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Chapter 3

Dependent Type Theory

The Curry-Howard correspondence from Chapter ?? can be extended to natural deduction
proofs in first-order logic, providing an extension of the “propositions as types/proofs as
terms” idea from propositional logic to first-order logic (see [Sco70, How80] . In addition
to simple types A,B, ... representing propositions, one then has dependent types x : A ⊢
B(x) representing “propositional functions” or predicates. In addition to the simple type
formers A × B and A → B, one has dependent type formers Σx:AB(x) and Πx:AB(x),
representing the quantified propositions ∃x:AB(x) and ∀x:AB(x). As before, these types may
have different terms s, t : Πx:AB(x), resulting from different proofs of the corresponding
propositions, so that the calculus of terms again records more information than mere
provability. Also as before, the resulting abstract structure turns out to be one that is
shared by other categories not arising from logic—and now the coincidence is even more
remarkable, because the structure at issue is a much more elaborate one. Where proofs
in the propositional calculus gave rise to a cartesian closed category, the category of proof
terms of first-order logic will be seen to be locally cartesian closed, a mathematical structure
also shared by sheaves on a space, Grothendieck toposes, categories of fibrations, and other
important examples.

Before stating a formal dependent type theory, we begin by infomally “categorifying”
first-order logic with an abstraction (due to Lawvere [Law70]) called a hyperdoctrine. A
hyperdoctrine is a contravariant functor P : Cop → Cat (see Section 3.1), and there are in
particular both poset-valued and “proper” category-valued ones. The former correspond
to propositional and predicate logic, while the latter correspond more closely to dependent
type theory, where the individual value categories P (C) may be proper cartesian closed
categories (rather than just Heyting algebras or CCC posets). Moreover, the reindexing
functors along all projections pA : X × A → A in the index category C of contexts are
also required to admit both left and right adjoints ΣA ⊣ p∗A ⊣ ΠA, according to Lawvere’s
adjoint analysis of quantification. An important difference between hyperdoctrines and
dependent type theories, however, is that the indexing category of contexts in dependent
type theory has not just finite products, but also some additional structure resulting from
an operation of context extension, which takes as input a type in context Γ ⊢ A and returns
a new context (Γ, x : A), together with a substitution arrow (Γ, x : A) → Γ. This is taking
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6 Dependent Type Theory

the “propositions-as-types” idea even more seriously, by allowing every proposition Γ ⊢ φ
in first-order logic to form a new type {Γ ⊢ φ}, thus turning the objects A ∈ P (C) in the
value-categories of hyperdoctrine (C, P ) into arrows {A} → C in C.1

3.1 Hyperdoctrines

Given an algebraic signature, let C be the category of contexts, with (non-dependent)
tuples of typed variables Γ = (x1 : C1, ..., xn : Cn) as objects, and as arrows γ : ∆ → Γ the
n-tuples of terms c1 : C1, . . . , cn : Cn, all in context ∆ = (y1 : D1, ..., ym : Dm),

∆ ⊢ ci : Ci , 1 ≤ i ≤ n .

Composition is given by substitution of terms for variables,

γ ◦ δ = (c1[d1/y1, . . . , dm/ym], . . . , cn[d1/y1, . . . , dm/ym], )

for δ = (d1, . . . , dm) : E → ∆ with E = (z1 : E1, ..., zk : Ek), and the identity arrows are
the variables themselves (terms are identified up to α-renaming of variables, as in Lawvere
algebraic theories, see Chapter ??). The category C then has all finite products, essentially
given by tupling.

For each object Γ, let P (Γ) be the poset of all first-order formulas (Γ | φ), ordered by
entailment Γ | φ ⊢ ψ and identified up to provable equivalence Γ | φ ⊣⊢ ψ. Substitution
of a term σ : ∆ → Γ into a formula (Γ | φ) then determines a morphism of posets
σ∗ : P (Γ) → P (∆), which also preserves all of the propositional operations,

σ∗(φ ∧ ψ) = φ[σ/x] ∧ ψ[σ/x] = σ∗(φ) ∧ σ∗(ψ), etc.

(Exercise!). Moreover, since substitutions into formulas and terms commute with each
other, τ ∗σ∗φ = φ[σ ◦ τ/x], this action is strictly functorial, and so we have a contravariant
functor

P : Cop −→ Heyt

from the category of contexts to the category of Heyting algebras.
Now consider the quantifiers ∃ and ∀. Given a projection of contexts pX : Γ×X → Γ,

in addition to the pullback functor

p∗X : P (Γ) −→ P (Γ×X)

induced by weakening, there are the operations of quantification

∃X ,∀X : P (Γ×X) −→ P (Γ) .

By the rules for the quantifiers, these are indeed left and right adjoints to weakening,

∃X ⊣ p∗X ⊣ ∀X .

The Beck-Chevalley rules assert that substitution commutes with quantification, in the
sense that (∀xφ)[s/y] = ∀x(φ[s/y]), and similarly for (∃xφ).

1[Law70] does just this.
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3.1 Hyperdoctrines 7

Definition 3.1.1. A (posetal) hyperdoctrine consists of a Cartesian category C together
with a contravariant functor

P : Cop −→ Heyt ,

such that for each f : D → C the action maps f ∗ = Pf : PC → PD have both left and
right adjoints

∃f ⊣ f ∗ ⊣ ∀f

that satisfy the Beck-Chavalley conditions.

Exercise 3.1.2. Verify that the syntax of first-order logic can indeed be organized into a
hyperdoctrine in the way just described.

Examples

1. We just described the syntactic example of first-order logic. Indeed, for each first-
order theory T there is an associated hyperdoctrine (CT, PT), with the types and terms
of T as the category of contexts CT, and the formulas (in context) of T as “predicates”,
i.e. the elements of the Heyting algebras φ ∈ PT(Γ). A general hyperdoctrine can be
regarded as an abstraction of this example.

2. A hyperdoctrine on the index category C = Set is given by the powerset functor

P : Setop −→ Heyt ,

which is represented by the Heyting algebra 2, in the sense that for each set I one
has

P(I) ∼= Hom(I,2) .

Similarly, for any complete Heyting algebra H in place of 2, there is a hyperdoctrine
H-Set, with

PH(I) ∼= Hom(I,H) .

The adjoints to precomposition along a map f : J → I are given by

∃f (φ)(i) =
∨
j∈J

(f(j) = i) ∧ φ(j) ,

∀f (φ)(i) =
∧
j∈J

(f(j) = i) ⇒ φ(j) ,

where the value of x = y in H is defined to be
∨
{⊤ | x = y}.

We leave it as an exercise to verify that this is hyperdoctrine, in particular to show
that the Beck-Chevalley conditions are satisfied.

Exercise 3.1.3. Show this.
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8 Dependent Type Theory

3. For a related example, let C be any small index category and C = Ĉ, the category
of presheaves on C. An internal Heyting algebra H in C, i.e. a functor Cop → Heyt,
is said to be internally complete if, for every I ∈ C, the transpose H → HI of the
projection H× I → H has both left and right adjoints. Such an internally complete
Heyting algebra determines a (representable) hyperdoctrine PH : C → Set just as for
the case of C = Set, by setting PH(C) = C(C,H).

4. For any Heyting category H let Sub(C) be the Heyting algebra of all subobjects
S ↣ C of the object C. The presheaf Sub : Hop → Heyt, with action by pullback, is
then a hyperdoctrine, essentially by the definition of a Heyting category.

Remark 3.1.4 (Lawvere’s Law). In any hyperdoctrine (C, P ), for each object C ∈ C, we
can determine an equality relation =C in each P (C × C), namely by setting

(x =C y) = ∃∆C
(⊤) ,

where ∆C : C → C × C is the diagonal, ∃∆C
⊣ ∆∗

C , and ⊤ ∈ P (C). Displaying variables
for clarity, if ρ(x, y) ∈ P (C × C) then ∆∗

Cρ(x, y) = ρ(x, x) ∈ PC is the contraction of
the different variables, and the adjunction ∃∆C

⊣ ∆∗
C can be formulated as the following

two-way rule,

x : C | ⊤ ⊢ ρ(x, x)
x : C, y : C | (x =C y) ⊢ ρ(x, y)

(3.1)

which expresses that (x =C y) is the least reflexive relation on C. See [Law70] and Exercise
?? above.

Exercise 3.1.5. Prove the standard first-order laws of equality from the above hyperdoc-
trine formulation of Lawvere’s Law (3.1).

Proper hyperdoctrines

Now let us consider some hyperdoctrines of a different kind. For any set I, let SetI be the
category of families of sets (Ai)i∈I , with families of functions (gi : Ai → Bi)i∈I as arrows,
and for f : J → I let us reindex along f by the precomposition functor f ∗ : SetI → SetJ ,
with

f ∗((Ai)i∈I)j = Af(j) .

Thus we have a contravariant functor

P : Setop → Cat

with P (I) = SetI and f ∗(A : I → Set) = A ◦ f : J → Set.
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3.1 Hyperdoctrines 9

Lemma 3.1.6. The precomposition functors f ∗ : SetI → SetJ have both left and right
adjoints f! ⊣ f ∗ ⊣ f∗ which can be computed by the formulas:

f!(A)i =
∐

j∈f−1{i}

Aj , (3.2)

f∗(A)i =
∏

j∈f−1{i}

Aj ,

for A = (Aj)j∈J . Moreover, these functors satisfy the Beck-Chevally conditions.

