
Notes on Type Theory
[DRAFT: February 27, 2025]

Steve Awodey

with contributions from Andrej Bauer

Contents

3 Dependent Type Theory 5
3.1 Hyperdoctrines . 6
3.2 Dependently-typed lambda-calculus. 10
3.3 Locally cartesian closed categories . 15
3.4 Functorial semantics of DTT in LCCCs . 18

Bibliography 23

[DRAFT: February 27, 2025]

4 CONTENTS

[DRAFT: February 27, 2025]

Chapter 3

Dependent Type Theory

The Curry-Howard correspondence from Chapter ?? can be extended to natural deduction
proofs in first-order logic, providing an extension of the “propositions as types/proofs as
terms” idea from propositional logic to first-order logic (see [Sco70, How80] . In addition
to simple types A,B, ... representing propositions, one then has dependent types x : A ⊢
B(x) representing “propositional functions” or predicates. In addition to the simple type
formers A × B and A → B, one has dependent type formers Σx:AB(x) and Πx:AB(x),
representing the quantified propositions ∃x:AB(x) and ∀x:AB(x). As before, these types may
have different terms s, t : Πx:AB(x), resulting from different proofs of the corresponding
propositions, so that the calculus of terms again records more information than mere
provability. Also as before, the resulting abstract structure turns out to be one that is
shared by other categories not arising from logic—and now the coincidence is even more
remarkable, because the structure at issue is a much more elaborate one. Where proofs
in the propositional calculus gave rise to a cartesian closed category, the category of proof
terms of first-order logic will be seen to be locally cartesian closed, a mathematical structure
also shared by sheaves on a space, Grothendieck toposes, categories of fibrations, and other
important examples.

Before stating a formal dependent type theory, we begin by infomally “categorifying”
first-order logic with an abstraction (due to Lawvere [Law70]) called a hyperdoctrine. A
hyperdoctrine is a contravariant functor P : Cop → Cat (see Section 3.1), and there are in
particular both poset-valued and “proper” category-valued ones. The former correspond
to propositional and predicate logic, while the latter correspond more closely to dependent
type theory, where the individual value categories P (C) may be proper cartesian closed
categories (rather than just Heyting algebras or CCC posets). Moreover, the reindexing
functors along all projections pA : X × A → A in the index category C of contexts are
also required to admit both left and right adjoints ΣA ⊣ p∗A ⊣ ΠA, according to Lawvere’s
adjoint analysis of quantification. An important difference between hyperdoctrines and
dependent type theories, however, is that the indexing category of contexts in dependent
type theory has not just finite products, but also some additional structure resulting from
an operation of context extension, which takes as input a type in context Γ ⊢ A and returns
a new context (Γ, x : A), together with a substitution arrow (Γ, x : A) → Γ. This is taking

[DRAFT: February 27, 2025]

6 Dependent Type Theory

the “propositions-as-types” idea even more seriously, by allowing every proposition Γ ⊢ φ
in first-order logic to form a new type {Γ ⊢ φ}, thus turning the objects A ∈ P (C) in the
value-categories of hyperdoctrine (C, P) into arrows {A} → C in C.1

3.1 Hyperdoctrines

Given an algebraic signature, let C be the category of contexts, with (non-dependent)
tuples of typed variables Γ = (x1 : C1, ..., xn : Cn) as objects, and as arrows γ : ∆ → Γ the
n-tuples of terms c1 : C1, . . . , cn : Cn, all in context ∆ = (y1 : D1, ..., ym : Dm),

∆ ⊢ ci : Ci , 1 ≤ i ≤ n .

Composition is given by substitution of terms for variables,

γ ◦ δ = (c1[d1/y1, . . . , dm/ym], . . . , cn[d1/y1, . . . , dm/ym],)

for δ = (d1, . . . , dm) : E → ∆ with E = (z1 : E1, ..., zk : Ek), and the identity arrows are
the variables themselves (terms are identified up to α-renaming of variables, as in Lawvere
algebraic theories, see Chapter ??). The category C then has all finite products, essentially
given by tupling.

For each object Γ, let P (Γ) be the poset of all first-order formulas (Γ | φ), ordered by
entailment Γ | φ ⊢ ψ and identified up to provable equivalence Γ | φ ⊣⊢ ψ. Substitution
of a term σ : ∆ → Γ into a formula (Γ | φ) then determines a morphism of posets
σ∗ : P (Γ) → P (∆), which also preserves all of the propositional operations,

σ∗(φ ∧ ψ) = φ[σ/x] ∧ ψ[σ/x] = σ∗(φ) ∧ σ∗(ψ), etc.

(Exercise!). Moreover, since substitutions into formulas and terms commute with each
other, τ ∗σ∗φ = φ[σ ◦ τ/x], this action is strictly functorial, and so we have a contravariant
functor

P : Cop −→ Heyt

from the category of contexts to the category of Heyting algebras.
Now consider the quantifiers ∃ and ∀. Given a projection of contexts pX : Γ×X → Γ,

in addition to the pullback functor

p∗X : P (Γ) −→ P (Γ×X)

induced by weakening, there are the operations of quantification

∃X ,∀X : P (Γ×X) −→ P (Γ) .

