAFT: February 4, 2025]

2.1 The λ-calculus 9

• Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | 〈u, s〉 = 〈v, t〉 : A×B
Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B
Γ | snd s = snd t : A

Γ | t = 〈fst t, snd t〉 : A×B

Γ | fst 〈s, t〉 = s : A Γ | snd 〈s, t〉 = t : A

• Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | t : A→ B

Γ | λx : A . (t x) = t : A→ B
(η-rule)

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

where the substitution t[u/x] is defined as usual (see the Appendix).

This completes the description of a simply-typed λ-calculus.

Simply-typed λ-theories. Apart from the above rules for equality, which are part of
the λ-calculus, we might want to impose additional equations between terms. In this case
we speak of a λ-theory. Thus, a λ-theory T is given by a set of basic types and a set of
basic constants, called the signature, and a set of equations of the form

Γ | s = t : A .

Note that we can always state the equations equivalently in closed form simply by λ-
abstracting all the variables in the context Γ.

We summarize the preceding definitions.

Definition 2.1.1. A (simply-typed) signature S is given by a set of basic types (Bi)i∈I
together with a set of basic (typed) constants (cj : Cj)j∈J ,

S =
(
(Bi)i∈I , (cj : Cj)j∈J

)
.

A simply-typed λ-theory T = (S,E) is a simply-typed signature S together with a set of
equations between closed terms,

E =
(
uk = vk : Ak

)
k∈K .

[DRAFT: February 4, 2025]

10 Simple Type Theory

Example 2.1.2. The theory of a group is a simply-typed λ-theory. It has one basic type
G and three basic constants, the unit e, the inverse i, and the group operation m,

e : G , i : G→ G , m : G× G→ G ,

with the following familiar equations (which we need not give in closed form):

x : G | m〈x, e〉 = x : G

x : G | m〈e, x〉 = x : G

x : G | m〈x, ix〉 = e : G

x : G | m〈ix, x〉 = e : G

x : G, y : G, z : G | m〈x, m〈y, z〉〉 = m〈m〈x, y〉, z〉 : G

Example 2.1.3. More generally, any (Lawvere) algebraic theory A (as in Chapter ??)
determines a λ-theory Aλ. There is one basic type A and for each operation f of arity k
there is a basic constant f : Ak → A, where Ak is the k-fold product A × · · · × A. It is
understood that A0 = 1. The terms of A are translated to corresponding terms of Aλ in a
straightforward manner. For every axiom u = v of A there is a corresponding one in Aλ,

x1 : A, . . . , xn : A | u = v : A

where x1, . . . , xn are the variables occurring in u and v.

Example 2.1.4. The theory of a directed graph is a simply-typed theory with two basic
types, V for vertices and E for edges, and two basic constants, source src and target trg,

src : E→ V , trg : E→ V .

There are no equations.

Example 2.1.5. The theory of a simplicial set is a simply-typed theory with one basic
type Xn for each natural number n, and the following basic constants, also for each n, and
each 0 ≤ i ≤ n:

di : Xn+1 → Xn , si : Xn → Xn+1 .

The equations are the usual simplicial identities, which are as follows, for all natural
numbers i, j:

didj = dj−1di, if i < j,

sisj = sj+1si, if i ≤ j,

disj =

sj−1di, if i < j,

id, if i = j or i = j + 1,

sjdi−1, if i > j + 1.

[DRAFT: February 4, 2025]

2.1 The λ-calculus 11

Example 2.1.6. An example of a λ-theory found in the theory of programming languages
is the mini-programming language PCF. It is a theory in simply-typed λ-calculus with a
basic type nat for natural numbers, and a basic type bool of Boolean values,

Basic types B ::= nat type | bool type.

There are basic constants zero 0, successor succ, the Boolean constants true and false,
comparison with zero iszero, and for each type A the conditional condA and the fixpoint
operator fixA. They have the following types:

0 : nat

succ : nat→ nat

true : bool

false : bool

iszero : nat→ bool

condA : bool→ A→ A

fixA : (A→ A)→ A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 2.1.7 (D.S. Scott). Another example of a λ-theory is the theory of a reflexive
type. This theory has one basic type D and two constants

r : D→ D→ D s : (D→ D)→ D

satisfying the equation
f : D→ D | r (s f) = f : D→ D (2.1)

which says that s is a section and r is a retraction, so that the function type D → D is a
subspace (even a retract) of D. A type with this property is said to be reflexive. We may
additionally stipulate the axiom

x : D | s (rx) = x : D (2.2)

which implies that D is isomorphic to D→ D.
A reflexive type can be used to interpret the untyped λ-calculus into the typed λ-

calculus.

[DRAFT: February 4, 2025]

12 Simple Type Theory

Untyped λ-calculus

We briefly describe the untyped λ-calculus. It is a theory whose terms are generated by
the following grammar:

t ::= v | t! t2 | λx. t .
In words, a variable is a term, an application t t′ is a term, for any terms t and t′, and a
λ-abstraction λx. t is a term, for any term t. Variable x is bound in λx. t. A context is a
list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed in Γ. The
judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not really necessary
but we include it because it is always good practice to list the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | t = t

Γ | λx. (t x) = t
(η-rule)

Γ | (λx. t)u = t[u/x]
(β-rule)

where again the substitution t[u/x] is defined as usual (see the Appendix).

The untyped λ-calculus can be translated into the theory of a reflexive type from Exam-
ple 2.1.7. An untyped context Γ is translated to a typed context Γ∗ by typing each variable
in Γ with the reflexive type D, i.e., a context x1, . . . , xk is translated to x1 : D, . . . , xk : D.
An untyped term t is translated to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .

[DRAFT: February 4, 2025]

2.2 Cartesian closed categories 13

For example, the term λx. (x x) translates to s (λx : D . ((rx)x)). A judgment

Γ | u = t (2.3)

is translated to the judgment

Γ∗ | u∗ = t∗ : D . (2.4)

Exercise∗ 2.1.8. Prove that if equation (2.3) is provable then equation (2.4) is provable
as well. Identify precisely at which point in your proof you need to use equations (2.1)
and (2.2). Does provability of (2.4) imply provability of (2.3)?

2.2 Cartesian closed categories

We next review of the theory of cartesian closed categories, which will form the basis for
the semantics of simple type theory.

