
Notes on Type Theory
[DRAFT: April 15, 2025]

Steve Awodey

with contributions from Andrej Bauer





Contents

4 Homotopy Type Theory 5
4.1 Identity types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.1 The naive interpretation . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 The groupoid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Weak factorization systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Natural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4.1 Modeling the type formers . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 Strictification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Universes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Univalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6.1 Function extensionality . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6.2 The h-levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 25

[DRAFT: April 15, 2025]



4 CONTENTS

[DRAFT: April 15, 2025]



Chapter 4

Homotopy Type Theory

The extensional dependent type theory of the previous chapter is in some ways a very
natural system that admits an intuitively clear model in the locally cartesian closed cat-
egory of sets and related categories. But for computational purposes, and specifically for
the important application of type theory to proof checking in a computer proof assistant
such as Agda or Lean, it has some serious defects: the equality relation between terms
(or types) is not decidable: there is no algorithm that will determine whether two closed
terms of a given type s, t : A are (judgementally) equal s ≡ t : A. Indeed, there is no
normalization procedure for reducing terms to normal forms—otherwise we could use it to
decide whether two terms were equal by normalizing them and then comparing their nor-
mal forms. Relatedly, one cannot effectively decide whether a given type (e.g an equality
type such as EqA(s, t)) is inhabited (which would be a decision procedure for the provability
of s =A t), even given a candidate “proof term” p : EqA(s, t) (which would be a decision
procedure for being a proof ).

For this reason, the extensional system is often replaced in applications by a weaker
one, called intensional type theory, which enjoys better computational behavior, such as
decidability of equality and type-checking, and normalization. A good discussion of these
and several related issues, such as canonicity and consistency can be found in Chapter 3
of the book [AG].

However, this is only one side of the story. The intensional theory was mainly a tech-
nical device for specialists in computational type theory (and a conceptual challenge from
the semantic point of view) until around 2006, when it was discovered that this theory
admitted a homotopical (and higher-categorical) interpretation, which led to the discovery
of Homotopy type theory (HoTT) [Awo12]. This interpretation not only helped to clarify
the intensional theory, and prove useful in investigating its computational properties, but
also opened up a wide range of applications outside of the conventional areas of type the-
ory, vis. computational and constructive mathematics. For, quite independently of such
applications, the homotopical interpretation permits the use of intensional type theory as
a powerful and expressive internal language for formal reasoning in homotopy theory and
higher category theory, both highly abstract areas of mathematics, for which new and rig-
orous tools for calculation and proof are quite welcome. Moreover, the fortuitous fact that

[DRAFT: April 15, 2025]



6 Homotopy Type Theory

this system also has the good computational behavior that it does has led to the use of
computational proof assistants in homotopy theory and higher category theory, even ahead
of some more down-to-earth branches of mathematics, where such exotic semantics were
not needed.

The homotopical interpretation was already anticipated by a 2-dimensional one in the
category of groupoids, a special case of a higher categorical model that already suffices to
make some of the essential features of such models clear. Thus we shall briefly review this
model below, after introducing the intensional theory, and before considering the general
homotopical semantics using weak factorization systems. Such “weak” interpretations also
bring to a head the coherence issues that we deferred in the previous chapter, and we
conclude with one approach to strictifying such interpretations using natural models, aka,
categories with families.

4.1 Identity types

We begin by recalling from Section ?? the rules for equality types in the extensional system:
The formation, introduction, elimination, and computation rules for equality types were
as follows:

s : A t : A

s =A t type

a : A

refl(a) : (a =A a)

p : s =A t

s ≡ t : A

p : s =A t

p ≡ refl(s) : (s =A s)

The Identity types in the intensional theory, also written x =A y, or sometimes IdA(x, y),
have the same formation and introduction rules as the Equality types, but the elimination
rule of “equality reflection” is replaced by the following elimination rule:

x : A, y : A, z : IdA(x, y) ⊢ C(x, y, z) type, x : A ⊢ c(x) : C(x, x, refl(x))

x : A, y : A, z : IdA(x, y) ⊢ J(x, y, z, c) : C

in which the variable x is bound in the occurance of c within the eliminator J. The
associated computation rule then becomes:

x : A ⊢ J(x, x, refl(x), c) ≡ c(x) : C(x, x, refl(x))

In HoTT, the elimination rule is called path induction, for reasons that will become clear.
To see how the elimination rule works, let us derive the basic laws of identity, namely

reflexivity, symmetry, and transitivity, as well as Leibniz’s Law the indicernibility of iden-
ticals, also known as the substitution of equals for equals.