A closely related example uses the familiar equivalence of categories SetI ≃ Set/I , where
now the adjoints

f! ⊣ f ∗ ⊣ f∗ : Set/J −→ Set/I

to reindexing along f : J → I are (post-)composition, pullback, and “push-forward”, re-
spectively. In this case, the action of the pseudofunctor P is not strictly functorial, as it was
for the case of P (I) = SetI . Note that the Beck-Chevalley conditions for such Cat-valued
functors should now also be stated as (canonical) isomorphisms, rather than equalities as
they were for poset-valued functors. In this way, when the individual categories P (I) are
proper, and not just posets, the entire hyperdoctrine structure may be weakened to include
(coherent) isomorphisms, both in the functorial action of P , and in the B-C conditions.
We will not spell out the required coherences here, but the interested reader may look up
the corresponding notion of an indexed-category, which is a Cat-valued pseudofunctor (see
[Joh03, B1.2]).

Example 3.1.7. Another example of a “proper” hyperdoctrine, with values in non-posetal
(large!) categories, is the category of presheaves construction Ĉ = SetC

op

, where:

P : Catop −→ CAT ,

C 7−→ Ĉ .

Here the action of P may be assumed to be strictly functorial, because it’s given by
precomposition. Nonetheless the B-C conditions must be stated as natural isos, because
the adjoints F! ⊣ F ∗ ⊣ F∗ : D̂ −→ Ĉ for F : D → C are given by left and right Kan
extensions, which need not be strictly functorial.

We shall consider several more examples of proper hyperdoctrines below. The inter-
nal logic of such categories generalizes and “categorifies” first-order logic, and is better
described as dependent type theory. Proper hyperdoctrines P : Cop → Cat are roughly
related to dependent type theory in the way that posetal ones P : Cop → Pos are related
to FOL. There are actually two distinct aspects of this generalization: (1) the individual
categories of “predicates” P (C) are proper categories rather than mere posets, (2) the
variation over the index category C of contexts (and its adjoints) is weakened accordingly
to pseudo-functoriality. Each of these aspects plays an important role in dependent type
theory and its categorical semantics.
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10 Dependent Type Theory

First-Order Logic Dependent Type Theory

Propositional Logic Simple Type Theory

3.2 Dependently-typed lambda-calculus.

We give a somewhat informal specification of the syntax of the dependently-typed λ-calculus
(see [Hof95, AG] for a more detailed exposition).

Dependent type theories have four standard forms of judgement

A : type , A ≡ B : type , a : A , a ≡ b : A .

We refer to the triple equality relation ≡ in these judgements as definitional (or judgemen-
tal) equality. It should not be confused with the notions of (extensional and intensional)
propositional equality to be introduced below. A judgement J of one of the four above
kinds can also be made relative to a context Γ of variable declarations, a situation that
we indicate by writing Γ ⊢ J . When stating deduction rules for such judgements we make
use of standard conventions to simplify the exposition, such as omitting the (part of the)
context that is common to premisses and conclusions of the rule.

To formulate the rules, we revisit the rules of simple type theory from Section ?? and
adjust them as follows.

Judgements: The basic kinds of judgements are:

Γ ctx , Γ ⊢ A type , Γ ⊢ a : A .

along with the judgemental equalities of each kind:

Γ ≡ ∆ ctx A ≡ B type a ≡ b : A ,

each of which are assumed to satisfy the usual laws of equality.

Contexts: These are formed by the rules:

(·) ctx
Γ ⊢ A type

Γ, x : A ctx

Here it is assumed that x is a fresh variable, not already occurring in Γ. Note that, unlike
in the simple type theory of the previous chapter, the order of the types occurring in a
context now matters, since types to the right may depend on ones to their left.
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3.2 Dependently-typed lambda-calculus. 11

Types: In addition to the usual simple types, generated from basic types by formation of
products and function types, we may also have some basic types in context,

Basic dependent types Γ1 ⊢ B1, Γ2 ⊢ B2, · · ·

where the contexts Γ need not be basic. Further dependent types are formed from the
basic ones by the sum Σ and product Π type formers, using the formation rules :

Γ, x : A ⊢ B type

Γ ⊢ Σx:AB type

Γ, x : A ⊢ B type

Γ ⊢ Πx:AB type

Terms: As for the simple types, we assume there is a countable set of variables x, y, z, . . . .
We are also given a set of basic constants. The set of terms is then generated from variables
and basic constants by the following grammar, just as for simple types:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

The rules for deriving typing judgments are much as for simple types. They are of course
assumed to hold in any context Γ.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An ⊢ xi : Ai

(1 ≤ i ≤ n)

• The constant ∗ has type 1:

∗ : 1

• The typing rules for pairs and projections now take the form:

a : A b : B(a)

⟨a, b⟩ : Σx:AB

c : Σx:AB

fst c : A

c : Σx:AB

snd c : B(fst c)

We write e.g. B(a) rather than B[a/x] to indicate a substitution of the term a for
the variable x in the type B. Similarly, we may write Σx:AB(x) to emphasize the
possible occurence of the variable x in B. We treat A×B as another way of writing
Σx:AB, when the variable x : A does not occur in the type B.
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12 Dependent Type Theory

• The typing rules for application and λ-abstraction are now:

t : Πx:AB a : A

t a : B(a)

x : A ⊢ t : B
(λx : A . t) : Πx:AB

We treat A → B as another way of writing Πx:AB when the variable x : A does not
occur in the type B.

The (β and η) equations between these terms are just as they were for simple types:

• Equations for unit type:

t ≡ ∗ : 1

• Equations for sum types:

u ≡ v : A s ≡ t : B(a)

⟨u, s⟩ ≡ ⟨v, t⟩ : Σx:AB

s ≡ t : Σx:AB

fst s ≡ fst t : A

s ≡ t : Σx:AB

snd s ≡ snd t : A

t ≡ ⟨fst t, snd t⟩ : Σx:AB
(η-rule)

fst ⟨s, t⟩ ≡ s : A snd ⟨s, t⟩ ≡ t : A
(β-rule)

• Equations for product types:

s ≡ t : Πx:AB u ≡ v : A

su ≡ t v : B

x : A ⊢ t ≡ u : B

(λx : A . t) ≡ (λx : A . u) : Πx:AB

(λx : A . t)u ≡ t[u/x] : A
(β-rule)

λx : A . (t x) ≡ t : Πx:AB
if x ̸∈ FV(t) (η-rule)

Equality types: Just as for first-order logic, for each type A we have a primitive equality
type:

x, y : A ⊢ EqA(x, y) type .
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3.2 Dependently-typed lambda-calculus. 13

This is called propositional equality. For convenience, we may sometimes also write x =A y
for EqA(x, y). Although they will turn out to be logically equivalent, the reader is warned
not to confuse propositional and judgemental equality x ≡ y : A.

The formation, introduction, elimination, and computation rules for equality types are
as follows:

s : A t : A

s =A t type

a : A

refla : (a =A a)

p : s =A t

s ≡ t : A

p : s =A t

p ≡ refls : (s =A s)

The elimination rule is known as equality reflection. We may say that two elements s, t : A
are propositionally equal if the type s =A t is inhabited. Thus the equality reflection rule
says that if two terms are propositionally equal then they are judgementally equal.

Exercise 3.2.1. Show that two terms are propositionally equal if, and only if, they are
judgementally equal.

Remark 3.2.2 (Identity types). The formulation of the rules for equality just given is
known as the extensional theory. There is also an intensional version, with different elimi-
nation (and computation) rules, to be considered in the next chapter. To help maintain the
distinction between these three (!) different relations, the intensional version is sometimes
called the identity type and written IdA(s, t) instead. See [AG] for details.

Remark 3.2.3 (Variant rules for sum types). Another formulation of the rules for Σ-types
using a single dependent elimination rule is as follows:

z : Σx:AB ⊢ C type x : A, y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
z : Σx:AB ⊢ split(z, c) : Σx:AB

with the associated computation rule:

z : Σx:AB ⊢ C type x : A, y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
x : A, y : B(x) ⊢ split(⟨x, y⟩, c) ≡ c(x, y) : C(⟨x, y⟩)

These rules permit one to derive the simple elimination terms fst c and snd c, and to prove
the above computation rules for them. The η-rule is derived using a dependent elimination
involving the Eq-type.

Exercise 3.2.4. Prove the simple elimination rules for sum-types (involving fst c and
snd c) from the dependent ones (involving split).

Remark 3.2.5 (The type-theoretic axiom of choice). One of the oldest problems in the
foundations of mathematics is the logical status of the Axiom of Choice. Is it a “Law of
Logic”? A mathematical fact about sets? A falsehood with paradoxical consequences?
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14 Dependent Type Theory

Per Martin-Löf discovered that the rules of constructive type theory that we have just
presented actually suffice to decide this question in favor of “Law of Logic” in a certain
sense [ML84] (see also [Tai68]). Since the statement of the type theoretic axiom of choice
goes (slightly) beyond standard first-order logic, this arguably provides a resolution that
also clarifies why the problem remained open for so long in conventional mathematics.

Under propositions as types, reading Σ as “there exists” and Π as “for all”, a type
such a Πx:AΣy:BR(x, y) can be regarded as a stating a proposition—in this case, “for all
x : A there is a y : B such that R(x, y)”. By Curry-Howard, such a “proposition” is then
provable if it has a closed term t : Πx:AΣy:BR(x, y), which then corresponds to a proof, by
unwinding the rules that constructed the term, and observing that they correspond to the
usual natural deduction rules for first-order logic.

Of course, the rules of construction for terms correspond to provability only under a
certain “constructive” conception of validity (see [Sco70]). Stated as follows,

Πx:AΣy:BR(x, y) → Σf :A→BΠx:AR(x, fx) , (3.3)

the “type theoretic axiom of choice” may sound like the classical axiom of choice under
the propositions as types interpretation, but this type is actually provable in (constructive)
type theory, rather than being an axiom!

Exercise 3.2.6. Prove the type theoretic axiom of choice (3.3) from the rules for sum and
product types given here.