Exponentials

We begin with the notion of an exponential BA of two objects A,B in a category, motivated
by a couple of important examples. Consider first the category Pos of posets and monotone
functions. For posets P and Q the set Hom(P,Q) of all monotone functions between them
is again a poset, with the pointwise order:

f ≤ g ⇐⇒ fx ≤ gx for all x ∈ P . (f, g : P → Q)

Thus, when equipped with a suitable order, the set Hom(P,Q) becomes an object of Pos.
Similarly, given monoids K,M ∈ Mon, there is a natural monoid structure on the set

Hom(K,M), defined pointwise by

(f · g)x = fx · gx . (f, g : K →M , x ∈ K)

Thus the category Mon also admits such “internal Homs”. The same thing works in the
category Group of groups and group homomophisms, where the set Hom(G,H) of all ho-
momorphisms between groups G and H can be given a pointwise group structure.

These examples suggest a general notion of an “internal Hom” in a category: an “object
of morphisms A→ B” which corresponds to the hom-set Hom(A,B). The other ingredient
needed for cartesian closure is an “evaluation” operation eval : BA×A→ B which evaluates
a morphism f ∈ BA at an argument a ∈ A to give a value eval ◦ 〈f, a〉 = f(a) ∈ B. This
is always going to be present as an operation on underlying sets, if we’re starting from
a set of functions Hom(A,B) between structured sets A and B, but even in that case it
also needs to be an actual morphism in the category. Finally, we need an operation of
“transposition”, taking a morphism f : C ×A→ B to one f̃ : C → AB. We shall see that
this in fact separates the previous two examples.

[DRAFT: February 4, 2025]

14 Simple Type Theory

Definition 2.2.1. In a category C with binary products, an exponential (BA, ε) of objectsA
and B is an object BA together with a morphism ε : BA × A → B, called the evaluation
morphism, such that for every f : C×A→ B there exists a unique morphism f̃ : C → BA,
called the transpose1 of f , for which the following diagram commutes.

BA BA × A ε // B

C

f̃

OO

C × A

f̃ × 1A

OO

f

<<

Commutativity of the diagram of course means that ε ◦ (f̃ × 1A) = f .

Definition 2.2.1 is called the universal property of the exponential. It is just the category-
theoretic way of saying that a function f : C ×A→ B of two variables can be viewed as a
function f̃ : C → BA of one variable that maps z ∈ C to a function f̃ z = f〈z,−〉 : A→ B

that maps x ∈ A to f〈z, x〉. The relationship between f and f̃ is then the expected one:

(f̃ z)x = f〈z, x〉 .

That is all there is to it, except that by making the evaluation explicit, variables and
elements never need to be mentioned! The benefit of this is that the definition makes sense
also in categories whose objects are not sets, and whose morphisms are not functions—even
though some of the basic examples are of that sort.

In Pos the exponential QP of posets P and Q is the set of all monotone maps P → Q,
ordered pointwise, as above. The evaluation map ε : QP × P → Q is just the usual
evaluation of a function at an argument, which is easily seen to be monotone. The transpose
of a monotone map f : R × P → Q is the map f̃ : R → QP , defined by, (f̃ z)x = f〈z, x〉,
i.e. the transposed function, which is also easily seen to be monotone. We say that the
category Pos has all exponentials.

Definition 2.2.2. Suppose C has all finite products. An object A ∈ C is exponentiable
when the exponential BA exists for every B ∈ C (including an associated evaluation map
ε : BA × A → B). We say that C has exponentials if every object is exponentiable. A
cartesian closed category (ccc) is a category that has all finite products and exponentials.

Example 2.2.3. Consider again the example of the set Hom(M,N) of homomorphisms
between two monoids M,N , equipped with the pointwise monoid structure. Let 1 = {u}
be the terminal monoid, having only a unit element u. To be a monoid homomorphism,
the transpose h̃ : 1 → Hom(M,N) of a homomorphism h : 1 ×M → N would have to
take the unit element u ∈ 1 to the unit homomorphism u : M → N , which is the constant
function at the unit u ∈ N . Since 1×M ∼= M , that would mean that all homomorphisms
h : M → N would have the same transpose, namely h̃ = u : 1 → Hom(M,N). So Mon
cannot be cartesian closed. The same argument works in the category Group, and in many
related ones.

1Also, f is called the transpose of f̃ , so that f and f̃ are each other’s transpose.

[DRAFT: February 4, 2025]

2.2 Cartesian closed categories 15

Exercise 2.2.4. Recall that monoids and groups can be regarded as (1-object) categories,
and then their homomorphisms are just functors. Thus we have full subcategories,

Mon ↪→ Group ↪→ Cat .

Is the category Cat of all (small) categories and functors cartesian closed? What about the
subcategory of all groupoids,

Grpd ↪→ Cat ,

defined as those categories in which every arrow is an iso?

Two characterizations of CCCs

Proposition 2.2.5. In a category C with binary products an object A is exponentiable if,
and only if, the functor

−× A : C → C
has a right adjoint

−A : C → C .

Proof. If such a right adjoint exists then the exponential of A and B is (BA, εB), where
εB : BA × A → A is the counit of the adjunction at B. Indeed, the universal property of
the exponential is just the universal property of the counit ε : (−)A ⇒ 1C .

Conversely, suppose for every B there is an exponential (BA, εB). As the object part
of the right adjoint we then take BA. For the morphism part, given g : B → C, we can
define gA : BA → CA to be the transpose of g ◦ εB,

gA = (g ◦ εB)∼

as indicated below.

BA × A εB //

gA × 1A
��

B

g

��
CA × A εC

// C

(2.5)

The counit ε : −A × A→ 1C at B is then εB itself, and the naturality square for ε is then
exactly (2.5), i.e. the defining property of (f ◦ εB)∼:

εC ◦ (gA × 1A) = εC ◦ ((g ◦ εB)∼ × 1A) = g ◦ εB .

The universal property of the counit ε is precisely the universal property of the exponential
(BA, εB)

Note that because exponentials can be expressed as adjoints, they are determined
uniquely up to isomorphism. Moreover, the definition of a cartesian closed category can
then be phrased entirely in terms of adjoint functors: we just need to require the existence
of the terminal object, binary products, and exponentials.

[DRAFT: February 4, 2025]

16 Simple Type Theory

Proposition 2.2.6. A category C is cartesian closed if, and only if, the following functors
all have right adjoints:

!C : C → 1 ,

∆ : C → C × C ,
(−× A) : C → C . (A ∈ C)

Here !C is the unique functor from C to the terminal category 1 and ∆ is the diagonal
functor ∆A = 〈A,A〉, and the right adjoint of −× A is exponentiation by A.

Exercise 2.2.7. Show that being cartesian closed is a categorical property, in the sense
that it respects equivalence of categories: if C is cartesian closed and C ' D then D is also
cartesian closed.