By the rules for the quantifiers, these are indeed left and right adjoints to weakening,

∃X ⊣ p∗X ⊣ ∀X .

The Beck-Chevalley rules assert that substitution commutes with quantification, in the
sense that (∀xφ)[s/y] = ∀x(φ[s/y]), and similarly for (∃xφ).

1[Law70] does just this.

[DRAFT: February 27, 2025]

3.1 Hyperdoctrines 7

Definition 3.1.1. A (posetal) hyperdoctrine consists of a Cartesian category C together
with a contravariant functor

P : Cop −→ Heyt ,

such that for each f : D → C the action maps f ∗ = Pf : PC → PD have both left and
right adjoints

∃f ⊣ f ∗ ⊣ ∀f

that satisfy the Beck-Chavalley conditions.

Exercise 3.1.2. Verify that the syntax of first-order logic can indeed be organized into a
hyperdoctrine in the way just described.

Examples

1. We just described the syntactic example of first-order logic. Indeed, for each first-
order theory T there is an associated hyperdoctrine (CT, PT), with the types and terms
of T as the category of contexts CT, and the formulas (in context) of T as “predicates”,
i.e. the elements of the Heyting algebras φ ∈ PT(Γ). A general hyperdoctrine can be
regarded as an abstraction of this example.

2. A hyperdoctrine on the index category C = Set is given by the powerset functor

P : Setop −→ Heyt ,

which is represented by the Heyting algebra 2, in the sense that for each set I one
has

P(I) ∼= Hom(I,2) .

Similarly, for any complete Heyting algebra H in place of 2, there is a hyperdoctrine
H-Set, with

PH(I) ∼= Hom(I,H) .

The adjoints to precomposition along a map f : J → I are given by

∃f (φ)(i) =
∨
j∈J

(f(j) = i) ∧ φ(j) ,

∀f (φ)(i) =
∧
j∈J

(f(j) = i) ⇒ φ(j) ,

where the value of x = y in H is defined to be
∨
{⊤ | x = y}.

We leave it as an exercise to verify that this is hyperdoctrine, in particular to show
that the Beck-Chevalley conditions are satisfied.

Exercise 3.1.3. Show this.

[DRAFT: February 27, 2025]

8 Dependent Type Theory

3. For a related example, let C be any small index category and C = Ĉ, the category
of presheaves on C. An internal Heyting algebra H in C, i.e. a functor Cop → Heyt,
is said to be internally complete if, for every I ∈ C, the transpose H → HI of the
projection H× I → H has both left and right adjoints. Such an internally complete
Heyting algebra determines a (representable) hyperdoctrine PH : C → Set just as for
the case of C = Set, by setting PH(C) = C(C,H).

4. For any Heyting category H let Sub(C) be the Heyting algebra of all subobjects
S ↣ C of the object C. The presheaf Sub : Hop → Heyt, with action by pullback, is
then a hyperdoctrine, essentially by the definition of a Heyting category.

Remark 3.1.4 (Lawvere’s Law). In any hyperdoctrine (C, P), for each object C ∈ C, we
can determine an equality relation =C in each P (C × C), namely by setting

(x =C y) = ∃∆C
(⊤) ,

where ∆C : C → C × C is the diagonal, ∃∆C
⊣ ∆∗

C , and ⊤ ∈ P (C). Displaying variables
for clarity, if ρ(x, y) ∈ P (C × C) then ∆∗

Cρ(x, y) = ρ(x, x) ∈ PC is the contraction of
the different variables, and the adjunction ∃∆C

⊣ ∆∗
C can be formulated as the following

two-way rule,

x : C | ⊤ ⊢ ρ(x, x)
x : C, y : C | (x =C y) ⊢ ρ(x, y)

(3.1)

which expresses that (x =C y) is the least reflexive relation on C. See [Law70] and Exercise
?? above.

Exercise 3.1.5. Prove the standard first-order laws of equality from the above hyperdoc-
trine formulation of Lawvere’s Law (3.1).

Proper hyperdoctrines

Now let us consider some hyperdoctrines of a different kind. For any set I, let SetI be the
category of families of sets (Ai)i∈I , with families of functions (gi : Ai → Bi)i∈I as arrows,
and for f : J → I let us reindex along f by the precomposition functor f ∗ : SetI → SetJ ,
with

f ∗((Ai)i∈I)j = Af(j) .

Thus we have a contravariant functor

P : Setop → Cat

with P (I) = SetI and f ∗(A : I → Set) = A ◦ f : J → Set.

[DRAFT: February 27, 2025]

3.1 Hyperdoctrines 9

Lemma 3.1.6. The precomposition functors f ∗ : SetI → SetJ have both left and right
adjoints f! ⊣ f ∗ ⊣ f∗ which can be computed by the formulas:

f!(A)i =
∐

j∈f−1{i}

Aj , (3.2)

f∗(A)i =
∏

j∈f−1{i}

Aj ,

for A = (Aj)j∈J . Moreover, these functors satisfy the Beck-Chevally conditions.