3.2.1 Interaction of Eq with Σ and Π

The type theoretic axiom of choice Example 3.2.5, can be seen as a distributivity law
for Σ and Π. It is in fact an isomorphism of types : there are terms going both ways, the
composites of which are propositionally (and therefore definitionally!) equal to the identity
maps (i.e. λx : X. x : X → X). It is natural to ask, how do the other type formers interact?

Consider first the result of combining Eq-types with Σ. We can show that for s, t : A×B
there is always a term,

EqA×B(s, t) →
(
EqA(fst s, fst t)× EqB(snd s, snd t)

)
,

Moreover, there is a term in the other direction as well, and the composites are proposition-
ally equal to the identity. By equality reflection, it therefore follows that these types are
also syntactically isomorphic, in the sense just described. The same is true for dependent
sums, although this is a bit more awkward to state, owing to the fact that snd (s) : B(fst s)
and snd t : B(fst (t). However, since the first projection gives a term p : EqA(fst s, fst t)
we have fst s ≡ fst t and therefore B(fst s) ≡ B(fst t), so that EqB(fst s)(snd s, snd t)
makes sense, and is in fact judgementally equal to EqB(fst t)(snd s, snd t), so we can write:

EqΣx:AB(s, t) → Σp:EqA(fst s,fst t)EqB(fst s)(snd s, snd t) ,
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3.3 Locally cartesian closed categories 15

Moreover, since EqB(fst s)(snd s, snd t) does not depend on p : EqA(fst s, fst t), this actially
rewrites to:

EqΣx:AB(s, t) → EqA(fst s, fst t)× EqB(fst s)(snd s, snd t) .

Moreover, these types are also isomorphic.
For Π-types, given terms f, g : A→ B, we can form a term of type

EqA→B(f, g) → Πx:AEqB(fx, gx) .

and again, this is an isomorphism of types. The corresponding law for dependent functions
f, g : Πx:AB takes the more perspicuous form

EqΠx:AB(f, g) → Πx:AEqB(x)(fx, gx) .

And again, this is also an iso. Note that these last two isomorphisms say that two functions
are equal just if they are so “pointwise”. This principle is called Function Extensionality.

Finally, let us consider equality of equality types. Given any terms a, b : C and p, q :
EqC(a, b), what more can be said? The principle called Uniqueness of Identity Proofs (UIP)
asserts that there is always a term of type

EqEqC(a,b)(p, q) .

Is there an argument for this principle, analogous to those for the equalities of terms of
types Σ and Π? We shall return to this question in the setting of intensional type theory
in the next chapter.

Exercise 3.2.7. Prove that extensional type theory satisfies (UIP).

3.3 Locally cartesian closed categories

Recall the following proposition from ??.

Proposition 3.3.1 (and Definition). The following conditions on a category C with a
terminal object 1 are equivalent:

1. Every slice category C/A is cartesian closed.

2. For every arrow f : B → A the (post-) composition functor Σf : C/B → C/A has a
right adjoint f ∗, which in turn has a right adjoint Πf .

B
f // A

C/B

Σf

%%

Πf

99
C/Af ∗oo
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16 Dependent Type Theory

Such a category is called locally cartesian closed.

The notation Σf ⊣ f ∗ ⊣ Πf of course anticipates the interpretation of DTT. A common
alternate notation is f! ⊣ f ∗ ⊣ f∗.

Proof. Suppose every slice of C is cartesian closed. It suffices to consider the case of (2)
with A = 1, and to show that the functor B∗ : C → C/B with B∗(X) = (π2 : X ×B → B)
has both left and right adjoints ΣB ⊣ B∗ ⊣ ΠB : C/B → C. For ΣB we can just take
the forgetful functor. For ΠB(p : X → B) we use the CCC structure in C to form the
map pB : XB → BB, which we then pull back along the point ′1B

′ : 1 → BB that is the
transpose of the identity map 1B : B → B.

ΠB(X)

��

// XB

pB

��
1 ′1B

′
// BB

Conversely, if C is LCC, then in every slice C/X we can define the product of A→ X and
B → X as A×X B = ΣAA

∗B and the exponential as (BA)X = ΠAA
∗B. The universal

properties are then easily checked.

Exercise 3.3.2. Verify the details of the proof just sketched for Proposition 3.3.1.

Basic examples of LCCCs

1. We have already seen the hyperdoctrine C = Set and P : Setop → Cat where P (I) =
SetI , with action of f : J → I on A : I → Set by precomposition f ∗A = A ◦ f : J →
Set, which is strictly functorial. There is an equivalent hyperdoctrine with the slice
category Set/I as the “category of predicates” and action by pullback f ∗ : Set/I →
Set/J . The equivalence of categories

SetI ≃ Set/I

allows us to use post-composition as the left adjoint f! : Set/J → Set/I , rather
than the coproduct formula in (3.2). Indeed, this hyperdoctrine structure arises
immediately from the locally cartesian closed character of Set. We have the same
for any other LCC E , namely the pair (E , E/(−)) determines a hyperdoctrine, with
the action of E/(−) by pullback, and the left and right adjoints coming from the LCC
structure.

2. Another familiar example of a hyperdoctrine arising from LCC structure is presheaves
on a small category C, where for the slice category Ĉ/X we have another category of
presheaves, namely

Ĉ/X ∼=
∫̂
CX , (3.4)
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3.3 Locally cartesian closed categories 17

on the category of elements
∫
CX. For a natural transformation f : Y → X we have

a functor
∫
f :

∫
Y →

∫
X, which (as usual) induces a triple of adjoints on presheaves,

(
∫
f)! ⊣ (

∫
f)∗ ⊣ (

∫
f)∗ :

∫̂
Y −→

∫̂
X ,

where the middle functor (
∫
f)∗ is precomposition with

∫
f , which preserves all

(co)limits. These satisfy the Beck-Chevalley conditions (up to isomorphism), be-
cause this indexed category is equivalent to the one coming from the LCC structure
(3.4), which we know satisfies them.

Note that each of the categories Ĉ/X is therefore also Cartesian closed, so that Ĉ is

indeed LCC by Proposition 3.3.1. Moreover each Ĉ/X also has coproducts 0, X + Y ,
so it is a “categorified” Heyting algebra—although we don’t make that part of the
definition of a hyperdoctrine.

3. An instructive example of a hyperdoctrine that is not an LCC is the subcategory
of Pos of posets and monotone maps, which we already met in Section ??, with
the “predicates” being the discrete fibrations. For each poset K, let us take as the
category of predicates P (K) the full subcategory dFib K ↪→ Pos/K consisting of the
discrete fibrations : monotone maps p : X → K with the “unique lifting property”:
for any x and k ≤ p(x) there is a unique x′ ≤ x with p(x′) = k. Since each category
dFib/K is equivalent to a category of presheaves SetK

op

, and pullback along any
monotone f : J → K preserves discrete fibrations, and moreover commutes with the
equivalences to the presheaf categories and the precomposition functor f ∗ : K̂ → Ĵ ,
we have a hyperdoctrine if only the Beck-Chevalley conditions hold. We leave this
as an exercise for the reader. Finally, observe that dFib cannot be an LCC, simply
because it does not have a terminal object; however, every slice of course does one,
and so every slice dFib/K is a CCC, and therefore also an LCC (since a slice of a slice
is a slice).

4. An example formally similar to the foregoing is the non-full subcategory LocHom ↪→
Top of topological spaces and local homeomorphisms between them, which also lacks
a terminal object, but each slice of which LocHom/X ≃ Sh(X) is equivalent to the
topos of sheaves on the space X, and is therefore CCC (and so LCCC).

5. Fibrations of groupoids. Another, similar, example of a hyperdoctrine not arising
simply from an LCCC is the category Grpd of groupoids and homomorphisms, which
is not LCC (cf. [Pal03]). We can however take as the category of predicates P (G)
the full subcategory Fib(G) ↪→ Grpd/G consisting of the fibrations into G: homomor-
phisms p : H → G with the “iso lifting property”: for any h ∈ H and γ : g ∼= p(h)
there is some ϑ : h′ ∼= h with p(ϑ) = γ. Now each category Fib(G) is biequivalent to a
category of presheaves of groupoids Fib(G) ≃ GrpdG

op

. It is not so easy to show that
this is a (bicategorical) hyperdoctrine; see [HS98]. This example will be important
in the next chapter as a model of intensional dependent type theory. The category
Cat, with iso-fibrations as the “predicates”, has a similar character.
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18 Dependent Type Theory

Exercise 3.3.3. 1. Verify that the pullback of a discrete fibration X → K along a
monotone map f : J → K exists in Pos, and is again a discrete fibration.

2. Verify the equivalence of categories dFib(K) ≃ SetK
op

.

3. Show the Beck-Chavelley conditions for the indexed category of discrete fibrations of
posets.

Exercise 3.3.4. Let P : Cop → Cat be a hyperdoctrine for which there are equivalences
PC ≃ C/C, naturally in C, with respect to the left adjoints Σf : C/A → C/B for all
f : A→ B in C. Show that C is then LCC.

Exercise 3.3.5. Show that any LCCC C, regarded as a hyperdoctrine, has equality in the
sense of Remark 3.1.4.

3.4 Functorial semantics of DTT in LCCCs

We begin by describing a “naive” interpretation of dependent type theory in a locally
cartesian closed category which, although not strictly sound, is nonetheless useful and
intuitive. In particular, it extends the functorial semantics of simple type theory in CCCs
that we developed in the last chapter in a natural way. In a subsequent section, we shall
“strictify” the interpretation to one that is fully correct, but technically somewhat more
complicated. See Remark 3.4.4 below.