Another consequence of the adjoint formulation is that it implies the possibility of a
purely equational specification (adjoint structure on a category is “algebraic”, in a sense
that can be made precise; see [?]). It follows that there is a equational formulation of the
definition of a cartesian closed category.

Proposition 2.2.8 (Equational version of CCC). A category C is cartesian closed if, and
only if, it has the following structure:

1. An object 1 ∈ C and a morphism !A : A→ 1 for every A ∈ C.

2. An object A × B for all A,B ∈ C together with morphisms π1 : A × B → A and
π2 : A × B → B, and for every pair of morphisms f : C → A, g : C → B a
morphism 〈f, g〉 : C → A×B.

3. An object BA for all A,B ∈ C together with a morphism ε : BA × A → B, and a
morphism f̃ : C → BA for every morphism f : C × A→ B.

These new objects and morphisms are required to satisfy the following equations:

1. For every f : A→ 1,
f = !A .

2. For all f : C → A, g : C → B, h : C → A×B,

π1 ◦ 〈f, g〉 = f , π2 ◦ 〈f, g〉 = g , 〈π1 ◦ h, π2 ◦ h〉 = h .

3. For all f : C × A→ B, g : C → BA,

ε ◦ (f̃ × 1A) = f , (ε ◦ (g × 1A))∼ = g .

where for e : E → E ′ and f : F → F ′ we define

e× f := 〈eπ1, fπ2〉 : E × F → E ′ × F ′.

[DRAFT: February 4, 2025]

2.2 Cartesian closed categories 17

These equations ensure that certain diagrams commute and that the morphisms that are
required to exist are unique. For example, let us prove that (A × B, π1, π2) is the product
of A and B. For f : C → A and g : C → B we have the morphism 〈f, g〉 : C → A × B.
The equations

π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g

enforce the commutativity of the two triangles in the following diagram:

C

A A×B B

fg 〈f,g〉

π1 π2

Suppose h : C → A × B is another morphism such that f = π1 ◦ h and g = π2 ◦ h. Then
by the third equation for products we get

h = 〈π1 ◦ h, π2 ◦ h〉 = 〈f, g〉 ,

and so 〈f, g〉 is unique.

Exercise 2.2.9. Use the equational characterization of CCCs, Proposition 2.2.8, to show
that the category Pos of posets and monotone functions is cartesian closed, as claimed.
Also verify that that Mon is not. Which parts of the definition fail in Mon?

Exercise 2.2.10. Use the equational characterization of CCCs, Proposition 2.2.8, to show
that the product category Πi∈I Ci of any (set-indexed) family (Ci)i∈I of cartesian closed
categories Ci is cartesian closed. Is the same true for an arbitrary limit in Cat?

Some proper CCCs

As we have seen ??, a cartesian closed poset is a ∧-semilattice with exponentials p⇒ q, such
as a Heyting algebra, or a syntactic category arising from a positive propositional calculus.
We next review some important examples of non-poset cartesian closed categories, most
of which should be familiar.

Example 2.2.11. The first example is the category Set. We already know that the ter-
minal object is a singleton set and that binary products are cartesian products. The
exponential of X and Y in Set is just the set of all functions from X to Y ,

Y X =
{
f ⊆ X × Y

∣∣ ∀x : X . ∃! y : Y . 〈x, y〉 ∈ f
}
.

The evaluation morphism eval : Y X ×X → Y is the usual evaluation of a function at an
argument, i.e., eval〈f, x〉 is the unique y ∈ Y for which 〈x, y〉 ∈ f .

[DRAFT: February 4, 2025]

18 Simple Type Theory

Example 2.2.12. The category Cat of all small categories is cartesian closed. The expo-
nential of small categories C and D is the category DC of functors, with natural transfor-
mations as arrows (see ??). Note that if D is a groupoid (all arrows are isos), then so is DC.
It follows that the category of groupoids is full (even as a 2-category) in Cat. Since limits
of groupoids in Cat are also groupoids, the inclusion of the full subcategory Grpd ↪→ Cat
preserves limits. It also preserves the CCC structure.

Example 2.2.13. The same reasoning as in the previous example shows that the full
subcategory Pos ↪→ Cat of all small posets and monotone maps is also cartesian closed,
and the (limit preserving) inclusion Pos ↪→ Cat also preserves exponentials. Note that the
(non-full) forgetful functor U : Pos → Set does not, and that U(QP) ⊆ (UQ)UP is in
general a proper subset.

Exercise 2.2.14. Show that there is a full and faithful functor D : Set → Poset that
preserves finite limits as well as exponentials. Note the similarity to the example Grpd ↪→
Cat.

The foregoing examples are instances of the following general situation.

Proposition 2.2.15. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a left adjoint reflection L : E → S preserving finite products. Suppose moreover that for
any two objects A,B in S, the exponential iBiA is again in S. Then S has all exponentials,
and these are preserved by i.

Proof. By assumption, we have L a i with isomorphic counit LiS ∼= S for all S ∈ S.
Let us identify S with the subcategory of E that is its image under i : S ↪→ E . The
assumption that BA is again in S for all A,B ∈ S, along with the fullness of S in E , gives
the exponentials, and the closure of S under finite products in E ensures that the required
transposes will also be in S.

Alternately, for any A,B ∈ S set BA = L(iBiA). Then for any C ∈ S, we have natural
isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= E

(
iC, iL(iBiA)

)
∼= S

(
C,L(iBiA)

)
∼= S

(
C,BA

)
where in the fifth line we used the assumption that iBiA is again in S, in the form iBiA ∼= iE
for some E ∈ S, which is then necessarily L(iBiA) = LiE ∼= E.

A related general situation that covers some (but not all) of the above examples is this:

[DRAFT: February 4, 2025]

2.2 Cartesian closed categories 19

Proposition 2.2.16. Let E be a CCC and i : S ↪→ E a full subcategory with finite products
and a right adjoint reflection R : E → S. If i preserves finite products, then S also has all
exponentials, and these are computed first in E, and then reflected by R into S.

Proof. For any A,B ∈ S set BA = R(iBiA) as described. Now for any C ∈ S, we have
natural isos:

S(C × A,B) ∼= E(i(C × A), iB)
∼= E(iC × iA, iB)

∼= E
(
iC, iBiA

)
∼= S

(
C,R(iBiA)

)
∼= S

(
C,BA

)
.

An example of the foregoing is the inclusion of the opens into the powerset of points of
a space X,

OX ↪→ PX
This frame homomorphism is the inverse image of the one associated to the map |X| → X
of locales (or in this case, spaces), from the discrete space on the set of points of X.