A closely related example uses the familiar equivalence of categories SetI ≃ Set/I , where
now the adjoints

f! ⊣ f ∗ ⊣ f∗ : Set/J −→ Set/I

to reindexing along f : J → I are (post-)composition, pullback, and “push-forward”, re-
spectively. In this case, the action of the pseudofunctor P is not strictly functorial, as it was
for the case of P (I) = SetI . Note that the Beck-Chevalley conditions for such Cat-valued
functors should now also be stated as (canonical) isomorphisms, rather than equalities as
they were for poset-valued functors. In this way, when the individual categories P (I) are
proper, and not just posets, the entire hyperdoctrine structure may be weakened to include
(coherent) isomorphisms, both in the functorial action of P , and in the B-C conditions.
We will not spell out the required coherences here, but the interested reader may look up
the corresponding notion of an indexed-category, which is a Cat-valued pseudofunctor (see
[Joh03, B1.2]).

Example 3.1.7. Another example of a “proper” hyperdoctrine, with values in non-posetal
(large!) categories, is the category of presheaves construction Ĉ = SetC

op

, where:

P : Catop −→ CAT ,

C 7−→ Ĉ .

Here the action of P may be assumed to be strictly functorial, because it’s given by
precomposition. Nonetheless the B-C conditions must be stated as natural isos, because
the adjoints F! ⊣ F ∗ ⊣ F∗ : D̂ −→ Ĉ for F : D → C are given by left and right Kan
extensions, which need not be strictly functorial.

We shall consider several more examples of proper hyperdoctrines below. The inter-
nal logic of such categories generalizes and “categorifies” first-order logic, and is better
described as dependent type theory. Proper hyperdoctrines P : Cop → Cat are roughly
related to dependent type theory in the way that posetal ones P : Cop → Pos are related
to FOL. There are actually two distinct aspects of this generalization: (1) the individual
categories of “predicates” P (C) are proper categories rather than mere posets, (2) the
variation over the index category C of contexts (and its adjoints) is weakened accordingly
to pseudo-functoriality. Each of these aspects plays an important role in dependent type
theory and its categorical semantics.

[DRAFT: February 27, 2025]

10 Dependent Type Theory

First-Order Logic Dependent Type Theory

Propositional Logic Simple Type Theory

3.2 Dependently-typed lambda-calculus.

We give a somewhat informal specification of the syntax of the dependently-typed λ-calculus
(see [Hof95, AG] for a more detailed exposition).

Dependent type theories have four standard forms of judgement

A : type , A ≡ B : type , a : A , a ≡ b : A .

We refer to the triple equality relation ≡ in these judgements as definitional (or judgemen-
tal) equality. It should not be confused with the notions of (extensional and intensional)
propositional equality to be introduced below. A judgement J of one of the four above
kinds can also be made relative to a context Γ of variable declarations, a situation that
we indicate by writing Γ ⊢ J . When stating deduction rules for such judgements we make
use of standard conventions to simplify the exposition, such as omitting the (part of the)
context that is common to premisses and conclusions of the rule.

To formulate the rules, we revisit the rules of simple type theory from Section ?? and
adjust them as follows.

Judgements: The basic kinds of judgements are:

Γ ctx , Γ ⊢ A type , Γ ⊢ a : A .

along with the judgemental equalities of each kind:

Γ ≡ ∆ ctx A ≡ B type a ≡ b : A ,

each of which are assumed to satisfy the usual laws of equality.

Contexts: These are formed by the rules:

(·) ctx
Γ ⊢ A type

Γ, x : A ctx

Here it is assumed that x is a fresh variable, not already occurring in Γ. Note that, unlike
in the simple type theory of the previous chapter, the order of the types occurring in a
context now matters, since types to the right may depend on ones to their left.

[DRAFT: February 27, 2025]

3.2 Dependently-typed lambda-calculus. 11

Types: In addition to the usual simple types, generated from basic types by formation of
products and function types, we may also have some basic types in context,

Basic dependent types Γ1 ⊢ B1, Γ2 ⊢ B2, · · ·

where the contexts Γ need not be basic. Further dependent types are formed from the
basic ones by the sum Σ and product Π type formers, using the formation rules :

Γ, x : A ⊢ B type

Γ ⊢ Σx:AB type

Γ, x : A ⊢ B type

Γ ⊢ Πx:AB type

Terms: As for the simple types, we assume there is a countable set of variables x, y, z,
We are also given a set of basic constants. The set of terms is then generated from variables
and basic constants by the following grammar, just as for simple types:

Variables v ::= x | y | z | · · ·
Constants c ::= c1 | c2 | · · ·

Terms t ::= v | c | ∗ | ⟨t1, t2⟩ | fst t | snd t | t1 t2 | λx : A . t

The rules for deriving typing judgments are much as for simple types. They are of course
assumed to hold in any context Γ.

• Each basic constant ci has a uniquely determined type Ci (not necessarily basic):

ci : Ci

• The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An ⊢ xi : Ai

(1 ≤ i ≤ n)

• The constant ∗ has type 1:

∗ : 1

• The typing rules for pairs and projections now take the form:

a : A b : B(a)

⟨a, b⟩ : Σx:AB

c : Σx:AB

fst c : A

c : Σx:AB

snd c : B(fst c)

We write e.g. B(a) rather than B[a/x] to indicate a substitution of the term a for
the variable x in the type B. Similarly, we may write Σx:AB(x) to emphasize the
possible occurence of the variable x in B. We treat A×B as another way of writing
Σx:AB, when the variable x : A does not occur in the type B.