Contexts Γ are interpreted as objects [[Γ]], and dependent types Γ ⊢ A as morphisms
into the context [[Γ]]. To begin, let C be an LCCC, and interpret the empty context as the
terminal object, [[·]] = 1. Then to each closed basic type · ⊢ B, we assign a type [[B]] and
interpret [[· ⊢ B]] : [[B]] → 1. Proceeding by recursion, given any type in context Γ ⊢ A, we
shall have

[[Γ ⊢ A]] : [[Γ, A]] −→ [[Γ]] ,

abbreviating Γ, x : A to Γ, A. A basic dependent type Γ ⊢ B is interpreted by specifying
a map [[Γ ⊢ B]] : [[Γ, B]] −→ [[Γ]], where the interpretation [[Γ]] is assumed to have been
already given. Note that in this way, we also interpret the operation of context extension,
by taking the domain of the interpretation of a type in context.

Weakening a type in context Γ ⊢ C to one Γ, A ⊢ C is interpreted as

[[Γ, A ⊢ C]] = p∗[[Γ ⊢ C]],

that is, the lefthand vertical map in the following pullback square, where the substitution
p : [[Γ, A]] → [[Γ]] is the canonical projection p = [[Γ ⊢ A]] .

[[Γ, A, C]] //

[[Γ, A ⊢ C]]
��

[[Γ, C]]

[[Γ ⊢ C]]
��

[[Γ, A]] p
// [[Γ]]

(3.5)
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3.4 Functorial semantics of DTT in LCCCs 19

Given Γ, A ⊢ B, we may assume that we already have maps

[[Γ, A,B]]
[[Γ,A⊢B]]−→ [[Γ, A]]

[[Γ⊢A]]−→ [[Γ]] ,

and we use the left and right adjoints to the pullback functor

[[Γ ⊢ A]]∗ : C/[[Γ]] → C/[[Γ,A]]

to interpret the eponymous type-forming operations:

[[Γ ⊢ Σx:AB]] = Σ[[Γ⊢A]]([[Γ, A ⊢ B]]) ,

[[Γ ⊢ Πx:AB]] = Π[[Γ⊢A]]([[Γ, A ⊢ B]]) .

A term Γ ⊢ a : A is interpreted as a section:

[[Γ]]

=

''

[[Γ ⊢ a : A]]
// [[Γ, A]]

[[Γ ⊢ A]]
��

[[Γ]]

Finally, as in first-order logic, substitution of a term Γ ⊢ a : A for a variable Γ, x : A in a
dependent type Γ, A ⊢ B is interpreted by taking a pullback,

[[Γ, B(a)]] //

[[Γ ⊢ B(a)]]

��

[[Γ, A,B]]

[[Γ, A ⊢ B]]

��
[[Γ]]

[[Γ ⊢ a : A]]
// [[Γ, A]]

and similarly for substitution into terms.
More generally, given any substitution γ : ∆ → Γ (a tuple of terms c1, . . . , cn in context

∆ of types those in Γ = (x1 : C1, . . . , xn : Cn)), we have a morphism [[γ]] : [[∆]] → [[Γ]].
Then, as in the substitution of a single term Γ ⊢ c : C for a variable Γ, x : C, we can obtain
a pullback diagram along [[γ]]:

[[∆, A(γ)]] //

[[∆ ⊢ A(γ)]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[∆]]
[[γ]]

// [[Γ]]
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20 Dependent Type Theory

The lefthand vertical map is then by definition the interpretation of the substituted type
∆ ⊢ A(γ). The interpretation of a substitution into a term ∆ ⊢ a(γ) : A(σ) is similarly
induced by pullback.

Finally, we interpret an equality type x : A, y : A ⊢ EqA(x, y) as the diagonal of the
interpretation of A,

[[x, y : A ⊢ EqA(x, y)]] = ∆[[A]] : [[A]] −→ [[A]]× [[A]] .

As a map of contexts we then have

[[A,A, EqA(x, y)]] = [[A]] −→ [[A]]× [[A]] = [[A,A]] .

For Γ, A,A ⊢ EqA(x, y), with a context Γ, we take the diagonal of the map [[Γ ⊢ A]] :
[[Γ, A]] −→ [[Γ]] as an object in the slice category over [[Γ]].

Proposition 3.4.1 ([See84]). The rules of dependent type theory are sound with respect
to the naive interpretation in any LCCC, modulo the following Remark 3.4.4.

Proof. One needs to check that all of the typing judgements from Section 3.2 are sound, but
much of this work has already been done in the simply typed case, in virtue of Proposition
3.3.1. One thing that we cannot take over from that case is the interpretation of the
Eq-types, so let us check those rules by way of example.

The Formation rule (in the empty context) is clearly satified by the stated interpreta-
tion:

[[x : A, y : A ⊢ EqA(x, y)]] = ∆[[A]] : [[A]] −→ [[A]]× [[A]] . (3.6)

For the Introduction rule, we pull back the dependent type [[x : A, y : A ⊢ EqA(x, y)]]
along the substitution δ : [[z : A]] → [[x : A, y : A]] (the diagonal of [[A]] interpreting the
variable contraction ⟨z/x, z/y⟩) to obtain the diagram:

[[z : A, EqA(z, z)]]

[[z : A ⊢ EqA(z, z)]]

��

// [[x : A, y : A, EqA(x, y)]]

[[x : A, y : A ⊢ EqA(x, y)]]

��
[[z : A]]

δ
//

reflz

44

[[x : A, y : A]]

The term [[z : A ⊢ reflz : EqA(z, z)]] is to be a section of the left hand vertical map, or
equivalently, the indicated diagonal. This can be taken to be the identity arrow of [[A]] by
the specification of [[x : A, y : A ⊢ EqA(x, y)]] in (3.6). The Elimination and Computation
Rules are left as an exercise.

Exercise 3.4.2. Complete the verification of the Eq-rules.

Exercise 3.4.3. Verify either the Σ or the Π rules.
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3.4 Functorial semantics of DTT in LCCCs 21

Remark 3.4.4 (Coherence). Although it is correct according to the intuition of slice
categories in an LCCC, the naive interpretation of substitution as pullback leads to a well-
known coherence problem [Hof95] for the interpretation of dependent type theory, arising
from the fact that pullbacks are only determined up to (canonical) isomorphism. For
example, in the foregoing situation, given another substitution Φ ⊢ δ : ∆, we obtain the
two-pullback diagram:

[[Φ, A(γ)(δ)]] //

[[Φ ⊢ A(γ)(δ)]]
��

[[∆, A(γ)]] //

[[∆ ⊢ A(γ)]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[Φ]]
[[Φ ⊢ δ : ∆]]

// [[∆]]
[[∆ ⊢ γ : Γ]]

// [[Γ]]

However, the composition of substitutions [[∆ ⊢ γ : Γ]] ◦ [[Φ ⊢ δ : ∆]] across the bottom is
the map [[Φ ⊢ γ(δ) : Γ]], and so there is another option for the vertical map on the left,
namely the single pullback:

[[Φ, A(γ(δ))]] //

[[Φ ⊢ A(γ(δ))]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[Φ]]
[[Φ ⊢ δ(γ) : Γ]]

// [[Γ]]

Since pullbacks are unique up to iso, there is of course a canonical isomorphism

[[Φ, A(γ)(δ)]] ∼= [[Φ, A(γ(δ))]]

over the base [[Φ]], but there is no reason for these two objects (and their associated pro-
jections) to be the same. To put the matter succinctly, the action of substitution between
contexts on dependent types is strictly functorial, but the action of pullback on slice cate-
gories is only a pseudofunctor.

The naive LCCC interpretation, with substitution as pullback, is thus only sound “up
to (canonical) isomorphism”. The problem becomes more acute in the case of intensional
type theory, where the interpretation of certain type formers is not even determined up to
isomorphism. We shall consider one solution to this problem in detail in Section ?? below.
For the remainder of this chapter on extensional type theory, however, we can continue to
work “up to (canonical) isomorphism” without worrying about coherence.

As was done for simple type theory in Section ??, we can also again develop the
relationship between the type theory and its models using the framework of functorial
semantics. This is now a common generalization of λ-theories, modeled in CCCs, and
first-order logic, modeled in Heyting categories. The first step is to build a syntactic
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22 Dependent Type Theory

classifying category CT from a theory T in dependent type theory, which we then show
classifies T-models in LCCCs. We omit the now essentially routine details (given the
analogous cases already considered), and merely state the main result, the proof of which
is also analogous to the previous cases. A detailed treatment can be found in the seminal
paper [See84].

Theorem 3.4.5. For any theory T in dependent type theory, the locally cartesian closed
syntactic category CT classifies T-models, in the sense that for any locally cartesian closed
category C there is an equivalence of categories

Mod
(
T, C

)
≃ LCCC

(
CT , C

)
, (3.7)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of LCCC functors.

As a corollary, again as before, we have that dependent type theory is complete with
respect to the semantics in locally cartesian closed categories, in virtue of the syntactic
construction of the classifying category CT. Specifically, any theory T has a canonical
interpretation [−] in the syntactic category CT which is logically generic in the sense that,
for any terms Γ ⊢ s : A and Γ ⊢ t : A, we have

T ⊢ (Γ ⊢ u ≡ t : A) ⇐⇒ [Γ ⊢ u : A] = [Γ ⊢ t : A]
⇐⇒ [−] |= (Γ ⊢ s ≡ t : A) .

Thus, for the record, we have:

Proposition 3.4.6. For any dependently typed theory T,

T ⊢ (Γ ⊢ u ≡ t : A) if, and only if, CT |= (Γ ⊢ u ≡ t : A) .

Of course, the syntactic model [−] in CT is the one associated under (3.7) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by LCCC functors (as in Proposition ??).