Exercise 2.2.17. Which of the foregoing examples follows from which of the previous two
propositions?

Example 2.2.18. For any set X, the slice category Set/X is cartesian closed. The product
of f : A → X and g : B → X is the pullback A×X B → X, which can be constructed as
the set of pairs

A×X B → X = {〈a, b〉 | fa = gb} .
The exponential, however, is not simply the set

{h : A→ B | f = g ◦ h} ,

(what would the projection to X be?), but rather the set of all pairs

{〈x, h : Ax → Bx〉 | x ∈ X, f = g ◦ h} ,

where Ax = f−1{x} and Bx = g−1{x}, with the evident projection to X.

Exercise 2.2.19. Prove that Set/X is always cartesian closed. (Hint: Use the fact that
Set/X ' SetX , and the category of CCCs is closed under products of the underlying
categories.)

Lest it be thought that the foregoing example is typical, and every slice of a CCC is
again a CCC, one can consider the counterexample of Pos. By an argument like that in
[?] for the catesian closed category Grpd of groupoids, the slice categories of Pos need not
be cartesian closed.

[DRAFT: February 4, 2025]

20 Simple Type Theory

Exercise 2.2.20. Check that the example given in [?] also works (mutatis mutandis) for
Pos to show that Pos/X is not always cartesian closed.

Example 2.2.21. A presheaf category Ĉ is cartesian closed, provided the index category
C is small. To see what the exponential of presheaves P and Q ought to be, we can use
the Yoneda lemma. If QP exists, then by Yoneda and the adjunction (−× P) a (−P), we
would have, for all c ∈ C,

QP (c) ∼= Nat(yc,QP) ∼= Nat(yc× P,Q) .

Because C is small Nat(yc× P,Q) is a set, so we can define QP to be the presheaf

QP (c) = Nat(yc× P,Q) .

(This is indeed contravariant in c !) The evaluation morphism E : QP × P → Q is the
natural transformation whose component at c is

Ec : Nat(yc× P,Q)× Pc→ Qc ,

Ec : 〈η, x〉 7→ ηc〈1c, x〉 .
The transpose of a natural transformation φ : R × P → Q is the natural transformation
φ̃ : R → QP whose component at c is the function that maps z ∈ Rc to the natural
transformation φ̃cz : yc× P → Q, whose component at b ∈ C is

(φ̃cz)b : C(b, c)× Pb→ Qb ,

(φ̃cz)b : 〈f, y〉 7→ φb〈(Rf)z, y〉 .
Exercise 2.2.22. Verify that the above definition of QP really gives an exponential of
presheaves P and Q.

It follows immediately that the category of graphs Graph is cartesian closed, because it
is the presheaf category Set·⇒·. The same is of course true for the “category of functions”,
i.e. the arrow category Set→, as well as the category of simplicial sets Set∆

op

from topology.

Exercise 2.2.23. This exercise is for those with some background in linear algebra. Let
Vec be the category of real vector spaces and linear maps between them. Given vector
spaces X and Y , the linear maps L(X, Y) between them form a vector space. So define
L(X,−) : Vec → Vec to be the functor which maps a vector space Y to the vector space
L(X, Y), and it maps a linear map f : Y → Z to the linear map L(X, f) : L(X, Y) →
L(X,Z) defined by h 7→ f ◦ h. Show that L(X,−) has a left adjoint −⊗X, but also show
that this adjoint is not the binary product in Vec.

Later in this chapter, we will meet some further examples of CCCs with a more topo-
logical flavor:

• Etale spaces over a base space X. This category can be described as consisting of
local homeomorphisms f : Y → X and commutative triangles over X between such
maps. It is equivalent to the category Sh(X) of sheaves on X (Section ??).

• Sheaves for the “+-topology” on a small category C with (stable) sums A+B.

• Dana Scott’s category Equ of equilogical spaces (Section ??).

[DRAFT: February 4, 2025]

2.3 Interpretation of the λ-calculus in a CCC 21

2.3 Interpretation of the λ-calculus in a CCC

We now consider semantic aspects of the λ-calculus and λ-theories. Suppose T is a λ-
theory and C is a cartesian closed category. An interpretation [[−]] of T in C is given by
the following data:

• For every basic type B in T an object [[B]] ∈ C. The interpretation is extended to all
types by

[[1]] = 1 , [[A×B]] = [[A]]× [[B]] , [[A→ B]] = [[B]][[A]] .

(For this purpose, we assume that a CCC structure on C has been chosen.)

• For every basic constant c of type C, a morphism [[c]] : 1→ [[C]].

The interpretation is then extended to all terms in context as follows.

• A context Γ = x1 : A1, · · · , xn : An is interpreted as the object

[[A1]]× · · · × [[An]] ,

and the empty context is interpreted as the terminal object,

[[·]] = 1 .

• A typing judgment
Γ | t : A

will be interpreted as a morphism

[[Γ | t : A]] : [[Γ]]→ [[A]] .

The interpretation is defined inductively by the following rules:

• The i-th variable is interpreted as the i-th projection,

[[x0 : A0, . . . , xn : An | xi : Ai]] = πi : [[Γ]]→ [[Ai]] .

• A basic constant c : C in context Γ is interpreted as the composition

[[Γ]]
![[Γ]] // 1

[[c]]
// [[A]]

• The interpretation of projections and pairs is as follows:

[[Γ | 〈t, u〉 : A×B]] = 〈[[Γ | t : A]], [[Γ | u : B]]〉 : [[Γ]]→ [[A]]× [[B]]

[[Γ | fst t : A]] = π1 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[A]]

[[Γ | snd t : A]] = π2 ◦ [[Γ | t : A×B]] : [[Γ]]→ [[B]] .

[DRAFT: February 4, 2025]

22 Simple Type Theory

• The interpretation of application and λ-abstraction is as follows:

[[Γ | t u : B]] = ε ◦ 〈[[Γ | t : A→ B]], [[Γ | u : A]]〉 : [[Γ]]→ [[B]]

[[Γ | λx : A . t : A→ B]] = ([[Γ, x : A | t : B]])∼ : [[Γ]]→ [[B]][[A]]

where ε : [[A→ B]]× [[A]]→ [[B]] is the evaluation morphism for [[B]][[A]] and

([[Γ, x : A | t : B]])∼

is the transpose of the morphism

[[Γ, x : A | t : B]] : [[Γ]]× [[A]]→ [[B]] .