[DRAFT: February 27, 2025]

12 Dependent Type Theory

• The typing rules for application and λ-abstraction are now:

t : Πx:AB a : A

t a : B(a)

x : A ⊢ t : B
(λx : A . t) : Πx:AB

We treat A → B as another way of writing Πx:AB when the variable x : A does not
occur in the type B.

The (β and η) equations between these terms are just as they were for simple types:

• Equations for unit type:

t ≡ ∗ : 1

• Equations for sum types:

u ≡ v : A s ≡ t : B(a)

⟨u, s⟩ ≡ ⟨v, t⟩ : Σx:AB

s ≡ t : Σx:AB

fst s ≡ fst t : A

s ≡ t : Σx:AB

snd s ≡ snd t : A

t ≡ ⟨fst t, snd t⟩ : Σx:AB
(η-rule)

fst ⟨s, t⟩ ≡ s : A snd ⟨s, t⟩ ≡ t : A
(β-rule)

• Equations for product types:

s ≡ t : Πx:AB u ≡ v : A

su ≡ t v : B

x : A ⊢ t ≡ u : B

(λx : A . t) ≡ (λx : A . u) : Πx:AB

(λx : A . t)u ≡ t[u/x] : A
(β-rule)

λx : A . (t x) ≡ t : Πx:AB
if x ̸∈ FV(t) (η-rule)

Equality types: Just as for first-order logic, for each type A we have a primitive equality
type:

x, y : A ⊢ EqA(x, y) type .

[DRAFT: February 27, 2025]

3.2 Dependently-typed lambda-calculus. 13

This is called propositional equality. For convenience, we may sometimes also write x =A y
for EqA(x, y). Although they will turn out to be logically equivalent, the reader is warned
not to confuse propositional and judgemental equality x ≡ y : A.

The formation, introduction, elimination, and computation rules for equality types are
as follows:

s : A t : A

s =A t type

a : A

refla : (a =A a)

p : s =A t

s ≡ t : A

p : s =A t

p ≡ refls : (s =A s)

The elimination rule is known as equality reflection. We may say that two elements s, t : A
are propositionally equal if the type s =A t is inhabited. Thus the equality reflection rule
says that if two terms are propositionally equal then they are judgementally equal.

Exercise 3.2.1. Show that two terms are propositionally equal if, and only if, they are
judgementally equal.

Remark 3.2.2 (Identity types). The formulation of the rules for equality just given is
known as the extensional theory. There is also an intensional version, with different elimi-
nation (and computation) rules, to be considered in the next chapter. To help maintain the
distinction between these three (!) different relations, the intensional version is sometimes
called the identity type and written IdA(s, t) instead. See [AG] for details.

Remark 3.2.3 (Variant rules for sum types). Another formulation of the rules for Σ-types
using a single dependent elimination rule is as follows:

z : Σx:AB ⊢ C type x : A, y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
z : Σx:AB ⊢ split(z, c) : Σx:AB

with the associated computation rule:

z : Σx:AB ⊢ C type x : A, y : B(x) ⊢ c(x, y) : C(⟨x, y⟩)
x : A, y : B(x) ⊢ split(⟨x, y⟩, c) ≡ c(x, y) : C(⟨x, y⟩)

These rules permit one to derive the simple elimination terms fst c and snd c, and to prove
the above computation rules for them. The η-rule is derived using a dependent elimination
involving the Eq-type.

Exercise 3.2.4. Prove the simple elimination rules for sum-types (involving fst c and
snd c) from the dependent ones (involving split).

Remark 3.2.5 (The type-theoretic axiom of choice). One of the oldest problems in the
foundations of mathematics is the logical status of the Axiom of Choice. Is it a “Law of
Logic”? A mathematical fact about sets? A falsehood with paradoxical consequences?

[DRAFT: February 27, 2025]

14 Dependent Type Theory

Per Martin-Löf discovered that the rules of constructive type theory that we have just
presented actually suffice to decide this question in favor of “Law of Logic” in a certain
sense [ML84] (see also [Tai68]). Since the statement of the type theoretic axiom of choice
goes (slightly) beyond standard first-order logic, this arguably provides a resolution that
also clarifies why the problem remained open for so long in conventional mathematics.

Under propositions as types, reading Σ as “there exists” and Π as “for all”, a type
such a Πx:AΣy:BR(x, y) can be regarded as a stating a proposition—in this case, “for all
x : A there is a y : B such that R(x, y)”. By Curry-Howard, such a “proposition” is then
provable if it has a closed term t : Πx:AΣy:BR(x, y), which then corresponds to a proof, by
unwinding the rules that constructed the term, and observing that they correspond to the
usual natural deduction rules for first-order logic.

Of course, the rules of construction for terms correspond to provability only under a
certain “constructive” conception of validity (see [Sco70]). Stated as follows,

Πx:AΣy:BR(x, y) → Σf :A→BΠx:AR(x, fx) , (3.3)

the “type theoretic axiom of choice” may sound like the classical axiom of choice under
the propositions as types interpretation, but this type is actually provable in (constructive)
type theory, rather than being an axiom!