Corollary 3.4.7. For any dependently typed theory T,

T ⊢ (Γ ⊢ u ≡ t : A) if, and only if, M |= (Γ ⊢ u ≡ t : A) for every LCCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

Remark 3.4.8. In the current setting of extensional dependent type theory, soundness and
completeness with respect to inhabitation is actually to the same for equations, because
⊢ u ≡ t : A just if ⊢ e : EqA(u, t) for some (closed) term e, and similarly on the semantic
side.
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The embedding and completeness theorems of the previous chapter with respect to
general presheaf models, Kripke models, and topological and sheaf semantics can also be
extended to dependently typed theories. See [AR11, Awo00] for details. The internal
language construction and Theorem ??, associating a dependently typed theory with an
LCCC, also extend from simple to dependent type theory. Indeed, this is the main result
of [See84]. In view of this result, we hereafter move back and forth freely between syntactic
(i.e., type theoretic) and semantic (i.e., categorical) statements and proofs.

Exercise 3.4.9. In the internal logic of an LCCC E , show that the category of types in
context Γ ∈ E is equivalent to the slice category E/Γ. (Hint : use Eq-types.)

3.5 Inductive types

3.5.1 Sum types

Recall from Chapter ?? the following rules for sum types 0, A+B in STT, with term-formers
! t, inl t, and inr t and [x.t1, x.t2]u.

1. The Introduction and Elimination rules are:

Γ | a : A

Γ | inl a : A+B

Γ | b : B
Γ | inr b : A+B

Γ | u : 0

Γ | !u : C

Γ, x : A | s : C Γ, y : B | t : C Γ | u : A+B

Γ | [x.s, y.t]u : C

2. The Computation rules are the following equations.

z : C | z ≡ !u : C [x.a, y.b](inl s) ≡ a[s/x] : C [x.a, y.b](inr t) ≡ b[t/y] : C

u ≡ [x.inlx, y.inr y]u : A+B

v
(
[x.s, y.t]u

)
≡ [x.vs, y.vt]u : D

To reformulate these in a form suitable for dependent types, we shall change the Elimi-
nation rule to allow for a type C varying over the type being defined. The idea is that the
simple elimination rule for A+B determines a (normal) function of the form A+B → C,
while the dependent eliminator determines a “dependent function” z : A+B ⊢ s(z) : C(z),
i.e. a section s,

C

��
A+B .

s

BB
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We designate the former as recursion and the latter as induction, for reasons which will
be become clear shortly, but for now, one can think of C → A + B as a type-family or
“predicate” on A + B. Let us consider first the special of the “Boolean truth-values”
Bool = 1 + 1.

The Booleans. As a special case of sum types, consider the following rules for the type
Bool = 1 + 1, with the obvious renaming of the term-formers (cf. [?, Section 5.1])

• Formation rule.
Bool type .

• Introduction rules.
false : Bool , true : Bool .

• Elimination rule.

x : Bool ⊢ C(x) type c0 : C(false) c1 : C(true)

x : Bool ⊢ indBool(x, c0, c1) : C(x)

• Computation rules.

indBool(false, c0, c1) ≡ c0 : C(false) , indBool(true, c0, c1) ≡ c1 : C(true) (β)

x : Bool ⊢ c(x) : C(x) type

x : Bool ⊢ indBool(x, c(false), c(true)) ≡ c(x) : C(x)
(η)

A basic property of dependent elimination rules is now the following.

Proposition 3.5.1. The η-rule can be derived from the other rules.

Proof. We use the dependent Eq-type for C(x) as follows:
By Eq-elim it suffices to show that there is a term

x : Bool ⊢ e : EqC(x)

(
indBool(x, c(false), c(true)), c(x)

)
.

By Bool-elim it therefore suffices to have terms

e0 : EqC(false)

(
indBool(false, c(false), c(true)), c(false)

)
,

e1 : EqC(true)

(
indBool(true, c(false), c(true)), c(true)

)
.

But by the β-rules, we have

indBool(false, c(false), c(true)) ≡ c(false)

indBool(true, c(false), c(true)) ≡ c(true) ,

and so we can take

e0 := refl : EqC(false)

(
c(false), c(false)

)
,

e1 := refl : EqC(true)

(
c(true), c(true)

)
.
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Exercise 3.5.2. Formulate the corresponding dependent rules for sum types A + B and
prove the η-rule from the others.

Exercise 3.5.3. Assuming the dependent rules for sum types A + B, prove the simple
rules, including the η and distributivity computation rules.

3.5.2 Natural numbers

First, recall the following definition, which can be stated in any category with a terminal
object. It is usually stated with additional parameters, but this is not required in the case
of an LCCC (see [LS88] for a discussion).

Definition 3.5.4 (Lawvere [Law63]). A natural numbers object in an LCCC E is an object
N equipped with the structure 0 : 1 → N and s : N → N, and initial in the category of such
structures.

Spelling this out: given any object A ∈ E together with morphisms a : 1 → A and
f : A→ A, there is a unique map

u : N → A ,

making the following diagram in E commute.

1 A A

1 N N

a f

0 s

u u

Of course, this is just a categorical way of stating the usual “definition by recursion”
property of the natural numbers. It can be shown to imply the usual Peano axioms in an
elementary topos (see [LS88]).

In type theory, we can formulate the corresponding notion as an inductive type. Indeed,
the type Nat of natural numbers is the paradigmatic inductive type. The familiar rules for
Nat in simple type theory are as follows.

• Formation rule.
Nat type

• Introduction rules.

zero : Nat n : Nat ⊢ succ(n) : Nat

• Simple elimination rule.

C type c0 : C x : C ⊢ c(x) : C

n : Nat ⊢ rec(n, c0, c) : C

Note that in the conclusion we treat c := λx : C. c(x) as a term of type C → C.
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• Computation rules.

rec(zero, c0, c) ≡ c0 : C

rec(succ(n), c0, c) ≡ c(rec(n, c0, c)) : C

The function rec(c0,c) := λn : Nat. rec(n, c0, c) : Nat → C then satisfies the usual
recursion equations:

rec(c0,c)(zero) ≡ rec(zero, c0, c) ≡ c0 : C ,

rec(c0,c)(succ(n)) ≡ rec(succ(n), c0, c)

≡ c(rec(n, c0, c)

≡ c(rec(c0,c)(n)) : C .

Note that this specification follows Definition 3.5.4 of an NNO pretty closely, until we
come to the uniqueness of the function rec(c0,c) : Nat → C. In order to show that rec(c0,c) is
the unique function satisfying the Computation rules, we would need to add an appropriate
η-rule (see Exercise 3.5.9 below). Alternately, we can strengthen the elimination rule to a
dependent one, in order to allow the type EqNat to appear in the conclusion, as we did for
the example of Bool in Proposition 3.5.1. Such a dependent elimination rule corresponds
(under propositions as types) to the familiar rule of “proof by induction”: if for some
property of natural numbers P (n), we have P (0), and if P (n) implies P (n + 1) for all n,
then P (n) holds for all n. Reformulating this familiar principle in dependent type theory
with an explicit proof term for the inference from n to n + 1 results in a more powerful
recursion schema with parameters.

Dependent elimination. The rules for Nat in dependent type theory use the same
formation and introduction rules as above, but provide for eliminating into a type family,
parametrized by natural numbers.

• Dependent elimination rule.

n : Nat ⊢ C(n) type c0 : C(zero) n : Nat, x : C(n) ⊢ c(n, x) : C(succ(n))

n : Nat ⊢ ind(n, c0, c) : C(n)

Note that in the conclusion we now treat c := λn : Natλx : C(n). c(n, x) as a term
of type Πn:Nat. C(n) → C(succ(n)).

• Dependent computation rules.

ind(zero, c0, c) ≡ c0 : C(zero) ,

ind(succ(n), c0, c) ≡ c(n, ind(n, c0, c)) : C(succ(n)) .

Proposition 3.5.5. In the classifying category CNat with the dependent elimination and
computation rules just stated, the type Nat equipped with zero : Nat and succ : Nat → Nat
is a natural numbers object.
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Proof. Let A be any type with a distinguished point a : A and an endo map f : A → A.
We need to find a unique map

u : Nat → A ,

making the following diagram commute in CNat.

1 A A

1 Nat Nat

a f

zero

u

succ

u

We therefore require a term n : Nat ⊢ u(n) : A with:

u(zero) ≡ a : A , (3.8)

n : Nat ⊢ u(succ(n)) ≡ f(u(n)) : A .

In the (dependent) elimination rule, we can take C(n) to be A (the constant family), and
c0 to be a, and for n : Nat, x : A we let c(n, x) be f(x). In the conclusion we then obtain
n : Nat ⊢ ind(n, a, f) : A, which we take to be the required map u : Nat → A. The
computation rules then clearly provide the required equations (3.8).

We then use the equality type to prove uniqueness. Namely, suppose that we also have
n : Nat ⊢ v(n) : A with

v(zero) ≡ a : A , (3.9)

n : Nat ⊢ v(succ(n)) ≡ f(v(n)) : A .

We wish to show u ≡ v : Nat → Nat. By equality reflection, it suffices to show EqNat→Nat(u, v),
and by function extensionality (3.2.1), it is therefore enough to show Πn:Nat.EqNat(u(n), v(n)).
Thus we will be done by the following dependent elimination with C(n) = EqNat(u(n), v(n)),
once we have found suitable terms e0 and e(n, x).

e0 : EqNat(u(zero), v(zero))
n : Nat, x : EqNat(u(n), v(n)) ⊢ e(n, x) : EqNat

(
u(succ(n)), v(succ(n))

)
n : Nat ⊢ ind(n, e0, e) : EqNat(u(n), v(n))

But since u(zero) ≡ a ≡ v(zero) by (3.8) and (3.9), we can take e0 := refl. By the same,
we also have u(succ(n)) ≡ f(u(n)) and v(succ(n)) ≡ f(v(n)), and by the assumption
x : EqNat(u(n), v(n)) we have u(n) ≡ v(n) and thus f(u(n)) ≡ f(v(n)). So for e(n, x) we
can again take a suitable refl.