Definition 2.3.1. An interpretation of a λ-theory T is a model of T if it satisfies all the
axioms of T, in the sense that for every axiom Γ | u = v : A of T, the interpretations of u
and v coincide as arrows in C,

[[Γ | u : A]] = [[Γ | v : A]] : [[Γ]] −→ [[A]].

It follows that all equations that are provable in T are also satisfied in any model, by
the following basic fact.

Proposition 2.3.2 (Soundness). If T is a λ-theory and [[−]] is a model of T in a cartesian
closed category C, then for every equation in context Γ | s = t : C that is provable from the
axioms of T, we have

[[Γ | s : C]] = [[Γ | t : C]] : [[Γ]] −→ [[C]] .

Briefly, for all T-models [[−]],

T ` (Γ | s = t : C) implies [[−]] |= (Γ | s = t : C) .

The proof is a straightforward induction, first on the typing judgements for the inter-
pretation, and then on the equational rules for the equations. If we stop after the first
step, we can consider just the following notion of inhabitation.

Remark 2.3.3 (Inhabitation). There is another notion of “provability” for the λ-calculus,
related to the Curry-Howard correspondence of section ??, relating λ-calculus to the proof
theory of propositional logic. If we regard types as “propositions” rather than generalized
algebraic structures, and terms as “proofs” rather than operations in such structures, then
it is more natural to ask whether there even is a term a : A of some type, than whether
two terms of the same type are equal s = t : A. Of course, this only makes sense when
A is considered in the empty context · ` A, rather than Γ ` A for non-empty Γ (consider
the case where Γ = x : A, . . .). We say that a type A is inhabited (by a closed term) when
there is some ` a : A, and regard an inhabited type A as one that is provable. There is
then a different notion of soundness related to this notion of provability.

[DRAFT: February 4, 2025]

2.3 Interpretation of the λ-calculus in a CCC 23

Proposition 2.3.4 (Inhabitation soundness). If T is a λ-theory and [[−]] a model of T in
a cartesian closed category C, then for every type A that is inhabited in T, there is a point
1→ [[A]] in C. Thus for all T-models [[−]],

` a : A implies there is a point 1→ [[A]] .

This follows immediately from the fact that [[·]] = 1 for the empty context; for then the
interpretation of any ` a : A is the point

[[a]] : 1→ [[A]] .

Example 2.3.5. 1. A model of an algebraic theory A (extended to a λ-theory Aλ as in
Example 2.1.3) when taken in a CCC C, is just a model of the algebraic theory A in
the underlying finite product category |C|× of C. An important difference, however,
is that in defining the category of models

ModFP(A, |C|×)

we can take all homomorphisms of models of A as arrows, while the arrows in the
category

Modλ(Aλ, C)
of λ-models are best taken to be isomorphisms, for which one has an obvious way to
deal with the contravariance of the function type [[A→ B]] = [[B]][[A]] (this is discussed
in more detail in the next section).

A point to note is that such a model is entirely determined by the interpretation of
the basic types and terms – i.e. the algebra – and the rest of the interpretation is
“standard” in the sense that [[A→ B]] = [[B]][[A]]. So in particular, our models are not
the “Henkin models” that one sometimes sees in the literature.

2. A model of the theory of a reflexive type, Example 2.1.7, in Set must be the one-
element set 1 = {?} (prove this!). Fortunately, the exponentials in categories of
presheaves are not computed pointwise; otherwise it would follow that this theory
has no non-trivial presheaf models at all! (And then, by Theorem ??, that the theory
itself is degenerate, in the sense that all equations are provable.) That there are non-
trivial models is an important fact in the semantics of programming languages and
the subject called domain theory (see [?]).

3. A (positive) propositional theory T may be regarded as a λ-theory, and a model in
a cartesian closed poset P is then the same thing as before: an interpretation of the
atomic propositions p1, p2, ... of T as elements [[p1]], [[p2]], ... ∈ P , such that the axioms
φ1, φ2, ... of T are all sent to 1 ∈ P by the extension of [[−]] to all formulas,

1 = [[φ1]] = [[φ2]] = · · · ∈ P .

Exercise 2.3.6. How are models of a (not necessarily propositional) λ-theory T in Carte-
sian closed posets related to models in arbitrary Cartesian closed categories? (Hint: Con-
sider the inclusion CCPos ↪→ CCC. Does it have any adjoints?)

[DRAFT: February 4, 2025]

24 Simple Type Theory

2.4 Functorial semantics

In Chapter ?? we saw how an algebraic theory gives rise to a category with finite products,
and its algebras, or models, then correspond to functors preserving finite products on
the theory-category. We then arranged the traditional relationship between syntax and
semantics into a framework that we called functorial semantics. In Chapter ??, we did the
same for propositional logic. As a common generalization of both, the same framework of
functorial semantics can be applied to λ-theories and their models in CCCs. The first step
is to build the classifying category CT from a λ-theory T. This is again constructed from
the theory itself as a “syntactic” category, as follows:

Definition 2.4.1. For any λ-theory T, the syntactic category CT is determined as follows.

• The objects of CT are the types of T.

• Arrows A→ B are terms in context (of length one):

[x : A | t : B] ,

where two such terms x : A | s : B and x : A | s′ : B are to represent the same
morphism when T proves x : A | s = s′ : B. Note that longer contexts are not
required, because we have product types A1 × · · · × An.

• Composition of the terms

[x : A | s : B] : A −→ B and [y : B | t : C] : B −→ C

is the term obtained by substituting s for y in t:

[x : A | t[s/y] : C] : A −→ C .

• The identity morphism on A is the term [x : A | x : A] (up to “α-renaming” of
variables).

Proposition 2.4.2. The syntactic category CT built from a λ-theory is cartesian closed.

Proof. We omit the equivalence classes brackets [x : A | t : B] and simply treat equivalent
terms as equal.

• The terminal object is the unit type 1. For any type A the unique morphism !A :
A→ 1 is the term

x : A | ∗ : 1 .

This morphism is indeed unique, because we always have the equation

Γ | t = ∗ : 1

is an axiom for the terms of unit type 1.

[DRAFT: February 4, 2025]

2.4 Functorial semantics 25

• The product of objects A and B is the type A × B. The first and the second
projections are the terms

z : A×B | fst z : A , z : A×B | snd z : B .

Given morphisms

z : C | a : A , z : C | b : B ,

the term
z : C | 〈a, b〉 : A×B

represents the unique morphism satisfying

z : C | fst 〈a, b〉 = a : A , z : C | snd 〈a, b〉 = b : B .

Indeed, if fst t = a and snd t = b for some t, then we have

t = 〈fst t, snd t〉 = 〈a, b〉 .

as required.