• Reflexivity: states that x =A y is a reflexive relation, but this is just the Id-formation
and intro rules:

x : A, y : A ⊢ x =A y type , x : A ⊢ refl(x) : x =A x

[DRAFT: April 15, 2025]



4.1 Identity types 7

• Symmetry: can be stated as x : A, y : A, u : x =A y ⊢ ? : y =A x , which can be
proved with an Id-elim as follows:

x : A ⊢ refl(x) : x =A x

x : A, y : A, u : x =A y ⊢ J(x, y, u, refl) : y =A x

• Transitivity: we wish to show

x : A, y : A, z : A, u : x =A y, v : y =A z ⊢ ? : x =A z

regarding z : A as a fixed parameter, which we can move to the front of the context,
we want to apply an Id-elim with respect to the assumption u : x =A y, so we can
set x to y, and look for a premiss of the form:

z : A, y : A, v : y =A z ⊢ ? : y =A z

We cannot simply take v, however, since the order of the types in the context is still
wrong for Id-elim, but we can move the assumption v : y =A z to the right with a
λ-abstraction to obtain

z : A, y : A ⊢ λv .v : y =A z → y =A z ,

and now we can apply the planned Id-elim with respect to u : x =A y with the
“motive” being y =A z → x =A z to obtain

z : A, y : A, x : A, u : x =A y ⊢ J(x, y, u, λv.v) : y =A z → x =A z

from which follows the desired

x : A, y : A, z : A, u : x =A y, v : y =A z ⊢ J(x, y, u, λv.v) v : x =A z .

• Substitution: to show

x : A ⊢ C(x) type

x : A, y : A, u : x =A y ⊢ ? : C(x) → C(y)

it suffices to have a premiss of the form

x : A ⊢ c(x) : C(x) → C(x)

for this, we can take c(x) = λz : C(x). z : C(x) → C(x) to obtain

x : A, y : A, u : x =A y ⊢ J(x, y, u, x.λz : C(x).z) : C(x) → C(y) .

Note that the variable x is bound in the J term.

[DRAFT: April 15, 2025]



8 Homotopy Type Theory

Many more properties of Id-types and their associated J-terms are shown in the intro-
ductory texts [Uni13, Rij25]. One key fact is that the higher identity types IdIdA(a,b)(p, q)
are no longer degenerate, but themselves may have terms that are non-identical, i.e. not
propositionally equal, leading to so-called higher types. This “failure of UIP” (uniqueness
of identity proofs) in the intensional system was first shown using the groupoid model,
which sheds considerable light on the intensional system.

Exercise 4.1.1. Show that given any a, b, c : A and p : a =A b and q : b =A c, one
can define a composite p · q : a =A c (using the transitivity of =A). Then show that, for
any p : a =A b, the symmetry term σ(p) : b =A a satisfies the (propositional) equation
σ(p) · p = refl. Is either of σ(p) · p = refl or refl · σ(p) = refl judgemental? What
about associativity of p · q

Exercise 4.1.2. Show that p · q from the previous exercise is (propositionally) associative.

Exercise 4.1.3. Show that any term f : A → B acts on identities p : a =A b, in the sense
that there is a term ap(f)(p) : fa =B fb. Is ap(f) “functorial” (in the evident sense)?

Exercise 4.1.4. Observe that the Substitution property means that the assignment

(a : A) 7→ C(a) type

is functorial (in some sense). Is it strictly functorial?

4.1.1 The naive interpretation

We can try to interpret the (intensional) identity types in the naive way, as we did for
extensional dependent type theory. This would give the formation and introduction rules
as a type family IdA → A × A with a partial section over the diagonal substitution
δA : (x : A) → (x : A, y : A).

IdA

A A× A

prefl

δA

where we are writing IdA for the extended context (A,A, IdA) and p for the dependent
family (x : A, y : A ⊢ IdA(x, y)). The elimination rule then takes the form:

A C

IdA IdA

refl

c

J
(4.1)

for any type family C → IdA, with the computation rule asserting that the top triangle
commutes (the bottom triangle commutes by the assumption tht J is a section of C → IdA).

[DRAFT: April 15, 2025]



4.2 The groupoid model 9

But now recall that in extensional type theory, any map f : B → A can be regarded
as a type family over A, namely by taking the graph factorization

B ∼= Σa:AΣb:BEqA(a, fb) −→ B × A.

So we can take the family C in the elimination to be refl : A → IdA, to obtain:

A A

IdA IdA

refl refl
J

We therefore get an iso A ∼= IdA, making the identity type isomorphic to the extensional
equality type EqA = A → A× A.

Exercise 4.1.5. Prove that in the extensional theory, the graph factorization does indeed
make any map f : B → A isomorphic to a family of types over its codomain. Hint:
Consider the following two-pullback diagram.

Σa:AΣb:BEqA(a, fb) A

A×B A× A

B A

⌟

A×f

p2
⌟

p2

f

4.2 The groupoid model

Exercises 4.1.1 – 4.1.4 from the last section suggest an interpretation of the intensional
version of dependent type theory, namely with types as groupoids and type families as
functors. Such an interpretation was first given by [HS98] in order to show that the
principle of Uniqueness of Identity Proofs (UIP) – which holds in the extensional theory –
indeed fails in the intensional one. We shall briefly sketch this result here.