Exercise 3.2.6. Prove the type theoretic axiom of choice (3.3) from the rules for sum and
product types given here.

Interaction of Eq with Σ and Π

The type theoretic axiom of choice Example 3.2.5, can be seen as a distributivity law
for Σ and Π. It is in fact an isomorphism of types : there are terms going both ways, the
composites of which are propositionally (and therefore definitionally!) equal to the identity
maps (i.e. λx : X. x : X → X). It is natural to ask, how do the other type formers interact?

Consider first the result of combining Eq-types with Σ. We can show that for s, t : A×B
there is always a term,

EqA×B(s, t) →
(
EqA(fst s, fst t)× EqB(snd s, snd t)

)
,

Moreover, there is a term in the other direction as well, and the composites are proposition-
ally equal to the identity. By equality reflection, it therefore follows that these types are
also syntactically isomorphic, in the sense just described. The same is true for dependent
sums, although this is a bit more awkward to state, owing to the fact that snd (s) : B(fst s)
and snd t : B(fst (t). However, since the first projection gives a term p : EqA(fst s, fst t)
we have fst s ≡ fst t and therefore B(fst s) ≡ B(fst t), so that EqB(fst s)(snd s, snd t)
makes sense, and is in fact judgementally equal to EqB(fst t)(snd s, snd t), so we can write:

EqΣx:AB(s, t) → Σp:EqA(fst s,fst t)EqB(fst s)(snd s, snd t) ,

[DRAFT: February 27, 2025]

3.3 Locally cartesian closed categories 15

Moreover, since EqB(fst s)(snd s, snd t) does not depend on p : EqA(fst s, fst t), this actially
rewrites to:

EqΣx:AB(s, t) → EqA(fst s, fst t)× EqB(fst s)(snd s, snd t) .

Moreover, these types are also isomorphic.
For Π-types, given terms f, g : A→ B, we can form a term of type

EqA→B(f, g) → Πx:AEqB(fx, gx) .

and again, this is an isomorphism of types. The corresponding law for dependent functions
f, g : Πx:AB takes the more perspicuous form

EqΠx:AB(f, g) → Πx:AEqB(x)(fx, gx) .

And again, this is also an iso. Note that these last two isomorphisms say that two functions
are equal just if they are so “pointwise”. This principle is called Function Extensionality.

Finally, let us consider equality of equality types. Given any terms a, b : C and p, q :
EqC(a, b), what more can be said? The principle called Uniqueness of Identity Proofs (UIP)
asserts that there is always a term of type

EqEqC(a,b)(p, q) .

Is there an argument for this principle, analogous to those for the equalities of terms of
types Σ and Π? We shall return to this question in the setting of intensional type theory
in the next chapter.

Exercise 3.2.7. Prove that extensional type theory satisfies (UIP).

3.3 Locally cartesian closed categories

Recall the following proposition from ??.

Proposition 3.3.1. The following conditions on a category C with a terminal object 1 are
equivalent:

1. Every slice category C/A is cartesian closed.

2. For every arrow f : B → A the (post-) composition functor Σf : C/B → C/A has a
right adjoint f ∗, which in turn has a right adjoint Πf .

B
f // A

C/B

Σf

%%

Πf

99
C/Af ∗oo

[DRAFT: February 27, 2025]

16 Dependent Type Theory

Such a category is called locally cartesian closed.

The notation of course anticipates the interpretation of DTT.

Proof. Suppose every slice of C is cartesian closed. It suffices to consider the case of (2)
with A = 1, and to show that the functor B∗ : C → C/B with B∗(X) = (π2 : X ×B → B)
has both left and right adjoints ΣB ⊣ B∗ ⊣ ΠB : C/B → C. For ΣB we can just take
the forgetful functor. For ΠB(p : X → B) we use the CCC structure in C to form the
map pB : XB → BB, which we then pull back along the point ′1B

′ : 1 → BB that is the
transpose of the identity map 1B : B → B.

ΠB(X)

��

// XB

pB

��
1 ′1B

′
// BB

Conversely, if C is LCC, then in every slice C/X we can define the product of A → X
and B → X as A ×X B = ΣAA

∗B and the exponential as (BA)X = ΠAA
∗B, and the

universal properties are easily checked.

Exercise 3.3.2. Verify the details of the proof just sketched for Proposition 3.3.1.

Basic examples of LCCCs

1. We have already seen the hyperdoctrine C = Set and P : Setop → Cat where P (I) =
SetI , with action of f : J → I on A : I → Set by precomposition f ∗A = A ◦ f : J →
Set, which is strictly functorial. There is an equivalent hyperdoctrine with the slice
category Set/I as the “category of predicates” and action by pullback f ∗ : Set/I →
Set/J . The equivalence of categories

SetI ≃ Set/I

allows us to use post-composition as the left adjoint f! : Set/J → Set/I , rather
than the coproduct formula in (3.2). Indeed, this hyperdoctrine structure arises
immediately from the locally cartesian closed character of Set. We have the same
for any other LCC E , namely the pair (E , E/(−)) determines a hyperdoctrine, with
the action of E/(−) by pullback, and the left and right adjoints coming from the LCC
structure.