• The exponential of objects A and B is the type A→ B with the evaluation morphism

u : (A→ B)× A
∣∣ (fstu)(sndu) : B .

The transpose of a morphism w : C × A | t : B is the term

z : C | λx : A . (t[〈z, x〉/w]) : A→ B .

Showing that this is the transpose of t requires showing, in context w : C × A,

(λx : A . (t[〈fstw, x〉/w]))(sndw) = t : B

Indeed, we have:

(λx : A . (t[〈fstw, x〉/w]))(sndw) = t[〈fstw, sndw〉/w] = t[w/w] = t ,

which is a valid chain of equations in λ-calculus. The transpose is unique, because
any morphism z : C | s : A→ B that satisfies

(s[fstw/z])(sndw) = t

is equal to λx : A . (t[〈z, x〉/w]), because then

t[〈z, x〉/w] = (s[fstw/z])(sndw)[〈z, x〉/w] =

(s[fst 〈z, x〉/z])(snd 〈z, x〉) = (s[z/z])x = s x .

Therefore,
λx : A . (t[〈z, x〉/w]) = λx : A . (s x) = s ,

as claimed.

[DRAFT: February 4, 2025]

26 Simple Type Theory

The syntactic category CT allows us to replace a T-model [[−]] in a CCC C with a functor
M : CT → C. More precisely, we have the following.

Lemma 2.4.3. A model [[−]] of a λ-theory T in a cartesian closed category C determines
a cartesian closed functor M : CT → C with

M(B) = [[B]], M(c) = [[c]] : 1→ [[C]] = M(C) , (2.6)

for all basic types B and basic constants c : C. Moreover, M is unique up to a unique
isomorphism of CCC functors, in the sense that given another model N satisfying (2.6),
there is a unique natural iso M ∼= N , determined inductively by the comparison maps
M(1) ∼= N(1),

M(A×B) ∼= MA×MB ∼= NA×NB ∼= N(A×B) ,

and similarly for M(BA).

Proof. Straightforward structural induction on types and terms with (2.6) as the base case,
and using soundness, Proposition 2.3.2, for well-definedness on equivalence classes. Note
that the uniqueness up to natural isomorphism uses the fact that all of the morphisms of
CT are given by terms.

We then also have the expected functorial semantics theorem:

Theorem 2.4.4. For any λ-theory T, the syntactic category CT classifies T-models, in the
sense that for any cartesian closed category C there is an equivalence of categories

Modλ
(
T, C

)
' CCC

(
CT , C

)
, (2.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of CCC functors.

Proof. The only thing remaining to show is that, given a model [[−]] in a CCC C and a
CCC functor f : C → D, there is an induced model [[−]]f in D, given by the interpretation
[[A]]f = f [[A]]. This is again straightforward, just as for algebraic theories.

Remark 2.4.5. As mentioned in Example 2.3.5(1) the categories involved in the equiva-
lence (2.7) are groupoids, in which every arrow is iso. The reason we have defined them as
such is that the contravariant argument A in the function type A → B prevents us from
specifying a non-iso homomorphism of models h : M → N by the obvious recursion on the
type structure.

In more detail, given hA : [[A]]M → [[A]]N and hB : [[B]]M → [[B]]N , there is no obvious
candidate for a map

hA→B : [[A→ B]]M −→ [[A→ B]]N ,

[DRAFT: February 4, 2025]

2.4 Functorial semantics 27

when all we have are the following induced maps:

[[A→ B]]M = // ([[B]]M)[[A]]M
(hB)[[A]]M

// ([[B]]N)[[A]]M

([[B]]M)[[A]]N

([[B]]M)hA

OO

(hB)[[A]]N
// ([[B]]N)[[A]]N

([[B]]N)hA

OO

=
// [[A→ B]]N

One solution is therefore to take isos hA : [[A]]M ∼= [[A]]N and hB : [[B]]M ∼= [[B]]N and then
use the inverses h−1

A : [[A]]N → [[A]]M in the contravariant positions, in order to get things
to line up:

[[A→ B]]M = // ([[B]]M)[[A]]M

([[B]]M)h
−1
A ∼=
��

(hB)[[A]]M

// ([[B]]N)[[A]]M

([[B]]N)h
−1
A∼=

��

([[B]]M)[[A]]N

(hB)[[A]]N
// ([[B]]N)[[A]]N

=
// [[A→ B]]N

This suffices to at least get a category of models Modλ
(
T, C

)
, rather than just as set, which

is enough structure to determine the equivalence (2.7). Note that for an algebraic theory A,
this category of λ-models in Set, say, Modλ(Aλ) is still the (wide but non-full) subcategory
of isomorphisms of conventional (algebraic) A-models

Modλ(Aλ)� Mod(A) .

We shall consider other solutions to the problem of contravariance below.

We can now proceed just as we did in the case of algebraic theories and prove that the
semantics of λ-theories in cartesian closed categories is complete, in virtue of the syntactic
construction of the classifying category CT. Specifically, a λ-theory T has a canonical
interpretation [−] in the syntactic category CT, which interprets a basic type A as itself, and
a basic constant c of type A as the morphism [x : 1 | c : A]. The canonical interpretation
is a model of T, also known as the syntactic model, in virtue of the definition of the
equivalence relation [−] on terms. In fact, it is a logically generic model of T, because by
the construction of CT, for any terms Γ | u : A and Γ | t : A, we have

T ` (Γ | u = t : A) ⇐⇒ [Γ | u : A] = [Γ | t : A]

⇐⇒ [−] |= Γ | u = t : A .

For the record, we therefore have now shown:

[DRAFT: February 4, 2025]

28 Simple Type Theory

Proposition 2.4.6. For any λ-theory T,

T ` (Γ | t = u : A) if, and only if, [−] |= (Γ | t = u : A) for the syntactic model [−].

Of course, the syntactic model [−] is the one associated under (2.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by CCC functors (Proposition 2.3.2).

Corollary 2.4.7 (Completeness). For any λ-theory T,

T ` (Γ | t = u : A) if, and only if, M |= (Γ | t = u : A) for every CCC model M .