In order to give a model of intensional type theory we should define what it means to
be be a model of (intensional) type theory. We will do this in section ?? below – for now
we simple describe a single model in the category Gpd of groupoids, which will turn out
to be an instance of the general notion. For the extensional theory, we defined a model
simply to be an interpretation into an LCCC E , with contexts Γ interpreted as objects of
E , substitutions σ : ∆ → Γ as arrows of E , type families Γ ⊢ A as objects of E/Γ, and
terms Γ ⊢ a : A as sections of the associated families. Substitution into families and terms
was (weakly) interpreted’ as pullback (in the sense that there was an unresolved coherence
issue), and the Σ and Π type formers were adjoints to pullback. Finally, the equality type

[DRAFT: April 15, 2025]



10 Homotopy Type Theory

x : A, y : A ⊢ EqA(x, y) was interpreted as the diagonal A → A× A.

(x : A, y : A, z : EqA(x, y)) A

(x : A, y : A) A× A

We may simplify the notation for category of contexts by using Σ-types, writing e.g. (x :
A, y : A, z : EqA(x, y)) = Σx:AΣy:AEqA(x, y) or even EqA, and (x : A, y : A) = A× A, etc.

The groupoid interpretation of the intensional theory is based on the idea that the
identity type of a type (interpreted as a groupoid) G can be interpreted by the path groupoid
of G, which we shall write as GI.

Definition 4.2.1. If the groupoid G = G0 ⇒ G1 has objects G0 and arrows G1, the path
groupoid GI = (|(GI)I| ⇒ |GI|) has as objects |GI| = G1, and as arrows |(GI)I| the set of all
commutative squares in G, with the obvious source and target maps.

In other words, the path groupoid is the arrow category G↓. Recall that the category
Gpd of (small) groupoids is a cartesian closed subcategory of Cat, and that there is a
walking arrow groupoid I with exactly two objects and two (mutually inverse) non-identity
arrows,

I = ( 0 1 )

The notation GI for the path groupoid is then correctly the exponential of G by I in Gpd (and
in Cat). Observe that there are functors dom, cod : GI ⇒ G, as well as one id : G → GI,
making GI ⇒ G into an internal groupoid in Gpd, for any object G. This will be our
interpretation of the identity type of the type interpreted by G.

More formally, we interpret:

• Contexts Γ: groupoids, i.e. objects of Gpd,

• Substitutions σ : ∆ → Γ: homomorphisms of groupoids, i.e. arrows of Gpd,

• Types Γ ⊢ A: functors A : G → Gpd, where G interprets Γ,

• Terms Γ ⊢ a : A: natural transformations a : 1 → A between functors, where 1 is the
terminal functor in GpdG,

• Context extension (Γ, A) → Γ: the Grothendieck construction
∫
G
A → G .

In order to model the type formers Σ, Π, etc. of intensional type theory in Gpd, we
must deal with the fact that Gpd is not locally cartesian closed, although it is cartesian
closed. Recall that in order to model extensional type theory in presheaves we used the
fact that SetC

op

is always a CCC and that for any P ∈ SetC
op

we have an equivalence

SetC
op

/P ≃ Set
∫
P op

,

[DRAFT: April 15, 2025]



4.2 The groupoid model 11

and thus every slice is also a CCC. For groupoids, something similar is the case, but instead
of the full slice category Gpd/G we use the subcategory of fibrations FibG ↪→ Gpd/G, for
which we have an equivalence

FibG ≃ GpdG ≃ Gpd(SetG
op

) ,

Since the proof that Gpd is a CCC doesn’t depend on the classical logic of Set, the category
of internal groupoids in a topos like SetG

op

is also a CCC. Thus we have that FibG is a CCC
for any groupoid G.

Definition 4.2.2. A (split op-) fibration of groupoids p : A → G is a functor satisfying
the condition: for every a ∈ A and γ : pa → g there is given a “lift” ℓ(a, γ) : a → g̃ with
p(ℓ(a, γ)) = p, and moreover,

1. ℓ(a, 1pa) = 1a : a → a ,

2. for γ′ : g = p(g̃) → h, the lift of the composite is the composite of the lifts:

ℓ(a, γ′ ◦ γ) = ℓ(g̃, γ′) ◦ ℓ(a, γ) : a → h̃ .

Proposition 4.2.3. The category FibG of fibrations of groupoids and functors f : A → B
over G that preserve the lifts is equivalent to the functor category GpdG.

The interpretation of the context extension (Γ, A) → Γ is to be projection
∫
G
A → G

given by the Grothendieck construction, and this is indeed a fibration of groupoids. Indeed,
the functor taking A : G → Gpd to

∫
G
A → G mediates the equivalence

∫
: GpdG ≃ FibG.