Conversely, we also have the following result:

Proposition 3.5.6. Let E be an LCCC with a natural numbers object,

1 N N .0 s

Then (N, 0, s) satisfies the Formation, Introduction, (dependent) Elimination, and (depen-
dent) Computation rules for the type Nat.
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Proof. The Formation and Introduction rules are immediate. For the Elimination rule,
suppose given an interpretation of the premises, namely: a dependent type [[N ⊢ C]] : C →
N, a section c0 : 1 → 0∗C of the pullback of C over 0 : 1 → N, and a map c as in the
following diagram:

C s∗C C

N N

c

⌟

s

Then we have, equivalently, a commutative diagram:

1 C C

1 N N

c0 c

0 s

By the universal property of N as an NNO, there is a (unique!) section i : N → C
commuting with the NNO structure maps.

1 C C

1 N N

c0 c

0

i

s

i

Taking [[n : Nat ⊢ ind(n, c0, c)]] := i then satisfies the dependent Elimination and Compu-
tation rules. (Why is i : N → C a section of C → N?)

Remark 3.5.7. We shall see that, in dependent type theory, the foregoing two propositions
are typical of inductive types in general: a structured type (S, s) is initial if and only if
every type family T → S equipped with the same kind of structure (T, t) over (S, s)
has a structure preserving section. We shall make this precise in terms of algebras for
(polynomial) endofunctors in the next section.

Exercise 3.5.8. Use the dependent rules for Nat to define the addition function + :
Nat× Nat → Nat in such a way that

m+ 0 ≡ m,

m+ succ(n) ≡ succ(m+ n) .

Exercise 3.5.9. Formulate a (simple) η-rule for Nat that allows one to prove the analog of
Proposition 3.5.5 from just the simple elimination and computation rules (including your
new η-rule).
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3.5.3 Algebras for endofunctors

Let E be an LCCC with sums, and consider the endofunctor F : E → E with F (X) = 1+X.
As usual, an algebra for F is an object A equipped with a map a : F (A) → A, and a
homomorphism of F -algebras h : (A, a) → (B, b) is a map h : A→ B commuting with the
algebra structure maps:

FA FB

A B

Fh

a b

h

(3.10)

In this particular case, such an algebra a : FA = 1 + A → A corresponds to a unique
“successor algebra” structure a = [a0, as] where:

1 A A ,
a0 as

and an F -algebra homomorphism is just a successor algebra homomorphism. It follows
that a natural numbers object is the same thing as an initial F -algebra, i.e. an initial object
in the category F -Alg of F -algebras and their homomorphisms.

More generally, one can consider the category of algebras for any endofunctor F : E →
E , but there need not always be an initial one, in light of the following fact.

Lemma 3.5.10 (Lambek). Given F : E → E, if i : F (I) → I is an initial F -algebra, then
the map i is an isomorphism.

Exercise 3.5.11. Prove Lambek’s lemma and conclude that not every endofunctor has an
initial algebra.

When an initial algebra does exists, it can be regarded as a generalized “inductive
type”, in view of the following.

Proposition 3.5.12. Let F : E → E and let i : F (I) → I be an initial F -algebra. Let
p : C → I be a family over I with an F -algebra structure c : FC → C making the following
diagram commute.

FC C

FI I

c

Fp p

i

Then there is a section s : I → C that is an algebra homomorphism.
Conversely, if a : FA→ A is an algebra such that every algebra (C, c) → (A, a) over it

has an algebra section, then (A, a) is initial in the category F -Alg.

Proof. Since (I, i) is initial, there is an algebra homomorphism h : (I, i) → (C, c). Since ho-
momorphisms compose, p◦h : I → I is also one. But then p◦h = 1I since homomorphisms
from initial algebras are unique, and (I, i) is initial.
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Conversely, suppose every algebra over (A, a) has an (algebra) section, and let (B, b)
be any algebra. We need a (unique) algebra homomorphism u : (A, a) → (B, b). Consider
the projection p1 : A×B → A as an algebra over (A, a) with structure map (aFp1, bFp2) :
F (A×B) → A×B.

F (A×B) A×B

FA A

Fp1

(aFp1, bFp2)

p1

a

Let s : A→ A×B be an algebra section, so that u := p2 ◦ s : A→ B is a homomorphism.
We claim that u is unique. Indeed, given any homomorphism t : A → B, consider the
equalizer e : E(t, u) ↣ A, which of course is the pullback of the diagonal ∆B : B ↣ B×B
along the map (t, u) : A→ B×B. It will suffice to equip E(t, u) with an algebra structure
map ε : F (E(t, u)) → E(t, u) over a : FA → A, for then we shall have an algebra section
s : A → E(t, u), whence e : E(t, u) ∼= A, and so t = u, since e : E(t, u) ↣ A is the
equalizer.

F (E(t, u)) E(t, u)

FA A

Fe

ε

e

a

s

We claim that a ◦ Fe : F (E(t, u)) → FA → A precomposes equally with t, u : A → B,
which will suffice for ε. But this follows by a chase around the following diagram, recalling
that t and u are homomorphisms, and te = ue.

F (E(t, u)) E(t, u)

FA A

FB B

Fe

ε

e

F t Fu

a

t u

b

Exercise 3.5.13. Reformulate and prove Proposition 3.5.12 in dependent type theory,
using Eq-types for the equalizer.

Polynomial endofunctors. One class of endofunctors F : Set → Set for which initial
algebras do exist are the (finitary) polynomial functors,

F (X) = C0 + C1×X + · · ·+ Cn×Xn , (3.11)

where C0, . . . , Cn are sets and Xk = X× . . .×X is the k-fold product. The endofunctor
1 +X for the natural numbers N was of course of this kind. An algebra (A, a) for e.g. the
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functor 1 +X +X2 will be a pregroup structure on the set A,

[a0, a1, a2] : 1 + A+ A2 −→ A ,

corresponding to an element a0 ∈ A, a unary operation a1 : A→ A and a binary operation
a2 : A×A→ A. We say “pregroup structure” to emphasize that no equations are required
to hold; this is just an interpretation of the “signature” of a group.

An algebra a : F (A) → A for the functor (3.11) would thus be a “conventional” alge-
braic structure on A (in the sense of universal algebra) consisting of C0-many “constants”
1 → A and C1-many “unary operations” A → A, . . . , and Cn-many n-ary “operations”
An → A. Note that algebra homomorphisms in the sense of (3.10) are just homomorphisms
in the usual sense of algebraic structures.

Proposition 3.5.14. Any finitary polynomial functor F : Set → Set such as (3.11) has
an initial algebra.

An elementary proof would proceed by forming the “term algebra” A consisting of all
expressions of the form ack(t1, . . . , tk), where ck ∈ Ck, and the tk are “previously” formed
terms of the same kind. A more abstract proof (that also generalizes to other settings) is
as follows:

Proof. By [Awo10, 10.13], it suffices to show that F preserves ω-colimits, for then the
colimit of the sequence

0 → F0 → FF0 → . . .

will be an initial algebra. The coproduct C0 + C1×X + · · · + Cn×Xn preserves all of
the colimits preserved by the monomials Ck×Xk, and each of these preserves the colimits
preserved by the functor Xk = X×. . .×X, which includes the filtered ones like ω.

The proof obviously generalizes to a much larger class of endofunctors, including ones on
categories other than Set (see e.g. [Awo10, 10.14]). Rather than pursuing this topic further,
however (for which, see [AR94]), we want to consider a type-theoretic reformulation that
captures a range of inductive types with good properties. Let us first apply Proposition
3.5.12, and state the resulting rules for an initial algebra of a polynomial functor, for
example:

F (X) = A+B×X + C×X2 ,

as a simplified version of (3.11) (the general case will be covered below). Let us write
s : F (I) → I for an initial F -algebra (assuming it exists). Then we have the following
rules:

The assumption that the initial algebra exists takes the form:

• I-formation rule.
A type B type C type

I type
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And I also will come with an algebra structure s : F (I) → I, given by:

• I-introduction rules for the operation s : A+B×I + C×I2 −→ I,

a : A

s0(a) : I

b : B , i : I

s1(b, i) : I

c : C , i : I , j : I

s2(c, i, j) : I

We also have an induction principle, as in Proposition 3.5.12, for any F -algebra f : F (X) →
X over F (I) → I:

• I-elimination rule.

i : I ⊢ X(i) type
a : A ⊢ f0(a) : X(s0(a))
b : B, i : I, x : X(i) ⊢ f1(b, x) : X(s1(b, i))
c : C, i, j : I, x : X(i), y : X(j) ⊢ f2(c, x, y) : X(s2(c, i, j))

i : I ⊢ rec(i, f0, f1, f2) : X(i)

And, of course, there is a computation rule, resulting from first introducing and then
eliminating, which says that the following diagram commutes.

F (X) X

FI I

f

s

rec
rec

• I-computation rules.

a : A ⊢ rec(s0(a), f0, f1, f2) ≡ f0(a) : X(s(a)) ,

b : B, i : I ⊢ rec(s1(b, i), f0, f1, f2) ≡ f1(b, rec(i, f⃗ )) : X(s1(b, i)) ,

c : C, i, j : I ⊢ rec(s2(c, i, j), f0, f1, f2) ≡ f2(c, rec(i, f⃗ ), rec(j, f⃗ )) : X(s2(c, i, j)) .