Moreover, a closed type A is inhabited ` a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

2.5 The internal language of a CCC

In the case of algebraic theories, we were able to recover the syntactic category from the
semantics by taking certain Set-valued functors on the category of models in Set. This
then extended to a duality between the category of all algebraic theories and that of all
“algebraic categories”, which we defined as the categories of Set-valued models of some
algebraic theory (and also characterized abstractly). In the (classical) propositional case,
this syntax-semantics duality was seen to be exactly the classical Stone duality between the
categories of Boolean algebras and of Stone topological spaces. That sort of duality theory
seems to be more difficult to formulate for λ-theories, however, now that we have taken the
category of models to be just a groupoid (but see Remark ??). Nonetheless, there is still a
correspondence between λ-theories and CCCs, which we get by organizing the former into
a category, which is then equivalent to that of the latter. But note that this is analogous to
the equivalence between algebraic theories, regarded syntactically, and regarded as finite
product categories—rather than to the duality between syntax and semantics.

In order to define the equivalence in question, we first need a suitable notion of mor-
phism of theories. A translation τ : S → T of a λ-theory S into a λ-theory T is given by
the following data:

1. For each basic type A in S a type τA in T. The translation is then extended to all
types by the rules

τ1 = 1 , τ(A×B) = τA× τB , τ(A→ B) = τA→ τB .

2. For each basic constant c of type A in S a term τc of type τA in T. The translation
of terms is then extended to all terms by the rules

τ(fst t) = fst (τt) , τ(snd t) = snd (τt) ,

τ〈t, u〉 = 〈τt, τu〉 , τ(λx : A . t) = λx : τA . τt ,

τ(t u) = (τt)(τu) , τx = x (if x is a variable) .

[DRAFT: February 4, 2025]

2.5 The internal language of a CCC 29

A context Γ = x1 : A1, . . . , xn : An is translated by τ to the context

τΓ = x1 : τA1, . . . , xn : τAn .

Furthermore, a translation is required to preserve the axioms of S: if Γ | t = u : A is an
axiom of S then T proves τΓ | τt = τu : τA. It then follows that all equations proved by S
are translated to valid equations in T.

A moment’s consideration shows that a translation τ : S → T is the same thing as a
model of S in CT, despite being specified entirely syntactically. More precisely, λ-theories
and translations between them clearly form a category: translations compose as functions,
therefore composition is associative. The identity translation ιT : T → T translates every
type to itself and every constant to itself.

Definition 2.5.1. Let λThr be the category whose objects are λ-theories and morphisms
are translations between them.

We now have an isomorphism of sets,

HomλThr(S,T) ∼= Modλ(S, CT) , (2.8)

which is natural in the theory S, as can be seen by considering the canonical interpretation
of S in CS induced by the identity translation ιS : S→ S.

Let C be a small cartesian closed category. There is a λ-theory L(C) corresponding
to C, called the internal language of C, and defined as follows:

1. For every object A ∈ C there is a basic type pAq.

2. For every morphism f : A → B there is a basic constant pfq whose type is pAq →
pBq.

3. For every A ∈ C there is an axiom

x : pAq | p1Aqx = x : pAq .

4. For all morphisms f : A→ B, g : B → C, and h : A→ C such that h = g ◦ f , there
is an axiom

x : pAq | phqx = pgq (pfqx) : pCq .

5. There is a constant

T : 1→ p1q ,

and for all A,B ∈ C there are constants

PA,B : pAq× pBq→ pA×Bq , EA,B : (pAq→ pBq)→ pBAq .

[DRAFT: February 4, 2025]

30 Simple Type Theory

They satisfy the following axioms:

u : p1q | T ∗ = u : p1q

z : pA×Bq | PA,B〈pπ1qz, pπ2qz〉 = z : pA×Bq
w : pAq× pBq | 〈pπ1q(PA,Bw), pπ2q(PA,Bw)〉 = w : pAq× pBq

f : pBAq | EA,B(λx : pAq . (pevA,Bq(PA,B〈f, x〉))) = f : pBAq

f : pAq→ pBq | λx : pAq . (pevA,Bq(PA,B〈(EA,Bf), x〉)) = f : pAq→ pBq

The purpose of the constants T, PA,B, EA,B, and the axioms for them is to ensure the
isomorphisms p1q ∼= 1, pA×Bq ∼= pAq× pBq, and pBAq ∼= pAq→ pBq. Types A and B
are said to be isomorphic if there are terms

x : A | t : B , y : B | u : A ,

such that S proves

x : A | u[t/y] = x : A , y : B | t[u/x] = y : B .

Furthermore, an equivalence of theories S and T is a pair of translations

S
τ

** T
σ

jj

such that, for any type A in S and any type B in T,

σ(τA) ∼= A , τ(σB) ∼= B .

The assignment C 7→ L(C) extends to a functor

L : CCC→ λThr ,

where CCC is the category of small cartesian closed categories and functors between them
that preserve finite products and exponentials. Such functors are also called cartesian
closed functors or ccc functors. If F : C → D is a cartesian closed functor then L(F) :
L(C)→ L(D) is the translation given by:

1. A basic type pAq is translated to pFAq.

2. A basic constant pfq is translated to pFfq.

3. The basic constants T, PA,B and EA,B are translated to T, PFA,BA and EFA,FB, respec-
tively.

[DRAFT: February 4, 2025]

2.5 The internal language of a CCC 31

We now have a functor L : CCC→ λThr. How about the other direction? We already
have the construction of syntactic category which maps a λ-theory S to a small cartesian
closed category CS. This extends to a functor

C : λThr→ CCC ,

because a translation τ : S→ T induces a functor Cτ : CS → CT in an obvious way: a basic
type A ∈ CS is mapped to the object τA ∈ CT, and a basic constant x : 1 | c : A is mapped
to the morphism x : 1 | τc : A. The rest of Cτ is defined inductively on the structure of
types and terms.

Theorem 2.5.2. The functors L : CCC → λThr and C : λThr → CCC constitute an
equivalence of categories “up to equivalence” (a biequivalence of 2-categories). This means
that for any C ∈ CCC there is an equivalence of categories

C ' CL(C) ,

and for any S ∈ λThr there is an equivalence of theories

S ' L(CS) .

Proof. For a small cartesian closed category C, consider the functor ηC : C → CL(C), defined
for an object A ∈ C and f : A→ B in C by

ηCA = pAq , ηCf = (x : pAq | pfqx : pBq) .

To see that ηC is a functor, observe that L(C) proves, for all A ∈ C,

x : pAq | p1Aqx = x : pAq

and for all f : A→ B and g : B → C,

x : pAq | pg ◦ fqx = pgq(pfqx) : pCq .

To see that ηC is an equivalence of categories, it suffices to show that for every object
X ∈ CL(C) there exists an object θCX ∈ C such that ηC(θCX) ∼= X. The choice map θC is
defined inductively by

θC1 = 1 , θCpAq = A ,

θC(Y × Z) = θCX × θCY , θC(Y → Z) = (θCZ)θCY .