2. Another familiar example of a hyperdoctrine arising from LCC structure is presheaves
on a small category C, where for the slice category Ĉ/X we have another category of
presheaves, namely

Ĉ/X ∼=
∫̂
CX ,

[DRAFT: February 27, 2025]

3.3 Locally cartesian closed categories 17

on the category of elements
∫
CX. For a natural transformation f : Y → X we have

a functor
∫
f :

∫
Y →

∫
X, which induces a triple of adjoints

(
∫
f)! ⊣ (

∫
f)∗ ⊣ (

∫
f)∗ :

∫̂
Y −→

∫̂
X .

These satisfy the Beck-Chevalley conditions up to isomorphism, because this indexed
category is equivalent to the one coming from the LCC structure,∫̂

X ≃ Ĉ/X ,

which we know satisfies them.

Note that each of the categories Ĉ/X is therefore also Cartesian closed, and moreover
has coproducts 0, X+Y , so it is a “categorified” Heyting algebra—although we don’t
make that part of the definition of a hyperdoctrine.

3. An instructive example of a hyperdoctrine that is not an LCC is the subcategory
of Pos of posets and monotone maps, which we already met in Section ??, with
the “predicates” being the discrete fibrations. For each poset K, let us take as the
category of predicates P (K) the full subcategory dFib K ↪→ Pos/K consisting of the
discrete fibrations : monotone maps p : X → K with the “unique lifting property”:
for any x and k ≤ p(x) there is a unique x′ ≤ x with p(x′) = k. Since each category
dFib/K is equivalent to a category of presheaves SetK

op

, and pullback along any
monotone f : J → K preserves discrete fibrations, and moreover commutes with the
equivalences to the presheaf categories and the precomposition functor f ∗ : K̂ → Ĵ ,
we have a hyperdoctrine if only the Beck-Chevalley conditions hold. We leave this
as an exercise for the reader. Finally, observe that dFib cannot be an LCC, simply
because it does not have a terminal object; however, every slice of course does one,
and so every slice dFib/K is a CCC, and therefore an LCC.

4. An example formally similar to the foregoing is the non-full subcategory LocHom ↪→
Top of topological spaces and local homeomorphisms between them, which also lacks
a terminal object, but each slice of which LocHom/X ≃ Sh(X) is equivalent to the
topos of sheaves on the space X, and is therefore CCC (and so LCCC).

5. Fibrations of groupoids. Another, similar, example of a hyperdoctrine not arising
simply from an LCCC is the category Grpd of groupoids and homomorphisms, which
is not LCC (cf. [Pal03]). We can however take as the category of predicates P (G)
the full subcategory Fib(G) ↪→ Grpd/G consisting of the fibrations into G: homomor-
phisms p : H → G with the “iso lifting property”: for any h ∈ H and γ : g ∼= p(h)
there is some ϑ : h′ ∼= h with p(ϑ) = γ. Now each category Fib(G) is biequivalent to a
category of presheaves of groupoids Fib(G) ≃ GrpdG

op

. It is not so easy to show that
this is a (bicategorical) hyperdoctrine; see [HS98]. This example will be important
in the next chapter as a model of intensional dependent type theory.

[DRAFT: February 27, 2025]

18 Dependent Type Theory

Exercise 3.3.3. 1. Verify that the pullback of a discrete fibration X → K along a
monotone map f : J → K exists in Pos, and is again a discrete fibration.

2. Verify the equivalence of categories dFib(K) ≃ SetK
op

.

3. Show the Beck-Chavelley conditions for the indexed category of discrete fibrations of
posets.

Exercise 3.3.4. Let P : Cop → Cat be a hyperdoctrine for which there are equivalences
PC ≃ C/C, naturally in C, with respect to the left adjoints Σf : C/A → C/B for all
f : A→ B in C. Show that C is then LCC.

Exercise 3.3.5. Show that any LCCC C, regarded as a hyperdoctrine, has equality in the
sense of Remark 3.1.4.

3.4 Functorial semantics of DTT in LCCCs

We begin by describing a “naive” interpretation of dependent type theory in a locally
cartesian closed category which, although not strictly sound, is nonetheless useful and
intuitive. In particular, it extends the functorial semantics of simple type theory in CCCs
that we developed in the last chapter. In a subsequent section, we shall “strictify” the
interpretation to one that is fully correct, but technically somewhat more complicated.
See Remark 3.4.2 below.

Contexts Γ are interpreted as objects [[Γ]], and dependent types Γ ⊢ A as morphisms
into the context [[Γ]]. To begin, let C be an LCCC, and interpret the empty context as the
terminal object, [[·]] = 1. Then for each closed basic type · ⊢ B, interpret [[· ⊢ B]] : [[B]] → 1.
Proceeding by recursion, given any type in context Γ ⊢ A, we shall have

[[Γ ⊢ A]] : [[Γ, A]] −→ [[Γ]] ,

abbreviating Γ, x : A to Γ, A. Note that in this way, we also interpret the operation
of context extension, by taking the domain of the interpretation of a type in context.
Weakening a type in context Γ ⊢ C to one Γ, A ⊢ C is interpreted as

[[Γ, A ⊢ C]] = π∗[[Γ ⊢ C]],

that is, the lefthand vertical map in the following pullback square, where the substitution
π : [[Γ, A]] → [[Γ]] is the product projection.