For the base change functors along a fibration p : A → G, we then have left and right
adjoints as follows:

A GpdA FibA

G GpdG FibG

p

∼

∫
Σ Πp∗

∼

∫ p∗

To show this, it needs to be shown that:

1. the pullback of a fibration is a fibration,

2. the composite of fibrations is a fibration,

3. there is a push-forward fibration of a fibration along a fibration, which is right adjoint
to pullback.

The proof uses the CCC structure in the categories FibA ≃ GpdA ≃ Gpd(SetA) and is similar
to the proof of the LCCC structure for a category of presheaves.

[DRAFT: April 15, 2025]



12 Homotopy Type Theory

Identity types

To interpret the Id-type of a type (interpreted as, say) A = (A1 ⇒ A0) in Gpd (or indeed
in any relative version Gpd(SetG)), we shall use the path groupoid

IdA = AI → A× A ,

which is easily seen to be a fibration, and therefore corresponds to a functor IdA : A×A →
Gpd, namely that with discrete groupoids as its values:

IdA(a, b) = {p : a → b} ⊆ A1 .

Note that for two objects a, b ∈ A there may be many different arrows f : a → b in
IdA(a, b), but for two such parallel arrows f, g : a ⇒ b in A, regarded as objects in the
path groupoid IdA = AI, there need be no arrow between them in the (discrete) groupoid
IdA(a, b); and indeed, there will be one (which is then unique) just if f = g. Thus we will
have the desired violation of UIP, once we have shown that this interpretation satisfies the
rules for intensional Id-types.

To show that, consider the diagram below, which we have already encountered as (4.3).
We take any fibration p : C → IdA and any section c : A → C over the insertion of identity
arrows into the path groupoid refl : A → AI = IdA, and we need a diagonal filler J.

A C

IdA IdA

refl

c

p
J

Since the diagram commutes by assumption, for any a ∈ A we have pca = 1a. Let
α : a → b be any object in IdA = AI and observe that there is always an arrow χα : 1a ⇒ α
in IdA = AI, namely χα = (1a, α).

a a

a b

1a

1a

χα α

α

Since p : C → IdA is a fibration, there is a lift ℓ(ca, χα) : ca → α̃. We then set

J(α) = α̃

to obtain a functor J : IdA → A making the two triangles in the diagram commute.

Exercise 4.2.4. Prove this!

Exercise 4.2.5. Show that the composition of fibrations B → A and A → G is a fibration.
(This will be used for the interpretation of the type Γ ⊢ ΣAB, where Γ ⊢ A and Γ,A ⊢ B.)

[DRAFT: April 15, 2025]



4.3 Weak factorization systems 13

4.3 Weak factorization systems

We can axiomatize the features of the groupoid model that allowed us to model intensional
type theory using the notion of a weak factorization system, which is important in axiomatic
homotopy theory. This is a weakening of the notion of an orthogonal factorization system
from Definition ??:

Definition 4.3.1. An weak factorization system (wfs) on a category C consists of two
classes of arrows (L,R) such that:

1. Every map f : A → B factors f = r ◦ ℓ into ℓ ∈ L followed by r ∈ R,

A B

C

f

ℓ r

2. Given any commutative square with an L-map on the left and an R-map on the right,

A B

C D

ℓ r
j

(4.2)

there is a (not necessarily unique) diagonal filler j as indicated, making both triangles
commute.

3. The classes L,R ⊆ C1 are closed under retracts in the arrow category.

Given such a wfs on a finitely complete category C, we shall interpret the contexts and
substitutions as the objects and arrows of C, the type families as the right maps, and the
terms as the sections of the right maps. The first part of the following is required for
the interpretation of substitution, and the second part is used for context extension and
Σ-types.

Lemma 4.3.2. In a wfs (L,R) on a finitely complete category C, the right maps are stable
under pullback along all maps. (Dually, the left maps are stable under pushouts along all
maps.) Moreover, both L and R are closed under composition.

Before giving the proof, we develop an important aspect of wfs’s: weak orthogonality.
For any maps f : A → B and g : C → D, let us write

f ⋔ g

and say that f is weakly orthogonal to g if every commutative square with f on the left
and g on the right has a diagonal filler j as in (4.2). We also say that “f has the left lifting

[DRAFT: April 15, 2025]



14 Homotopy Type Theory

property with respect to g” and “g has the right lifting property with respect to f”. More
generally, for any set of arrows S, write

S ⋔ f = s ⋔ f for all s ∈ S

f ⋔ S = f ⋔ s for all s ∈ S

and let

S ⋔ = {f | S ⋔ f}
⋔S = {f | f ⋔ S} .

Finally, S ⋔ T mean that s ⋔ t for all s ∈ S and t ∈ T . Then in a wfs (L,R) we clearly
have

L ⋔ R ,

but in fact more is true:

Lemma 4.3.3. Given two classes of maps (L,R) in a category C satisfying the factorization
and diagonal filler axioms for a wfs above, L,R are also closed under retracts if and only if

R = L⋔ ,

L = ⋔R .