We skip the verification that ηC(θCX) ∼= X. In fact, θC can be extended to a functor
θC : CL(C) → C so that θC ◦ ηC ∼= 1C and ηC ◦ θC ∼= 1CL(C) .

Given a λ-theory S, we define a translation τS : S→ L(CS). For a basic type A let

τSA = pAq .

[DRAFT: February 4, 2025]

32 Simple Type Theory

The translation τSc of a basic constant c of type A is

τSc = px : 1 | c : τSAq .

In the other direction we define a translaton σS : L(CS) → S as follows. If pAq is a basic
type in L(CS) then

σS pAq = A ,

and if px : A | t : Bq is a basic constant of type pAq→ pBq then

σS px : A | t : Bq = λx : A . t .

The basic constants T, PA,B and EA,B are translated by σS into

σS T = λx : 1 . x ,

σS PA,B = λp : A×B . p ,

σS EA,B = λf : A→ B . f .

If A is a type in S then σS(τSA) = A. For the other direction, we would like to show, for
any type X in L(CS), that τS(σSX) ∼= X. We prove this by induction on the structure of
type X:

1. If X = 1 then τS(σS1) = 1.

2. If X = pAq is a basic type then A is a type in S. We proceed by induction on the
structure of A:

(a) If A = 1 then τS(σSp1q) = 1. The types 1 and p1q are isomorphic via the
constant T : 1→ p1q.

(b) If A is a basic type then τS(σSpAq) = pAq.

(c) If A = B × C then τS(σSpB × Cq) = pBq × pCq. But we know pBq × pCq ∼=
pB × Cq via the constant PA,B.

(d) The case A = B → C is similar.

3. If X = Y × Z then τS(σS(Y × Z)) = τS(σSY) × τS(σSZ). By induction hypothesis,
τS(σSY) ∼= Y and τS(σSZ) ∼= Z, from which we easily obtain

τS(σSY)× τS(σSZ) ∼= Y × Z .

4. The case X = Y → Z is similar.

Composing the isomorphism 2.8 with the equivalence 2.7 we can formulate the foregoing
Theorem 2.5.2 as an adjoint equivalence.

[DRAFT: February 4, 2025]

2.5 The internal language of a CCC 33

Corollary 2.5.3. There is a biequivalence between the categories λThr of λ-theories and
translations between them (and isos thereof), and the category CCC of cartesian closed
categories and CCC functors (and natural isos),

HomλThr

(
T,LC

) ∼= Modλ
(
T, C

)
,

' HomCCC

(
CT , C

)
.

This is mediated by an adjunction,

CCC
L ,,

λThr
C

ll

with C a L, between the syntactic category functor C and the internal language functor L.

Exercise 2.5.4. In the proof of Theorem 2.5.2 we defined, for each C ∈ CCC, a functor
ηC : C → CL(C). Verify that this determines a natural transformation η : 1CCC =⇒ C ◦ L
which is an equivalence of categories. What about the translation εT : T→ L(CT)—is that
an isomorphism?

See the book [?] for another approach to the biequivalence of Corollary 2.5.3, which
turns it into an equivalence of categories by fixing the CCC structure and requiring it to
be preserved strictly.

Lawvere’s fixed point theorem

As an application of the internal language of a CCC, we can use the λ-calculus to give a
neat proof of a fixed point theorem for CCCs due to Lawvere [?]. Andrej Bauer has called
Lawvere’s theorem the “quintessential diagonal argument” [?].

Theorem 2.5.5 (Lawvere). In any cartesian closed category, if e : A→ BA is a pointwise
surjection, then every map f : B → B has a fixed point.

By “pointwise surjection” we mean a map that induces a surjection from points 1→ A to
points 1→ BA by composition.

Proof. Given f : B → B, consider the map λx : A.f(ex)x : 1 → BA. Since e is pointwise
surjective, there is a point a : 1→ A such that ea = λx : A.f(ex)x. Thus

(ea)a = (λx : A.f(ex)x)a = f(ea)a ,

so (ea)a : 1→ B is a fixed point of f : B → B.

Among the consequences of this theorem stated in [?]: Cantor’s theorem (Corollary
1.2); Gödel’s incompleteness theorem (Theorem 3.3); and Tarski’s indefinability of truth
(Theorem 3.2). These are all derived from the contrapositive form: if a certain object
has an endomap without fixed points, then some pointwise surjection is not possible. For

[DRAFT: February 4, 2025]

34 Simple Type Theory

instance, in Set the contrapositive form of Theorem 2.5.5 implies that there is no pointwise
surjection from A to its powerset PA ∼= 2A, because the “negation” map ¬ : 2→ 2 has no
fixed points. (The same argument of course works in any topos, [?].)

Lawvere’s original version is a bit more general, but even in the present form it is clear
that Lawvere’s fixed point theorem is the essence of many familiar diagonal arguments.

[DRAFT: February 4, 2025]

Bibliography

[Awo] Steve Awodey. Introduction to categorical logic. Fall 2024, https://awodey.

github.io/catlog/notes/catlogdraft.pdf.

[Coq] Thierry Coquand. Type theory. The Stanford Encyclopedia of Philoso-
phy, Fall 2022 Edition, https://plato.stanford.edu/archives/fall2022/

entries/type-theory.

[Joh82] P.T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in advanced math-
ematics. Cambridge University Press, 1982.

[MH92] Michael Makkai and Victor Harnik. Lambek’s categorical proof theory and
Läuchli’s abstract realizability. Journal of Symbolic Logic, 57(1):200–230, 1992.

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984.

[MR95] Michael Makkai and Gonzalo Reyes. Completeness results for intuitionistic and
modal logic in a categorical setting. Annals of Pure and Applied Logic, 72:25–101,
1995.

[Sco70] Dana S. Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, volume 125,
pages 237–275. Springer-Verlag, 1970.

[Tai68] William W. Tait. Constructive reasoning. In Logic, Methodology and Philos.
Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967), pages 185–199. North-
Holland, Amsterdam, 1968.

[DRAFT: February 4, 2025]

https://awodey.github.io/catlog/notes/catlogdraft.pdf
https://awodey.github.io/catlog/notes/catlogdraft.pdf
https://plato.stanford.edu/archives/fall2022/entries/type-theory
https://plato.stanford.edu/archives/fall2022/entries/type-theory

	Simple Type Theory
	The -calculus
	Cartesian closed categories
	Interpretation of the -calculus in a CCC
	Functorial semantics
	The internal language of a CCC

	Bibliography