[[Γ, A, C]] //

[[Γ, A ⊢ C]]
��

[[Γ, C]]

[[Γ ⊢ C]]
��

[[Γ, A]] π
// [[Γ]]

(3.4)

[DRAFT: February 27, 2025]

3.4 Functorial semantics of DTT in LCCCs 19

Then, given Γ, A ⊢ B, we may assume that we already have maps

[[Γ, A,B]]
[[Γ,A⊢B]]−→ [[Γ, A]]

[[Γ⊢A]]−→ [[Γ]] ,

and we use the left and right adjoints to the pullback functor

[[Γ ⊢ A]]∗ : C/[[Γ]] → C/[[Γ,A]]

to interpret the eponymous type-forming operations:

[[Γ ⊢ Σx:AB]] = Σ[[Γ⊢A]]([[Γ, A ⊢ B]]) ,

[[Γ ⊢ Πx:AB]] = Π[[Γ⊢A]]([[Γ, A ⊢ B]]) .

A term Γ ⊢ a : A is interpreted as a section:

[[Γ]]

=

''

[[Γ ⊢ a : A]]
// [[Γ, A]]

[[Γ ⊢ A]]
��

[[Γ]]

Finally, as in first-order logic, substitution of a term Γ ⊢ a : A for a variable Γ, x : A in a
dependent type Γ, A ⊢ B is interpreted by taking a pullback,

[[Γ, B(a)]] //

[[Γ ⊢ B(a)]]

��

[[Γ, A,B]]

[[Γ, A ⊢ B]]

��
[[Γ]]

[[Γ ⊢ a : A]]
// [[Γ, A]]

and similarly for substitution into terms.
More generally, given any substitution γ : ∆ → Γ (a tuple of terms c1, . . . , cn in context

∆ of types those in Γ = (x1 : C1, . . . , xn : Cn)), we have a morphism [[γ]] : [[∆]] → [[Γ]].
Then, as in the substitution of a single term Γ ⊢ c : C for a variable Γ, x : C, we can obtain
a pullback diagram along [[γ]]:

[[∆, A(γ)]] //

[[∆ ⊢ A(γ)]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[∆]]
[[γ]]

// [[Γ]]

[DRAFT: February 27, 2025]

20 Dependent Type Theory

The lefthand vertical map is then by definition the interpretation of the substituted type
∆ ⊢ A(γ). The interpretation of a substitution into a term ∆ ⊢ a(γ) : A(σ) is similarly
induced by pullback.

Finally, we interpret an equality type x : A, y : A ⊢ EqA(x, y) as the diagonal of the
interpretation of A,

[[x, y : A ⊢ EqA(x, y)]] = ∆[[A]] : [[A]] −→ [[A]]× [[A]] .

As a map of contexts we then have

[[A,A, EqA(x, y)]] = [[A]] −→ [[A]]× [[A]] = [[A,A]] .

For Γ, A,A ⊢ EqA(x, y), with a context Γ, we take the diagonal of the map [[Γ ⊢ A]] :
[[Γ, A]] −→ [[Γ]] as an object in the slice category over [[Γ]].

Proposition 3.4.1 ([See84]). The rules of dependent type theory are sound with respect
to the naive interpretation in any LCCC, modulo the following Remark 3.4.2.

Remark 3.4.2 (Coherence). Although it is correct according to the intuition of slice
categories in an LCCC, the naive interpretation of substitution as pullback leads to a well-
known coherence problem [Hof95] for the interpretation of dependent type theory, arising
from the fact that pullbacks are only determined up to (canonical) isomorphism. For
example, in the foregoing situation, given another substitution Φ ⊢ δ : ∆, we obtain the
two-pullback diagram:

[[Φ, A(γ)(δ)]] //

[[Φ ⊢ A(γ)(δ)]]
��

[[∆, A(γ)]] //

[[∆ ⊢ A(γ)]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[Φ]]
[[Φ ⊢ δ : ∆]]

// [[∆]]
[[∆ ⊢ γ : Γ]]

// [[Γ]]

However, the composition of substitutions [[∆ ⊢ γ : Γ]] ◦ [[Φ ⊢ δ : ∆]] across the bottom is
the map [[Φ ⊢ γ(δ) : Γ]], and so there is another option for the vertical map on the left,
namely the single pullback:

[[Φ, A(γ(δ))]] //

[[Φ ⊢ A(γ(δ))]]
��

[[Γ, A]]

[[Γ ⊢ A]]
��

[[Φ]]
[[Φ ⊢ δ(γ) : Γ]]

// [[Γ]]

Since pullbacks are unique up to iso, there is of course a canonical isomorphism

[[Φ, A(γ)(δ)]] ∼= [[Φ, A(γ(δ))]]

[DRAFT: February 27, 2025]

3.4 Functorial semantics of DTT in LCCCs 21

over the base [[Φ]], but there is no reason for these two objects (and their associated pro-
jections) to be the same. To put the matter succinctly, the action of substitution between
contexts on dependent types is strictly functorial, but the action of pullback on slice cate-
gories is only a pseudofunctor.