Proof. Suppose (L,R) is a wfs, so both classes are closed under retracts. We need to show
that if f : A → B satisfies L ⋔ f, then f ∈ R (the converse is already true by L ⋔ R. Factor
f = r ◦ ℓ and consider the diagram

A A

C B

ℓ f
j

r

(4.3)

which commutes and has a diagonal filler j, since ℓ ∈ L. We can rearrange (4.3) into a
retract diagram as follows.

A C A

B B B

f

ℓ

r

j

f (4.4)

Thus f ∈ R, since R is closed under retracts. The argument for L = ⋔R is dual. We leave
the converse as an exercise.

Exercise 4.3.4. Show that (L,R) is a wfs if the factorization axiom holds and L⋔ = R and
L = ⋔R.

[DRAFT: April 15, 2025]



4.3 Weak factorization systems 15

Proof. (of Lemma 4.3.2) Let f : A → B be in R and consider its pullback along any
B′ → B:

A′ A

B′ B

f ′
⌟

f (4.5)

To show f ′ ∈ R, it suffices by Lemma 4.3.3 to show that f ′ has the right lifting property
with respect to L, but this follows easily from f ′ being a pullback of f , which does. We
leave the rest of the proof as an exercise.

Exercise 4.3.5. Finish the proof of Lemma 4.3.2.

It now follows that we can interpret the structural rules of dependent type theory, as
well as the context extension operation, with the R maps as the type families, just as we
did using arbitrary maps in an lccc. The rules for Σ types will also be satisfied, since
these state that Σ is left adjoint to pullback, and therefore closure of right maps under.
composition means that they are closed under Σ-types.

Let us see that we can also interpret the rules for Id-types. The formation rule for IdA
is interpreted by factoring the diagonal substitution δ : A → A×A into a left map followed
by a right map:

IdA

A A× A

prefl

δ

This also interprets the introduction rule, using the left map in the factorization as the
interpretation of the refl term. For the elimination rule, suppose we have a type family
p : C → IdA and a section c : A → C over refl : A → IdA; then we need a diagonal filler J.

A C

IdA IdA

refl

c

p
J

But since refl : A → IdA is a left map by the factorization, and C → IdA is a right map
by the interpretation of type families as right maps, there is such a filler by the second
axiom of wfs’s. Thus we have already shown:

Proposition 4.3.6 ([AW09]). In a fintely complete category C with a wfs, the rules of
intensional identity types are soundly modeled by interpreting the type families as the right
maps and the identity type IdA as a factorization of the diagonal δ : A → A×A into a left
map refl : A → IdA followed by a right map IdA → A× A.

This kind of interpretation includes many important “naturally occurring” examples
involving Quillen model categories, which are categories equipped with two interlocking

[DRAFT: April 15, 2025]



16 Homotopy Type Theory

wfs’s (see [AW09]). The Π-types can also be interpreted in this way, if the right maps
of the wfs pushforward along right maps, as is the case in examples such as right-proper
Quillen model categories and Π-tribes in the sense of [Joy17]. Indeed, the groupoid model
from the previous section was an instance of such a wfs: as the right maps one can take
the isofibrations, and the left maps are then the equivalences that are injective on objects
[GG08].

Remark 4.3.7. The coherence issue that we have been postponing is now even more
pressing, however, because the factorizations in a wfs need not be stable under pullback,
and so the following (slightly schematic) substitution rule for the Id type former will not
be soundly modeled, even up to isomorphism.

σ : ∆ → Γ , Γ ⊢ A , Γ ⊢ a, b : A

∆ ⊢ IdA(a, b)σ ≡ IdAσ(aσ, bσ)

A similar problem occurs with respect to the J-term, which is also required to respect
certain substitutions in the type theory, but need not do so under this interpretation. One
solution to this problem makes use of a further algebraic structure on the factorization
system, called an algebraic weak factorization system. This approach is discussed in [GL23].
We shall develop a different solution in the next section.

4.4 Natural models

The semantics of DTT in LCCCs employed in the previous sections uses the “slice category”
hyperdoctrine of an LCCC to interpret the dependent types. Thus the contexts Γ and
substitutions σ : ∆ → Γ are interpreted as the objects and arrow of a LCC category C,
and the dependent types Γ ⊢ A and terms Γ ⊢ a : A are interpreted as objects A → Γ
in the slice category C/Γ and their global sections a : Γ → A (over Γ). As we mentioned
in Remark ??, however, there is a problem with this kind of semantics (as first pointed
out by [Hof95]): as a hyperdoctrine, this interpretation is a pseudofunctor C/ : Cop → Cat,
but the syntax of DTT produces an actual presheaf of types in context Ty : Cop → Set,
since substitution into dependent types is strictly functorial with respect to composition
of substitutions, in the sense that for a type in context Γ ⊢ A and substitutions σ : ∆ → Γ
and τ : Φ → ∆ we have an equality of types in context,