Exercise 3.5.15. Specialize the foregoing to the case F (X) = 1 +X and derive the rules
for Nat from Section 3.5.2.

3.5.4 W-types

The rules just given for initial algebras for polynomial functors are a bit unwieldy as the
degree of the polynomial F increases, but they simplify when stated in a more general
form, which can actually be applied in any LCCC E . Indeed, let p : B → A be any map
in E , regarded as a type family a : A ⊢ B(a). We can form the (generalized) polynomial
endofunctor P : E → E as:

P (X) = Σa:AX
B(a) = A! ◦ p∗ ◦B∗(X) , (3.12)
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as indicated in the following:

X X×B P (X)

B Ap

Observe that B∗ = p∗ ◦ A∗, so that

ΣA p∗B
∗ (X) = ΣA p∗ p

∗A∗(X) = ΣA(A
∗X)p ,

which justifies the polynomial notation Σa:AX
B(a), since the type B(a) is the fiber of

p : B → A at a : A.

Definition 3.5.16 (cf. [MP00]). A (semantic)W-type in a locally cartesian closed category
E is an initial algebra for a polynomial endofunctor P : E → E associated to a map
p : B → A, as in (3.12).

We shall see that W-types can be used to introduce a wide class of inductive types in
dependent type theory. The following rules for W-types are due to [?]. To state them more
perspicuously, for a fixed type family x : A ⊢ B(x) we may write W instead of Wx:AB(x).

• W-formation rule.
A type x : A ⊢ B(x) type

Wx:AB(x) type

• W-introduction rule.
a : A t : B(a) → W

wsup(a, t) : W

• W-elimination rule.

w : W ⊢ C(w) type
x : A, u : B(x) → W, v : Πy:B(x)C(u(y)) ⊢ c(x, u, v) : C(wsup(x, u))

w : W ⊢ wind(w, c) : C(w)

• W-computation rule.

w : W ⊢ C(w) type
x : A, u : B(x) → W, v : Πy:B(x)C(u(y)) ⊢ c(x, u, v) : C(wsup(x, u))

x : A, u : B(x) → W ⊢ wind(wsup(x, u), c) ≡
c(x, u, λy.wind(u(y), c)) : C(wsup(x, u))
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Informally, the W-type for a family x : A ⊢ B(x) can be regarded as the free algebra
for a signature with A-many operations, each of (possibly infinite) arity B(a) – and no
equations. Indeed, the premisses of the formation rule above can be thought of as specifying
a signature that has the terms a : A as the operations themselves, and (the cardinality of)
the type B(a) as the “arity” of a : A. Then, the introduction rule specifies an element of
the free algebra, namely wsup(a, t) : W, where t : B(a) → W. The elimination rule then
states that W is the initial algebra of the assocated polynomial functor Σa:AX

B(a).

Proposition 3.5.17. An object W satisfies the rules for W-types if, and only if, it is an
initial algebra for the polynomial functor P (X) = Σa:AX

B(a).

Proof. We use Proposition 3.5.12. Suppose W satisfies the rules for W types above. From
the introduction rule, we have a P -algebra structure wsup : P (W) → W. Let C → W with
a P -algebra structure c : P (C) → C over wsup : P (W) → W. This is exactly what the
premises of the elimination rule say, so by the conclusion of that rule there is a section
w : W ⊢ wind(w, c) : C(w), which is a P -algebra homomorphism by the computation rule.
The converse is left as an exercise.

Exercise 3.5.18. Complete the proof of Proposition 3.5.17.

Remark 3.5.19 (cf. [AGS17]). The foregoing (dependent)W-elimination rule implies what
may be called the simple W-elimination rule:

C type x : A, v : B(x) → C ⊢ c(x, v) : C

w : W ⊢ wrec(w, c) : C

This can be recognized as a recursion principle for maps from W into P -algebras, since the
premisses of the rule describe exactly a type C equipped with a structure map c : PC → C.
For this special case of the elimination rule, the corresponding computation rule again states
that the function

λw.wrec(w, c) : W → C ,

where c(x, v) = c(⟨x, v⟩) for x : A and v : B(x) → C, is a P -algebra homomorphism.
Moreover, this homomorphism can then be shown to be (definitionally) unique, using Eq-
types, the elimination rule, and the reflection rule, as in the proof of Proposition 3.5.12.
The converse implication also holds: one can derive the general W-elimination rule from
the simple elimination rule and the following η-rule.

C : type w : W ⊢ h(w) : C
x : A, v : B(x) → C ⊢ c(x, v) : C
x : A , u : B(x) → W ⊢ h (wsup(x, u)) = c(x, λy.hu(y)) : C

w : W ⊢ h(w) ≡ wrec(w, c) : C

This rule states the uniqueness of the wrec term among algebra maps. Overall, we therefore
have that induction and recursion are inter-derivable in the present theory with extensional
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Eq-types:

Induction ⇔ Recursion

Dependent elimination Simple elimination
Dependent computation Simple computation + η-rule

Examples of W-types. We conclude by noting that many familiar inductive types can
be reduced to W-types. We mention the following examples, among many others (see [?],
[?], [?], [?], [?], [?]):

1. Natural numbers. The usual rules for Nat as an inductive type can be derived from
its formalization as a W-type. Consider the signature determined by the map inl :
1 → 1 + 1 (say): it has two operations, one of which has arity 0 and one of which
has arity 1, since these are the pullbacks of the map inl : 1 → 1 + 1 along the two
points 1 ⇒ 1 + 1. To present this in type theory, we need a type family over Bool
(say) with the types 0 and 1 as its values. Consider the family

v : Bool ⊢ EqBool(v, true) type,

which has the values:

EqBool(v, true)
∼=

{
1 v = true

0 v = false

Indeed, one can show that the projection Σv:BoolEqBool(v, true) → Bool is isomorphic
to the map true : 1 → Bool over Bool.

The corresponding polynomial functor can then be defined as

P (X) = Σv:Bool EqBool(v, true) → X

= 1+X .

The corresponding W type is then the initial algebra of P (X) = 1 +X, namely the
type Nat of natural numbers,

Nat = Wv:Bool EqBool(v, true) .

The canonical element zero : Nat and the successor function succ : Nat → Nat result
from the two cases of introduction rule,

b : Bool t : EqBool(b, true) → Nat

wsup(b, t) : Nat

namely:
false : Bool t : (EqBool(false, true) → Nat)

wsup(false, t) : Nat
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and
true : Bool t : (EqBool(true, true) → Nat)

wsup(true, t) : Nat

Thus we can take

zero := λt. wsup(false, t) : 1 → Nat ,

succ := λt. wsup(true, t) : Nat → Nat .

2. Second number class. As shown in [?], the second number class can be obtained as a
W-type determined by the polynomial functor

P (X) = 1+X + (Nat → X) .

This has algebras with three operations, one of arity 0, one of arity 1, and one of
arity (the cardinality of) Nat.

3. Lists. The type List(A) of finite lists of elements of some type A can be built as a
W-type determined by the polynomial functor

P (X) = 1+ A×X ,

associated to the map ! + A : 0 + A→ 1 + 1. We refer to [?] for details.

Exercise 3.5.20. If a signature for an algebraic theory has no constants, then the free
algebra on the empty set 0 will itself be empty, as can be seen by considering the term
algebra construction of the free algebra F (0). Something similar is true for W-types (say,
in Set): if p : B ↠ A is an epimorphism, then P (0) = Σa:A 0B(a) ∼= 0, and soWa:AB(a) ∼= 0.
Prove this.

3.6 Propositional truncation

Even under the Propositions-as-Types (PaT) conception there are certain types P that are
proof irrelevant in the sense that for any p, q : P , we have EqP (p, q) (meaning that we have
a term t : EqP (p, q), and so p ≡ q). For example, the type 1 has this property, as does 0.
Let us call this such special types propositional, which is definable by

IsProp(P ) = Πp,q:PEqP (p, q) .

This condition is equivalent to P ∼= P × P .

Exercise 3.6.1. Prove this: a type P is propositional if and only if P ∼= P×P (canonically)
and, moreover, if and only if the unique map P → 1 is a monomorphism.

The propositions are easily seen to be closed under finite products P × Q, and if
x : X ⊢ P (x) is a family of propositions, then Πx:XA(x) is also a proposition. Finally, if P
is a proposition, then so is A→ P for any A.
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Exercise 3.6.2. Prove the last three statements.

It therefore makes sense to expect that for any type A, there could be a universal
propositional approximation p : A → PA, with the universal property that every map
A→ P with P a proposition factors (uniquely) through p : A→ PA, as in:

A P

PA

p

This is equivalent to saying that for any proposition P , the map P p : P PA → PA induced
by precomposing with p : A→ PA is an iso. When it exists, we shall call such an object a
propositional truncation of A, and denote it by A→ [A].

Definition 3.6.3. Given a type A, a propositional truncation of A is a type [A] equipped
with a map A→ [A] such that, for any proposition P , the canonical precomposition map

P [A] → PA

is an isomorphism.

Example 3.6.4. In a category of presheaves SetC
op

the propositions are exactly the sub-
objects of 1, by Exercise 3.6.1. But since every map A→ B in presheaves can be factored
into an epi followed by a mono A ↠ M ↣ B, every object A has a propositional trunca-
tion A ↠ [A] ↣ 1. Moreover, since these factorizations are stable under pullback (Ĉ is
regular), the propositional truncation operation [A] commutes with pullback, in the sense
that for B → 1 we have B∗[A] ∼= [B∗A]. More generally, for any f : Y → X and any
A→ X, we have

f ∗[A] ∼= [f ∗A] ,

as in the following diagram,

f ∗A A

[f ∗A] [A]

Y X

⌟

⌟

f

as is seen by applying the foregoing remark to the presheaf category Ĉ/X ∼=
∫̂
CX.