The naive LCCC interpretation, with substitution as pullback, is thus only sound “up
to (canonical) isomorphism”. The problem becomes more acute in the case of intensional
type theory, where the interpretation of certain type formers is not even determined up
to isomorphism. We shall consider several solutions to this problem in detail in Section
?? below. For the remainder of this chapter on extensional type theory, however, we can
continue to work “up to (canonical) isomorphism” without worrying about coherence.

As was done for simple type theory in Section ??, we can also again develop the
relationship between the type theory and its models using the framework of functorial
semantics. This is now a common generalization of λ-theories, modeled in CCCs, and
first-order logic, modeled in Heyting categories. The first step is to build a syntactic
classifying category CT from a theory T in dependent type theory, which we then show
classifies T-models in LCCCs. We omit the now essentially routine details (given the
analogous cases already considered), and merely state the main result, the proof of which
is also analogous to the previous cases. A detailed treatment can be found in the seminal
paper [See84].

Theorem 3.4.3. For any theory T in dependent type theory, the locally cartesian closed
syntactic category CT classifies T-models, in the sense that for any locally cartesian closed
category C there is an equivalence of categories

Mod
(
T, C

)
≃ LCCC

(
CT , C

)
, (3.5)

naturally in C. The morphisms of T-models on the left are the isomorphisms of the under-
lying structures, and on the right we take the natural isomorphisms of LCCC functors.

As a corollary, again as before, we have that dependent type theory is complete with
respect to the semantics in locally cartesian closed categories, in virtue of the syntactic
construction of the classifying category CT. Specifically, any theory T has a canonical
interpretation [−] in the syntactic category CT which is logically generic in the sense that,
for any terms Γ ⊢ s : A and Γ ⊢ t : A, we have

T ⊢ (Γ ⊢ u ≡ t : A) ⇐⇒ [Γ ⊢ u : A] = [Γ ⊢ t : A]
⇐⇒ [−] |= (Γ ⊢ s ≡ t : A) .

Thus, for the record, we have:

Proposition 3.4.4. For any dependently typed theory T,

T ⊢ (Γ ⊢ u ≡ t : A) if, and only if, CT |= (Γ ⊢ u ≡ t : A) .

[DRAFT: February 27, 2025]

22 Dependent Type Theory

Of course, the syntactic model [−] in CT is the one associated under (3.5) to the identity
functor CT → CT, i.e. it is the universal one. It therefore satisfies an equation just in case
the equation holds in all models, by the classifying property of CT, and the preservation of
satisfaction of equations by LCCC functors (as in Proposition ??).

Corollary 3.4.5. For any dependently typed theory T,

T ⊢ (Γ ⊢ u ≡ t : A) if, and only if, M |= (Γ ⊢ u ≡ t : A) for every LCCC model M .

Moreover, a closed type A is inhabited ⊢ a : A if, and only if, there is a point 1 → [[A]]M

in every model M .

The embedding and completeness theorems of the previous chapter, with respect to
general presheaf models, Kripke models, and topological and sheaf semantics can also be
extended to dependently typed theories. See [AR11, Awo00] for details.

Exercise 3.4.6. In the internal logic of an LCCC E , show that the category of types in
context Γ ∈ E is equivalent to the slice category E/Γ. (Hint : use Eq-types.)

[DRAFT: February 27, 2025]

Bibliography

[AG] C. Angiuli and D. Gratzer. Principles of dependent type theory. Online at
https://carloangiuli.com/courses/b619-sp24/notes.pdf. Version 2024-11-
26.

[AR11] S. Awodey and F. Rabe. Kripke semantics for Martin-Löf’s extensional type
theory. Logical Methods in Computer Science, 7(3):1–25, 2011.

[Awo00] Steve Awodey. Topological representation of the λ-calculus. Mathematical Struc-
tures in Computer Science, 10:81–96, 2000.

[Hof95] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and
logics of computation, volume 14 of Publ. Newton Inst., pages 79–130. Cambridge
University Press, Cambridge, 1995.

[How80] William A. Howard. The formulae-as-types notion of construction. In Jonathan P.
Seldin and J. Roger Hindley, editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. 1980. Reprinted from
1969 manuscript.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36
of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[Joh03] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, 2 vol.s.
Number 43 in Oxford Logic Guides. Oxford University Press, 2003.

[Law70] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema as an ad-
joint functor. Proceedings of the AMS Symposium on Pure Mathematics XVII,
pages 1–14, 1970.

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory.
Bibliopolis, 1984.

[Pal03] Erik Palmgren. Groupoids and local cartesian closure. 08 2003. unpublished.

[DRAFT: February 27, 2025]

24 BIBLIOGRAPHY

[Sco70] Dana S. Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, volume
125, pages 237–275. Springer-Verlag, 1970.

[See84] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical
Proceedings of the Cambridge Philosophical Society, 95(1):33, 1984.

[Tai68] William W. Tait. Constructive reasoning. In Logic, Methodology and Philos.
Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967), pages 185–199. North-
Holland, Amsterdam, 1968.

[DRAFT: February 27, 2025]

	Dependent Type Theory
	Hyperdoctrines
	Dependently-typed lambda-calculus.
	Locally cartesian closed categories
	Functorial semantics of DTT in LCCCs

	Bibliography