Φ ⊢ (A[σ])[τ ] ≡ A[σ ◦ τ ] ,

rather than the (canonical) isomorphism ∼= fitting into the two-pullbacks diagram of the
hyperdoctrine, namely:

(σ ◦ τ)∗A ∼=
//

$$

))
τ ∗σ∗A //

��

σ∗A //

��

A

��
Φ τ //

σ ◦ τ
44∆ σ // Γ

[DRAFT: April 15, 2025]



4.4 Natural models 17

A similar problem occurs in the Beck-Chavalley conditions, where the hyperdoctrine struc-
ture has only canonical isos, rather than the strict equalities that obtain in the syntax,
such as

(Πx:AB)[σ] ≡ (Πx:A[σ]B[σ]) .

And the same problem occurs, of course, if we use only the right maps in a wfs, rather
than all maps in the slice category of an LCC.

There are various different solutions to this problem in the literature, some involving
“strictifications” of the LCC slice-category hyperdoctrine (including both left- and right-
adjoint strictifications [?, ?]), as well as other semantics altogether, such as categories-
with-families [Dyb96], categories-with-attributes [?], and comprehension categories [?]. A

solution based on the notion of a universe Ũ → U was first proposed by Voevodsky [?];
in [Awo16], the universe approach is combined with the notion of a representable natural
transformation to determine the semantic notion of a natural model, as follows.

Definition 4.4.1. For a small category C, a natural transformation f : Y → X of
presheaves on C is called representable if for every C ∈ C and x ∈ X(C), there is given a
p : D → C and a y ∈ Y (D) such that the following square is a pullback.

yD Y

yC X

yp

y

⌟
f

x

(4.6)

We will show that a representable natural transformation is essentially the same thing
as a category with families in the sense of Dybjer [Dyb96]. Indeed, let us write the objects
of C as Γ,∆, . . . and the arrows as σ : ∆ → Γ, . . . , thinking of C as a “category of contexts”.
Let t : Ṫ → T be a representable map of presheaves, and interpret the elements as

T(Γ) = {A | Γ ⊢ A}
Ṫ(Γ) = {a | Γ ⊢ a : A, for some A},

so that under Yoneda we have:

A ∈ T(Γ) iff Γ ⊢ A

a ∈ Ṫ(Γ) iff Γ ⊢ a : A,where t ◦ a = A

as indicated in:

Ṫ

yΓ T

t
a

A

Thus we regard T as the presheaf of types, with T(Γ) the set of all types in context
Γ, and Ṫ as the presheaf of terms, with Ṫ(Γ) the set of all terms in context Γ, while the
component tΓ : Ṫ(Γ) → T(Γ) is the typing of the terms in context Γ.

[DRAFT: April 15, 2025]



18 Homotopy Type Theory

The naturality of t : Ṫ → T just means that for any substitution σ : ∆ → Γ, we have
an action on types and terms:

Γ ⊢ A 7→ ∆ ⊢ Aσ

Γ ⊢ a : A 7→ ∆ ⊢ aσ : Aσ .

While, by functoriality, given any further τ : Φ → ∆, we have

(Aσ)τ = A(σ ◦ τ) (aσ)τ = a(σ ◦ τ),
as well as

A1 = A a1 = a

for the identity substitution 1 : Γ → Γ.
Finally, the representability of the natural transformation p : E → U is exactly the

operation of context extension: given any Γ ⊢ A, by Yoneda we have the corresponding
map A : yΓ → T, and we let pA : Γ.A → Γ be (the map representing) the pullback of t
along A, as in (4.6). We therefore have a pullback square:

yΓ.A Ṫ

yΓ T

ypA

qA

⌟
t

A

(4.7)

where the map qA : Γ.A → Ṫ now determines a term

Γ.A ⊢ qA : ApA.

We may hereafter omit the y for the Yoneda embedding, letting the Greek letters serve to
distinguish representable presheaves and their maps.

Exercise 4.4.2. Show that the fact that (4.7) is a pullback means that given any σ : ∆ → Γ
and ∆ ⊢ a : Aσ, there is a map

(σ, a) : ∆ → Γ.A,

and this operation satisfies the equations

pA ◦ (σ, a) = σ

qA(σ, a) = a,

as indicated in the following diagram.

∆

σ

  

(σ, a)

  

a

!!
Γ.A

pA

��

qA
// Ṫ

t

��
Γ

A
// T

[DRAFT: April 15, 2025]



4.4 Natural models 19

Show moreover that the uniqueness of (σ, a) means that for any τ : ∆′ → ∆ we also have:

(σ, a) ◦ τ = (σ ◦ τ, aτ)
(pA, qA) = 1.