The “stability under pullback” of the operation A 7→ [A] means that it can be added
to dependent type theory as a new type former, because it exists in any context and
commutes with substitution. We shall formulate rules for [A] in the next section 3.6.1.
The propositional truncation [A] of a type A may be regarded as “erasing (or ignoring)
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the (computational) content” of A and treating it as a “mere truth-value”: either A is
inhabited or not, and all inhabitants a : A are identified.

The reg-epi/mono factorizations in a regular category fit into an orthogonal factoriza-
tion system in the following sense.

Definition 3.6.5. An orthogonal factorization system on a category C consists of two
classes of arrows (E,M) such that:

1. The classes of maps E,M ⊆ C1 are closed under isos in the arrow category.

2. Every map f : A→ B factors f = m ◦ e into e ∈ E followed by m ∈ M,

A B

C

f

e m

3. Given any commutative square with an E-map on the left and an M-map on the right,

A B

C D

there is a unique diagonal filler (as indicated) making both triangles commute.

Exercise 3.6.6. Show that the epimorphisms and monomorphisms form an orthogonal
factorization system on the category Set. Infer that the same is true for any presheaf
category SetC

op

.

3.6.1 Bracket types

The rules for bracket types [A] in dependent type theory are as follows (cf. [?, ?]):

• Formation rule.
A type

[A] type

• Introduction rules.
a : A

|a| : [A]

a : [A], b : [A]

eq(a, b) : Eq[A](a, b)

• Elimination rule.

z : [A] ⊢ C(z) type x : A ⊢ c(x) : C(|x|)
x : A, u : C(|x|), v : C(|x|) ⊢ p(x, u, v) : EqC(|x|)(u, v)

z : [A] ⊢ ind(z, c, p) : C(z)
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• Computation rule.
x : A ⊢ ind(|x|, c, p) ≡ c(x) : C(|x|)

The Computation rule can be understood semantically as stating that, when it exists,
the section z : [A] ⊢ ind(z, c, p) : C(z) makes the following diagram commute.

C

A [A]

c

|−|

ind

And the Elimination rule states that such a section exists if any u, v : C(|x|) are always
equal, so that C(z) is a family of propositions.

The simple rules are perhaps easier to understand:

• Simple Elimination rule.

P type x : A ⊢ p(x) : P u : P, v : P ⊢ q(u, v) : EqP (u, v)

z : [A] ⊢ rec(z, p, q) : P

• Simple Computation rule.

x : A ⊢ rec(|x|, p, q) ≡ p(x) : P

The Simple Computation rule states that, when it exists, the map z : [A] ⊢ rec(z, p, q) :
P makes the following diagram commute.

A P

[A]

|−|

p

rec

And by the Simple Elimination rule, such a map z : [A] ⊢ rec(z, p, q) : P exists whenever P
is a proposition. Taken together with the Introduction rule, which says that [A] is always
a proposition, this clearly states that the inclusion i : Props ↪→ Types of the propositions
into the types has the propositional truncation operation [−] as a left adjoint.

Props Typesi

[−]

[−] ⊣ i

Exercise 3.6.7. Prove the adjointness between the inclusion of propositions into types and
the propositional truncation operation. Why doesn’t one need to add an η computation
rule to the simple Elimination rule to get the uniqueness of the eliminator required for the
adjunction?
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3.6.2 Propositions as [types]

In dependent type theory with the type-forming operations

0, 1, [A], A+B, EqA, Πx:AB, Σx:AB

the propositions in every context model intuitionistic first-order logic (IFOL), under the
following definitions:

⊤ = 1

⊥ = 0

ϕ ∧ ψ = ϕ× ψ

ϕ ∨ ψ = [ϕ+ ψ]

ϕ⇒ ψ = ϕ→ ψ

¬ϕ = ϕ→ 0 (3.12)

∀x : A. ϕ = Πx:A ϕ

∃x : A. ϕ = [Σx:A ϕ]

x = y = EqA(x, y)

The bracket is thus used to “rectify” the operations + and Σ , because they lead out
of propositions. The operations defined in (3.12) satisfy the usual rules for intuitionistic
first-order logic, and the resulting system is then a hybrid of dependent type theory with
first-order logic over each type. It can be described categorically as the internal logic of a
regular LCCC with finite sums. This formulation is equivalent to the more customary one
using both type theory and predicate logic (such as in [?]), despite the fact that the first-
order logical operations on the propositions are here defined in terms of the type-theoretic
operations on types, rather than being taken as primitive.

In addition to first-order logic, one can also use brackets to define subset types. For any
type Γ, x : A ⊢ B, the associated subset type

Γ ⊢ {x : A |B}

is defined by
{x : A |B} = Σx:A [B(x)] .

Semantically, this can therefore be modeled by the image factorization:

Σx:AB(x) B

{x : A |B} [B]

A A

This hybrid logic of dependent types with first-order logic over each type is a very
expressive system, and is used in many modern settings [?, ?, ?].
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3.6.3 Completeness of propositions as types

We can use bracket types to compare conventional first-order logic with the propositions-
as-types interpretation, and relate first-order provability to provability in dependent type
theory (without brackets). Consider the standard propositions-as-types translation of first-
order logic into type theory:

∗ : FOL → DTT

For a single-sorted first-order theory T, consisting of constants, function and relation sym-
bols, the ∗-translation is determined by first fixing the translations of the basic sort of
individuals, and the constants, function and relation symbols. The rest of the translation
is then determined inductively in the expected way, using the type-forming operations in
place of the corresponding logical ones.

For example,

(∀x ∃y.R(x, y) ∨ P (x))∗ = Πx:I Σy:I R
∗(x, y) + P ∗(x) ,

where I is a basic type representing the domain of “individuals” (which is usually implicit
in FOL), and the dependent types x : I ⊢ P ∗(x) and x : I, y : I ⊢ R∗(x, y) interpret the
relation symbols P and R.

If we then add a constant a : α∗ for each axiom α, the translation ϕ∗ of a provable,
closed formula ϕ is then inhabited by a closed term, that is obtained from a straightforward
translation of the IFOL proof of ϕ into type theory (recalling that the rules of type theory
are proof-relevant versions of those of IFOL).

Thus we have:
IFOL(T) ⊢ ϕ implies DTT(T) ⊢ ϕ∗, (3.13)

where by DTT(T) ⊢ ϕ∗ we mean that the type ϕ∗ is inhabited in dependent type theory
enriched with the basic types and constants needed for the translation ∗, and with constants
inhabiting the translations of axioms of T. We emphasize that we are not using the defined
operations (3.12), but rather the standard “PAT” ones.

The question we want to consider now is the converse implication: if ϕ∗ is “PAT-
provable”, i.e. inhabited in DTT(T), must ϕ be provable in the intuitionistic first-order
theory T? Note that functions of higher types may be used in a term inhabiting ϕ∗, so this
is not merely a matter of tracing out proofs in first-order logic from those in DTT, as was
the converse case.

Proofs of partial converses of (3.13), for different fragments of first-order logic, have
been given by Martin-Löf (∀, ⇒ in [?]), Tait (∀, →, ∃, ∧, ¬ in [?]), and Constable (∀, →
, ∃, ∧, ∨, ¬ in [?]). These results are for type theory with no equality types, and proceed
from proofs of normalization. We state a result below that applies to type theory with
(extensional) equality and a large fragment of first-order logic. The proof uses the bracket
types translation.

Definition 3.6.8. A formula ϑ in first-order logic with equality is stable when it contains
neither ∀ nor ⇒, but negation ¬ is allowed as a special case of ⇒. A first-order formula ϕ
is left-stable when in every subformula of the form ϑ⇒ ψ, the formula ϑ is stable.
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Theorem 3.6.9. If ϕ is left-stable, then

DTT(T) ⊢ ϕ∗ implies IFOL(T) ⊢ ϕ .

For the proof, see [?].
Finally, observe that every first-order formula ϕ is classically equivalent to one ϕs that

is stable. The stabilization ϕs of ϕ is obtained by replacing in ϕ every ∀x. ϑ and ϑ ⇒ ψ
by ¬∃x.¬ϑ and ¬(ϑ ∧ ¬ψ), respectively. The equivalence ϕ ⇔ ϕs holds intuitionistically
if ϕ = ψ¬¬ is the double-negation translation of a formula ψ. Therefore, the stabilized
double-negation translation

(ϕ¬¬)s

takes a formula ϕ of first-order logic with equality to a stable one, for which provability in
IFOL is equivalent to classical provability (in CFOL),

CFOL ⊢ ϕ if and only if IFOL ⊢ (ϕ¬¬)s .

If we further compose the (¬¬s)-translation with the propositions-as-types translation ∗,
we obtain a translation

ϕ+ := ((ϕ¬¬)s)∗

which takes formulas of (classical) first-order logic into dependent type theory, in such a
way that every formula ϕ is classically equivalent to one covered by Theorem 3.6.9.

Corollary 3.6.10. The translation ϕ 7→ ϕ+ of first-order logic with equality into dependent
type theory is sound and complete, in the sense that for every formula ϕ,

CFOL ⊢ ϕ if and only if DTT ⊢ ϕ+ .

Here DTT ⊢ ϕ+ means that the type ϕ+ is inhabited.

Remark 3.6.11 (Thierry Coquand). The following formula is not provable in intuition-
istic first-order logic, but its ∗-translation is inhabited in dependent type theory, by an
application of the axiom of choice.

(∀x ∃y.R(x, y)) ⇒ ∀x, x′ ∃y, y′. (R(x, y) ∧R(x′, y′) ∧ (x = x′ ⇒ y = y′)) .

Theorem 3.6.9 therefore cannot be extended to full intuitionistic first-order logic.
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