Comparing the foregoing with the definition of a category with families in [Dyb96], we
have shown:

Proposition 4.4.3. Let t : Ṫ → T be a representable natural transformation of presheaves
on a small category C with a terminal object. Then t determines a category with families,
with C as the contexts and substitutions, T(Γ) as the types in context Γ, and Ṫ(Γ) as the
terms in context Γ.

Remark 4.4.4. A category with families is usually defined in terms of a presheaf

Ty : Cop → Set

of types on the category C of contexts, together with a presheaf

Tm′ : (
∫
CTy)

op → Set

of typed-terms on the category
∫
CTy of types-in-context. We are using the equivalence of

categories, valid for any category of presheaves SetC
op

,

SetC
op

/P ≃ Set(
∫
CP )op

between the slice category over a presheaf P and the presheaves on its category of elements∫
CP , to turn the presheaf Tm′ : (

∫
CTy)

op → Set into one Tm : Cop → Set together with a
map Tm → Ty in Cop → Set.

We think of a representable map of presheaves on an arbitrary category C as a “type
theory over C”, with C as the category of contexts and substitutions. We will show in
Section 4.4.2 that such a map of presheaves is essentially determined by a class of maps
in C that is closed under all pullbacks, corresponding to the “incoherent” interpretation of
types in context as maps A → Γ.

Definition 4.4.5. A natural model of type theory on a small category C is a representable
map of presheaves t : Ṫ → T.

Exercise 4.4.6 (The natural model of syntax). Let T be a dependent type theory and CT
its category of contexts and substitutions. Define the presheaves Ty : CTop → Set of types-
in-context and Tm : CTop → Set of terms-in-context, along with a natural transformation

tp : Tm → Ty

that takes a term to its type. Show that tp : Tm → Ty is a natural model of type theory.

[DRAFT: April 15, 2025]



20 Homotopy Type Theory

4.4.1 Modeling the type formers

Given a natural model t : Ṫ → T, we will make extensive use of the associated polynomial
endofunctor Pt : Ĉ −→ Ĉ (cf. [?]), defined by

Pt = T! ◦ t∗ ◦ Ṫ∗ : Ĉ −→ Ĉ ,

SetC
op

Ṫ∗
��

Pt // SetC
op

SetC
op

/Ṫ t∗
// SetC

op

/T

T!

OO

The action of Pt on an object X may be depicted:

X X × Ṫoo

��

Pt(X)

��
Ṫ

t
// T

We call t : Ṫ → T the signature of Pt and briefly recall the following universal mapping
property from [?].

Lemma 4.4.7. For any p : E → B in a locally cartesian closed category E, the polynomial
functor Pp : E → E has the following universal property: for any objects X,Z ∈ E, maps
f : Z → Pp(X) correspond bijectively to pairs of maps f1 : Z → B and f2 : Z ×B E → Z,
as indicated below.

Z Pp(X)

X Z ×B E E

Z B

f

f2
⌟ p

f1

(4.8)

The correspondence is natural in both X and Z, in the expected sense.

This universal property is also suggested by the conventional type theoretic notation,
namely:

Pp(X) = Σb:BX
Eb

The lemma can be used to determine the signature p · q for the composite Pp ◦ Pq of two
polynomial functors, which is again polynomial, and for which we therefore have

Pp·q ∼= Pp ◦ Pq . (4.9)

[DRAFT: April 15, 2025]



4.4 Natural models 21

Indeed, let p : B → A and q : D → C, and consider the following diagram resulting from
applying the correspondence (4.10) to the identity arrow,

⟨a, c⟩ = 1Pp(C) : Pp(C) → Pp(C) ,

and taking Q to be the indicated pullback.

D Q

C π∗B B

Pp(C) A

q
⌞ p·q

c
⌟

p

a

(4.10)

The map p · q is then defined to be the indicated composite,

p · q = a∗p ◦ c∗q .

The condition (4.9) can then be checked using the correspondence (4.10) (also see [?]).

Definition 4.4.8. A natural model t : Ṫ → T over C will be said to model the type
formers 1,Σ,Π if there are pullback squares in Ĉ of the following form,

1 Ṫ

1 T

⌟
t

Ṫ2 Ṫ

T2 T

t·t
⌟

t

Pt(Ṫ) Ṫ

Pt(T) T

Pt(t)
⌟

t (4.11)

where t · t : Ṫ2 → T2 is determined by Pt·t ∼= Pt ◦ Pt as in (4.9).

The terminology is justified by the following result from [?].

Theorem 4.4.9 ([Awo16] Theorem XXX). Let t : Ṫ → T be a natural model. The
associated category with families satisfies the usual rules for the type-formers 1,Σ,Π just
if t : Ṫ → T models the same in the sense of Definition 4.4.8.

We only sketch the case of Π-types, but the other type formers will be treated in detail
in Section ??.

Proposition 4.4.10. The natural model t : Ṫ → T models Π-types just if there are maps
λ and Π making the following a pullback diagram.

Pt(Ṫ) Ṫ

Pt(T) T

Pt(t)

λ

⌟
t

Π

(4.12)

[DRAFT: April 15, 2025]



22 Homotopy Type Theory

Proof. Unpacking the definitions, we have Pt(T) = ΣA:TT
A, etc., so diagram (4.12) be-

comes:

ΣA:TṪ
A Ṫ

ΣA:TT
A T

ΣA:Tt
A

λ

t

Π

For Γ ∈ C, maps Γ → ΣA:TT
A correspond to pairs (A,B) withA : Γ → T andB : Γ, A → T,

and thus to Γ ⊢ A and Γ, A ⊢ B. Similarly, a map Γ → ΣA:TṪ
A corresponds to a pair

(A, b) with Γ ⊢ A and Γ, A ⊢ b : B, the typing of b resulting from composing with the map

ΣA:Tt
A : ΣA:TṪ

A → ΣA:TT
A .

ΣA:TṪ
A Ṫ

Γ

ΣA:TT
A T

λ

t

(A,B)

(A,b)

λAb

ΠAB

Π

The composition across the top is then the term Γ ⊢ λx:Ab , the type of which is determined
by composing with t and comparing with the composition across the bottom, namely
Γ ⊢ Πx:AB. In this way, the lower horizontal arrow in the diagram models the Π-formation
rule:

Γ, A ⊢ B

Γ ⊢ Πx:AB

and the upper horizontal arrow, along with the commutativity of the diagram, models the
Π-introduction rule:

Γ, A ⊢ b : B

Γ ⊢ λx:Ab : Πx:AB

The square (4.12) is a pullback just if, for every (A,B) : Γ → ΣA:TT
A and every t : Γ → Ṫ

with t ◦ t = ΠAB, there is a unique (A, b) : Γ → ΣA:TṪ
A with b : B and λAb = t. In terms

of the interpretation, given Γ, A ⊢ B and Γ ⊢ t : Πx:AB, there is a term Γ, A ⊢ t′ : B
with λx:At

′ = t, and t′ is unique with this property. This is just what is provided by the
Π-elimination rule:

Γ, A ⊢ B Γ ⊢ t : Πx:AB Γ ⊢ x : A

Γ, A ⊢ t x : B

in conjunction with the Π-computation rules :

λx:A(t x) = t : ΠAB

(λx:Ab)x = b : B

[DRAFT: April 15, 2025]



4.5 Universes 23

4.4.2 Strictification

4.5 Universes

4.6 Univalence

4.6.1 Function extensionality

4.6.2 The h-levels

[DRAFT: April 15, 2025]





Bibliography

[AG] C. Angiuli and D. Gratzer. Principles of dependent type theory. Online at
https://carloangiuli.com/courses/b619-sp24/notes.pdf. Version 2024-11-
26.

[AW09] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity
types. Math. Proc. Cambridge Philos. Soc., 146(1):45–55, 2009.

[Awo12] Steve Awodey. Type theory and homotopy. In Peter Dybjer, Sten Lindström, Erik
Palmgren, and Göran Sundholm, editors, Epistemology Versus Ontology: Essays
on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf,
pages 183–201. Springer, 2012. arXiv:1010.1810.

[Awo16] Steve Awodey. Natural models of homotopy type theory. Mathematical Structures
in Computer Science, 28:1–46, 11 2016.

[Dyb96] P. Dybjer. Internal type theory. LNCS, 1158:120–134, 1996.

[GG08] Nicola Gambino and Richard Garner. The identity type weak factorisation system.
Theoretical Computer Science, 409(1):94–109, 2008.

[GL23] N. Gambino and M.F. Larrea. Models of Martin-Löf type theory from algebraic
weak factorisation systems. The Journal of Symbolic Logic, 88(1):242–289, March
2023.

[Hof95] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and
logics of computation, volume 14 of Publ. Newton Inst., pages 79–130. Cambridge
University Press, Cambridge, 1995.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type the-
ory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of
Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[Joy17] André Joyal. Notes on clans and tribes, 2017. unpublished https://arxiv.org/

abs/1710.10238.

[Rij25] Egbert Rijke. Introduction to Homotopy Type Theory. Cambridge University Press,
2025.

[DRAFT: April 15, 2025]

https://arxiv.org/abs/1710.10238
https://arxiv.org/abs/1710.10238


26 BIBLIOGRAPHY

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

[DRAFT: April 15, 2025]

https://homotopytypetheory.org/book

	Homotopy Type Theory
	Identity types
	The naive interpretation

	The groupoid model
	Weak factorization systems
	Natural models
	Modeling the type formers
	Strictification

	Universes
	Univalence
	Function extensionality
	The h-levels


	Bibliography

